
Annales Academire Scientiarum Fennicie

Series A. I. Mathematica
Volumen 8, 1983, 139-148

BOUI\DARY BEHAVIOR OF COI{FORMAL ANT)

QUASICONFORMAL MAFPINGS

DOV AHARONOV and URI SREBRO

Declicated to our teacher Pro-/essor Elisha Netanvahu

L. Introduction

l.l. Let b be aboundary point of a simply connected domain ,D in e :eu{-}
and suppose that D is locally n'connected at b, n>1. This means that n is the

smallest integer having the property that b has arbitrarily small neighborhoods

Z such that DaV has exactly n connected components. An example of such

a domain is the complement in e of, what we call, a straight n'star S, which is
(by our definition) a union of n finite line segments Ir,l=i=-n, possibly of dif-

ferent length, having a common end point at 0 and being evenly spaced. There

exists a conformal map f of D onto e\^S such that f(z)*Q as z*b. A question

then arises: How does f grow near 0?

This problem is related to distortion problems near the boundary for conformal

mappings in 3 : {z(C: lzl- 1} and for quasiconformal mappings in Bn:
{x€Å': lxl=l} and to growth problems near isolated essential singularities of
meromorphic mappings.

We studied one of these problems in [2] showing how the solution to the problem

implies simply and naturally the Denjoy-Carleman-Ahlfors theorem. The basic

tools in [2] were inequalities for the logarithmic capacity. We now use modulus of
path families as a tool. This makes our new proof of Denjoy-Carleman-Ahlfors
theorem look similar in someway to Macintyre's [9].

The next chapter contains basic definitions and results which are used in the

following chapters. Chapters 3 and 4 refer to mappings in the complex plane

C or on the Riemann sphere e :Cu{-}. The rest of the paper deals with mappings

in R", n>2. All conformal or quasiconformal mappings which are considered

here are assumed to be injective.
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2. Notation and preliminaries

2.1. For a:(ar,...,an)eR" and r€(0, -) we let lal:()!_ro?)'t', Bn(a,r):
{x€R': la-xl=r}, B'(r):3n7g,r), B":8"(l) B:82, Ä!:{x(.R': x,=0} and
Bn*:Bn^R'+. For f : DrR', Dc.R", denote M/r):sup {l/(r)l: x(D,lxl:r}. the
cluster set of a function f : D*R' at a boundary point b€\D is denoted bV C(f,b).
The cluster set of / on a set Ec|D is defined by C (f, E):U,€EC (f, b).

'lhe modulus of a family f of paths y: [0, 1] *i1-' is defined by

MV) - inf

all non-negative Borel tbnctions g: Rn---Rl which

,! rl'txl = t

for all locally rectifiable paths y€l-.
For an open set D in Ro and compact sets .E and F in D we let f(E, F, D)

denotethefamilyofpathsjoining ^E and F in D, andwelet f(E,D):f(E,AD,D).

2.2. The outer dilation of a quasiconformal mapping f : D-Rn, DcR", n>2,
is defined by

ro : esg;3tp lf' {x)l I J (x, f)
wherc f'(x) is the formal derivative of f, lf'(x)l is t}re norm of the operator

f'(x): R'*Rn and J(x,f):detf'(x).
Note that / is conformal if and only if Ko:1.

2.3. The inuariance of the modulus. Let .l' be a path family in a domain DcR'
and f : D*R' a quasiconformal mapping with outer dilation Ko. Then, see [ll],

M(f) = KoM(fQ)).

Equality holds if and only if .f is conformal.

2.4. A symmetry principle; cf. [3]. Let E; R'*.R" denote the reflection in
AR"+, E a continuum in ,Bi, l:l(E,AB,B+) and l':l(EvE(E),Bn). Then

M[): u(E[\: I uq).

2.5. Lemma. Let l, and f, bepathfamiliesin R" suchthat f, lsminorized
by fr,f r=f z, meaningthateach y2(12 hasasubpath yr€i"r. Then M(f 2)=M(fr).

Proof follows from the definition. Cf. U[,6.41.

2.6. Superadditiuity. Let 0=r=R=- and let I-r,...,.1-. be path families
which, respectively, lie in disjoint Borel sets Dr,...,D,n in R', such that

{ o" clm

where the infimum is taken over
satisfy the condition
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r - uL , f ,c r (8" (r), B"(A)). Then

See [11,6.7 and7.5l.

2.7. Lemma. Let E be a continuum in Bn which contains the point 0 and

meets 08"(r),0<r<1, and let l:l(E,B'). Thm

M€) =r,-, (tog&]'-'

where ).,>o clepends only on n and trz:4' cf ' [7, ch' II] and 14, p' 2351'

2.8. Lemma. Let 0=r=1, O-<a€2r, Q:{z(C:lzl=1,O<atgz<al and

E a continuum in G which contains the point 0 and meets 0B(r). Let r-
f(E,|BaG,G). Then

Mt)= n(log4r-"t"1-r.

Proof. Let t(z):2"t", Q(z):Z, E':{t(E)vE(,i(E» and f':f(E, B)' Then

M(f):1'411-')12 by 2.3 and2.4. The result follows now by 2'7'

2.9. Lemma. Let d=0, ,,R>'0 and a(08", n>2, such that B"(a,d)cB:
A,(1ttfia,R). Let E beacontinuumin B"aB whichcontainsthepoint O and

meets 08"(a,d) and let l:l(E,|BnB",BnB\. Thm

Me)=T (,"r#)'-'
where An is the constant mentioned in 2.7.

Proof. Let f o:f(E, B). Since å,8 is perpendicular to 08" it follows by

2.4 that M(f):11417o)12. Let E be a Möbius transformation such that E(B):p'
and q(a):Q. Then E(.8) is a continuum in .B' which contains 0 and meets

08"(d')forsomed'>d,andM(f):M(E(rJ)'Thistogetherwith2'Tgivesthe

MV)* 0)n-, (,o*+)'-"

desired inequality

2.10. Lemma. Let n>L and let d.-r..., d-PQ. Then

*"(ä.,)'-" = äor-".

Proof. By Hölder's inequalitY

yn' : 
{äa{n-L)1n 

o'-an) = (ä.,)'' äut-",

and the result follows.
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3. Mapping and distortion theorems

3.1. Theorem. Let D be asimply connecteddomainin e with -(D,o(OD
and åD\{0\*A, which is locally m-connected at O(LD, m>1. Then:

(1) There exists a conformal mapping c of D onto the complement of a straight
m-star s such that g(z)*g as z*o and hauing the normalizations g(-):- and.
g(z)lz*l as z+@.

(ii) Let g be as in (i). For r>o sufficiently small DnB(r) has m connected
components Di(r), haoing the property o€LD{r),|=j=m. Let Mie):sup {lg(z)l:
zCD/r)|. Then

ii,,6<t6r*.j:1

The constant 16 is best possible.

3.2. Proof. (i) Let q be a conformal map of D onto ey,B witfr g(-):-.
Then c(9,0) consists of distinct points ai(08, l=j<m. The function h(z):
z-1fii=r@-ai)zt* maps e\B onto the complement of a straight m-star with
h(-):- and h(a):O, l=j=m. Therefore for a suitable constant A, g(z):
eh(EQ)) will have the desired properties.

(ii) By extending the arms of ,s to -, c is divided into m congruent sectors
D',, l=j=m. Let Dr:C-r@'j). It is clear that for all sufficiently small r>0,
DaB(r) will have exacfly m connected components Dr(r), r=j=m, having
the property that Dr(r)cDi and 0€0Dj(r). Choose Ä>0 large enough so that
Ö1r1n;ca. Let R':Ms(R), f ,;:f(D{r),08(R),Dj) and ri;:f@@ie),
»B(R'), Dj). Then

ä = årfri)= å uts(rr) - ä u(r, =, 2!=, 
.Ft ilr ' i:1 " lo g6lr)Frloe4(R'lM j)*r'

The first inequality follows from Lemma 2.7, the second from 2.5, the last from
2.6 and the equality from2.3. This string of inequalities together with Lemma 2.10
implies

1

losÄf
consequenfly, IIi=rMt=16(rR'IR) . But rR'/rR*l as R*- duetothenormaliza-
tions of g, thus IIirM,=l6r'.

We now show that the constant 16 cannot be replaced by a smaller constant.
Consider first the case m:1. Fix a((1, -) and e€(0, z) and let f denote the
mapping of the complement in e of ttre set

S",o: {z: lrl:1, e <arg z<2n}vll,a]vlpei":0= q < l}
onto a straight I-star 5:[0, a'] such that .f"(z)*O as z*0 and normalized:

= * å(loe 
r$ttmR'lMi)-1 ? m(åLos t6Lt*R'tu,)
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.4(-):- and f"(z)lz*l as z+@. Here a'>1 will depend on e and a. Such

a mapping exists by the first part of the theorem. By Carath6odory's convergence

theorem f(z):lim*,-0f,(z) exists and defines a conformal mapping of the kernel

D:e\B\[,a] withrespectto - of thedomains D" of f",O<e<n, onto the

slit domain \[0, a"f for some a"> l, Since each f" can be continued analytically
across the slit [1, a] the convergence is uniform with respect to the spheric metric

in e1f1r11t,a1 for any r>1. It is also easy to see that diamf,(B)*Q 35

€*0, and thus C (f, 1): {0, M\ where 0-M :1im+,*rlim"-o.M(r, f"):
lim *, 4 M (r, f ). By computations one has y : (16(a + (l I a)) - 32) I (a + (U a) + Z) * rc
as a+@. This proves the sharpness of the inequality in (ii) in the case ru:l.

For m=l chooseabranch g"of f"(z-)tl- andget Mr=l6Ll^ as e*0,r*1
alnd a-* for all l=j=m. This proves that the constant 16 in (ii) cannot be

replaced by a smaller constant.

3.3. Remark. In the example given in 3.2 llf=LMj(r)xl6r- for one value

of r, namel! r:L. We do not know whether 16 is the smallest possible constant
in the following inequality, which follows from Theorem 3.1. (ii)

lim spp ,-* ff a,g1= rc.
r+u j:l

We now establish a local version of Theorem 3.1.

3.4. Theorem. Let D be a domain in e which is locally m'connected at
O€.\D, m>1. Suppose that the connected component E of 0D which contains

O is not a point and that -EnD7§:0. For r>O sufficiently small DIB(R)
has m simply connected components Di@), l=i=m, with O(Dlr).

Let f be a conformal mapping of D into the complement of a straight m-stqr

S such that C(f,E)c,S and g(z)*Q as z*0. Then

Iim-spp r-^ 
,[rMi(r) -*

where M iQ) 
: sup., o,r,, I f(z)1.

Proof. Let F denote the connected component of \D which contains ,E

Since .S iscompactin C and C(f,E):S, F hasasimplyconnectedneighborhood
U such that Un|D:E and such tltp;t f(U)cB(R') for some .R'>0. Extend
each arm of ,S until it first meets f(|U). This divides f(UnD) into m domains

D]. We may assume that the domains Dj lie, respectively, in the sectors /., which
are obtained from C, when the arms of ,S are extended to -. If this is not the

case, delete from U the sets f-t(D1n/t) for all i*i and replace U by an appro-
priate subset. Choose .R>0 such that ,B(Ä)c U and such that Dn-B(r) has

m connected components D/r) l<j=m with 0€D--(r) and DiQ)-Di:f-'(Di),
l=j=m, whenever 0=r<R. For r€(0,Ä) and L=j<mlet f j:f(D.(r),0U,D)
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and li:f(m,08(Å'), Åi). Then

Mg?= m(f(r;)): MV j)
by 2.5 and 2.3. Next, 2.6 and 2.7 imply

and

Hence

äu(r;) =#{ii
§,+= irtrj').i?rlog4(R'IMj)*r' i:1

1n,
; Ä(log 

r$ttmP'lM)-1 < (loe Rlr)-t

thatand by 2.10 it follows

which implies the assertion

ii *,< 1 6(R'lR),,r*
j:1

of the theorem.

4. Applications

We now show how modified versions of the Denjoy-Carleman-Ahlfors
theorem follow directly from Theorem 3.1 and the classical Phragmdn Lindelöf
principle.

4.1. Theorem. Let E be anon-degenerate continuumin e such that *€8,
and such that D:C\E is locally m-connected at *.

ff f is analytic in C, bounded on \{-} and unbounded in each component
o/ D\,B(r) for all r-0, then Iim inf,,-- r-'tzlog M/r)>g.

Proof. With no loss of generality we may assume that 0(.8. By 3.1 (i) there
is a conformal map of D onto the complement of a straight n-star ,S such that
S@)*0 äs Z+@t g(0):- and zg(z)*l as z-0. Extend the arms of ,S to -.
Thisdivides C into m congruentsectors D'r,l=i=m. Let Dr:g-r(D),gi:glDi.
Then Ft:foS;t is bounded on åDl\{0} and unbounded in D;. Thus, by the
principle of Phragm6n Lindelöf there are positive constants ai , l s j am, such that
&lirnt2logM_r,(r) for L=j=m and all sufficiently small r>0. For sufficiently
large r, D\B(r) has m connected components Dfr) such that -(4(r) and
Di(r)cDi, l<j=m. Let Mi(r):snp {lg(r)l: z(Di?)}. By Theorem 3.1(ii),

[i-rMi?)=rcr-- and by the maximum principle MF|Mj)=Mr1o,Q)=Mr(r).
Hence

ä *ylz log Mr,(Mi) = 4* r--mztzlog' My?).
j:L

IIoi=
.i:1
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Therefore, r-*t2logMr(r)>U4\If=ra,)u^=0, for all sufficiently large r. This

completes the proof.

4.2. Corollary (Denjoy-Carleman-Ahlfors). If f is entire and has rn

distinct finite asymptotic ualues, then liminf r-^l2logMyQ)>0 as /*6.
Proof. Let yi, j:1, ...,fl be disjoint asymptotic arcs. Then / is bounded on

E:(JTi and unbounded between any two adjacent arcs. The assertion follows,

now, from 4.1.

4.3. Theorem. Let the point O be an isolated essential singularity of a holo'

morphic function f defined in a domain D. Let E be a non-degenerate continuum

in C such that 0(EcDv{O} and such that D\,8 ,r connected and locally m-con-

nected at O,m>|. If f is bounded on \{0} and unbounded in each component

o/ B(r)\,8 for all r>0 then lim inf,*o r*tzlog M1@)>0.

proof. By 3.1(i) there is a conformal mapping g of c\E onto the complement

of a straight m-star ,S such that g(z)*Q as z-0, g(-):- änd g(z)fz-l as

z*-. Extendthearmsof .S to -. Thisdivides C into m congrtentsectors /;,
l=j<m. Let Dr:g-'(A), D!:g(Dr) and gr:glD'. Then each f ,:fog:L
is bounded on $lraDj and unbounded in Di. It thus follows by the principle

of Phragm6n-Lindelöf that there are positive constants ai, lAi=-m, such that

ai<rmlz logMr.(r) for all sufficiently small r>0. Since 0 is an isolated boundary

ptiot of 0» aha since D\,8 is locally m-connected at 0 it follows that for suf-

ficiently small r=0,B(r)nD\ä has nt components D;(r) having the property

that OeID{r) and D{r)cD1. Let Mi(r):suP,er,<tlsk)1. Then by 3.1

ili-, pt,(r)=16 r*. By the maximum principle M t,(M i@)) = 
M t,(r) = 

M t(r)' Hence

mm
II a ; = [l M, (r)^ t2 log M r,(lt t (r)) = 4 r-' t z log^ M, (r)
j:r j: r.

and so liminf,-o r^12 logM(r)>O.

4.4. Coroll ary. Let O be anisolated essential singularity of aholomorphic map f.
If f has m distinct fi.nite asytnptotic limits at 0, then limint-er'/2logM(r)>0.

Proof. Let yi, l=j<m be m disjoint asymptotic arcs, then E:UT:r.Ti
satisfies the conditions of Theorem 4.3., / is bounded on -E and by Lindelöf's

theorem unbounded between any two adjacent arcs. The corollary then follows

by 4.3.

4.5. Theorem. Let f be analytic in g:{z:Imz>0} hauing m, m>1,
distinct asymptotic limits at the point 0. Then lim inf'-o ,@-r\tabg M(r)>O
where M (r) : sap p1 :,,, r, lf (z)1.

Proof. Let yy,...,!^ ba the asymptotic paths associated with the asymptotic

limits. We may assume that y, and y* start at the point i, that T2,.,,,!n-t
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liebetween y1 and y* andthat ly,lnlyrl:{0} forallpairs {i,j\i*j other than
{L, *1, for which the intersection consists of the end points i and 0. Let D denote
the bounded component of U\(_ll!rly,l and D':Y(D) where Y(z):22 andlet
M'(r):s11p {lfT-'k)l: lzl:7 zCD'}. Then M'(rz)= M(r) and, as a consequence
of 4.1., lim inf r'-uz log M'(r)>O as r*0. Therefore lim inf f*-rta log M (r)=0.

5. Distortion theorems for conformal and quasiconformal mappings

We now study the growth of conformal and quasiconformal mappings f : 8,, -R,
near the boundary. Suppose that y:116,-of(x) for some qcAB". The growth
of l/(x)l or of lflx)-yl, 1f y+o, n€är a is usually estimated in terms of lxl
or equivalently in terms of the distance of x from \Bn; cf. [0] or [6], [S] and [5].
Here, the growth will be estimated in terms of the distance from the point a.

A particular attention is given to the case where / assumes the same limit at
several boundary points. We show that this imposes certain restrictions on the growth
of / And conversely, if a certain rather mild growth condition is imposed on /
then the degree of fl\B" must be bounded. This generalizes results by Essdn [5],
see also [1], and Spencer [10] in C and results by Miniowitz [8] in R', n>2.

5.1. Theorem. Let f : B'*Rn, n>2, be a quasiconformal mapping such that

f(x)-O as x*ai for m>l distinct points ai(AB, l<i=nt. Then there exists
ro>0 such that m components, say DiQ), l<i=m, of B"(r)ofB" haue the prop-
erty that O(\Di@), a§\D{r) where D,(r):f-r(Di?D and such that

= crd

for all r€(0, ro]. Here dr:fl,.(r):sup,ur, sylx-a,l d:(mf2Ko)Ltn-r and c>O is
a constant which does not depend on r.

Proof. Choose .R>0 such that the balls B-U,(y'L+Rzai,R), l<i<tn,
are disjoint and ro>0 such that DiQ)cB, for 0<r<ro and l=i=m. Let
f;:r(Dfr, 08"(r), Di?i). Each family t,:f(D,(r),08i, B\ is minorized by
f-r(r) and thus MQ)<M(f-{l-;)), t<i=m, by 2.5. Now,2.3. and 2.6. impty

ä *tf-t (ri)) =- Ko ä *q;l
i:l i:1

and on the other hand

(ä0,)''"'

= r(o @,,-, (ro* ?)t-.

äry['"*T)'-" = äu(r,)

?)'-"

by 2.9. Therefore

å(," r$)'-n =2Ko(,,*



and

Then

(a)

and

(b)
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Application of 2.10. with a,:leg(,l,.R/d,) yields

mn -, (^ r,t_,+)* " 

= +[,"* ?)'-'.
Hence (IIi:rar)''*=crn for r€(0,rol where c:i,Rlrfi and u:(mf2Ko)Lt"-1.

5.2. Corollary. Suppose that f :8"*R', n=2, is quasiconformal and that

y:lim,*o,f@) exislsforsome m>l points a,Q|Bn,lli=m, andapoint y(R". Let

M (r): ,gä r,::,f:, l"f (x) - vl if v # *

M (r) - - 
min inf l"f@)l if y - @ .

tåi=m lx- a,l:r

liminfr-pM(r)>0 if !#*

lim sup rP M(r) =.. if ! : *,
r*0 '

where B:12Kslm)Lt"-t.

Proof. It is enough to consider the case .y:0, since the general case can be

reduced to the case y-0 by composing / with either a translation or a Möbius
transformation which måps o to 0. Let ro be as in Theorem 5.1. Pick rt=0
such that M(r)=ro for r=rr. Let Oi(M(r)) denote the connected component
of B"(M(r))^.f(8") which contains f(B"(o,, r)nB"), O,(l,t1r'1):7-1(Oi(tt(r))
and d,:srlp x<D,(M(r))l*-arl, l=i=m. Then by 5.1

r < min o,=(!,r,U''^ = cM(r)'

where a: llB:(ml2Kn)u'-1 and c>0 is a constant which does not depend on r.
This implies the assertion of the theorem.

5.3. Corollary. Let f : B'*R" be a continuous mapping which is qua§-

conformal in B and let m>l be an integer. Suppose that each point a€08" has

a path y":fO, l)*Bn such that y,(t)-a as t-1- and such that for some y=
(2Krlm;r/n*r

(a)

and

(b)
,< lr,l

Then at most m-l distinct points on \Bn can hatse the same image y.

Proof. Stppose that m distinct points ar(08", l=i=m, have the same

image y. Suppose first that y**. Let rr, Dr(r) and d, be as in Theorem 5.1

lim sup lf@-f(o)i
x-:a: lff<oo if f(a)la

x€ ly,l '

lim inf lx - al'lf (x)i = 0 if f (z) - oo.



lx,-o,l= d,=(,är,)''^ 5 cro: clf(x)-f(a)1,,

for some constant c>0 where lla:(2Kslm)li"-1>y. It thus follows that lf(x,)-
f(a)lllxra,l'*- as r+0 contradicting (a). Similarly, the case .y:- contra-
dicts (b).
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and suppose that ro is sufficiently small so that W,,ln0Dr(rr)*0 for l=i<m.
For each r€(0,r0] choose an index i such that d,:s;frr<j=*d, and a point
xglyo,ln0D,(r). Then by 5.1,

5.4. Remark The last corollary is void in the event that ,f is meromorphic
(n:2, Ko:l), unless m>3. A particular case of 5.3 when m:3 (n:2, Ko:l)
was conjectured by Piranian and proved for m>-3 by Ess6n [5] and by Aharonov [1].
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