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1. Introduction

1.1. Let b be a boundary point of a simply connected domain D in €=Cu{eo}
and suppose that D is locally n-connected at b, n=1. This means that n is the
smallest integer having the property that b has arbitrarily small neighborhoods
¥ such that DAV has exactly n connected components. An example of such
a domain is the complement in C of, what we call, a straight n-star S, which is
(by our definition) a union of n finite line segments I;, 1=j=n, possibly of dif-
ferent length, having a common end point at 0 and being evenly spaced. There
exists a conformal map f of D onto C\S such that f(z)—~0 as z—b. A question
then arises: How does f grow near 07

This problem is related to distortion problems near the boundary for conformal
mappings in B={z€C: |z]<1} and for quasiconformal mappings in B"=
{x€R": |x|<1} and to growth problems near isolated essential singularities of
meromorphic mappings.

We studied one of these problems in [2] showing how the solution to the problem
implies simply and naturally the Denjoy—Carleman—Ahlfors theorem. The basic
tools in [2] were inequalities for the logarithmic capacity. We now use modulus of
path families as a tool. This makes our new proof of Denjoy—Carleman—Abhlfors
theorem look similar in someway to Macintyre’s [9].

The next chapter contains basic definitions and results which are used in the
following chapters. Chapters 3 and 4 refer to mappings in the complex plane
C or on the Riemann sphere €C=Cu{}. The rest of the paper deals with mappings
in R", n=2. All conformal or quasiconformal mappings which are considered
here are assumed to be injective.
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2. Notation and preliminaries

2.1. For a=(ay, ..., a,)€R" and r€(0, =) we let |a|=(3,a})'? B"(a,r)=
{x€R": |a—x|<r}, B"(r)=B"(0,r), B"=B"(1) B=B?, R" ={x¢R" x,>0} and
B" =B"nR’.. For f: D~R", DCR", denote M (r)=sup {|f(x)|: x¢D, |x|=r}. The
cluster set of a function f: D—~R" ata boundary point b€dD is denoted by C(f,b).
The cluster set of f on aset EcoD is defined by C(f, E)=ycs C(f, b).

The modulus of a family T of paths y:[0, 1]1-R" is defined by

M(I) = inf [ ¢"dm
Rn

where the infimum is taken over all non-negative Borel functions ¢: R*—~R' which
satisfy the condition

fgldx] =1

for all locally rectifiable paths yer.
For an openset D in R" and compactsets E and F in D we let I'(E, F, D)
denote the family of paths joining E and F in D, and welet I'(E, D)=I(E, dD, D).

2.2. The outer dilation of a quasiconformal mapping f: D—R", DCR", n=2,
is defined by
Ko = esssup |/ )" (x, 1)

where f’(x) is the formal derivative of f, (f’(x)| is the norm of the operator
f'(x): R*~R" and J(x, f)=det f’'(x).
Note that f is conformal if and only if K,=1.

2.3. The invariance of the modulus. Let I be a path family in a domain Dc R"
and f: D—~R" a quasiconformal mapping with outer dilation K,. Then, see [11],

M(I') = K M(f(I).
Equality holds if and only if f is conformal.
2.4. A symmetry principle; cf. [3]. Let ¢:R">R" denote the reflection in
OR"., E a continuum in B, I'=I(E,dB", B") and I"=I(Eu¢@(E), B"). Then
1
M) = M(p()= - MI).
2.5. Lemma. Let I'y and Ty be path families in R" such that T, is minorized
by I'y,I'y<TI',, meaning that each y,€I'y has asubpath y,€I'y. Then M(I'y)=M(T,).
Proof follows from the definition. Cf. [11, 6.4].

2.6. Superadditivity. Let O<r<R<o and let Iy,...,I, be path families
which, respectively, lie in disjoint Borel sets D, ..., D, in R", such that
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F: U;“:l Fic F(Bn(r)a B”(R)). Then
1—n
M) = 0, (l0gX)
See [11, 6.7 and 7.5).

2.7. Lemma. Let E be a continuum in B" which contains the point 0 and
meets OB"(r), 0<r<1, and let I'=I(E, B"). Then

A, 1-—n
M) = w,, [logT‘"—]
where A,=0 depends only on n and i,=4. Cf.[7, Ch.1I] and [4, p. 235].

28 Lemma. Let O=<r<l1, O<a=2n, G={z€C:|z|<1,0<argz<a} and
E a continuum in G which contains the point 0 and meets 0B(r). Let I'=
I'(E, dBNG, G). Then
M(T') = n(log 4r~™*)~1,

Proof. Let Y(z)=z"* @(z)=2, E'=Y(E)up(Y(E)) and I’'=I(E,B). Then
M()=M(I")2 by 2.3 and 2.4. The result follows now by 2.7.

2.9. Lemma. Let d=0, R>0 and a€dB", n>2, such that B"(a,d)CB=
B"(Y1+R%a, R). Let E be a continuum in B"nB which contains the point O and
meets OB™(a,d) and let T'=I(E,0BNB", BnB"). Then

1—n
M) = (log al dR ]
where A, is the constant mentioned in 2.7.

Proof. Let I'y=I(E, B). Since B is perpendicular to 9B" it follows by
2.4 that M(I')=M(Ip)/2. Let ¢ be a Mobius transformation such that @(B)=B"
and ¢(a)=0. Then @(E) is a continuum in B" which contains 0 and meets
dB"(d’) for some d’>d, and M(I')=M(p(I'y)). This together with 2.7 gives the
desired inequality

2.10. Lemma. Let n=1 and let o, ..., %,>0. Then

m 1—n m
m”[ > ai) = Doi™"
i=1 i

Proof. By Holder’s inequality

m m "l om
mlx___(zai(n—l)/nalgl—n)/n) = (2’ ] 2’ 1 n

i=1

and the result follows.
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3. Mapping and distortion theorems

3.1. Theorem. Let D be a simply connected domain in € with o¢D, 09D
and ODN\{0}#0, which is locally m-connected at 0€dD, m=1. Then:

(i) There exists a conformal mapping g of D onto the complement of a straight
m-star S such that g(z)~0 as z—0 and having the normalizations g(e0)=1co and
g@))z—1 as z— oo,

(i) Let g be asin (i). For r=0 sufficiently small DnB(r) has m connected
components D(r), having the property 060D (r), 1=j=m. Let M (r)=sup {|g(2)|:
z€D(r)}. Then

ﬁMj(r) = 16¢™.
i=1

The constant 16 is best possible.

3.2. Proof. (i) Let ¢ be a conformal map of D onto €\ B with g(e0)=oo.
Then C(g,0) consists of distinct points a;€0B, 1=j=m. The function h(z)=
z7H [L(z—a)¥™ maps C\B onto the complement of a straight m-star with
h(«)=<o and h(a;))=0, 1=j=m. Therefore for a suitable constant 4, g(2)=
Ah(o(z)) will have the desired properties.

(ii) By extending the arms of S to <o, C is divided into m congruent sectors
D}, 1=j=m. Let D;=g=(D7). 1t is clear that for all sufficiently small 7=0,
DnB(r) will have exactly m connected components Dyr), 1=j=m, having
the property that D;(r)cD; and 0€dD,(r). Choose R>0 large enough so that
C\B(R)cD. Let R'=MR), I';;=I(D,(r),dB(R),D;) and TI'};=I{gD,0),
0B(R’), D}). Then

m T m m m 27'E
———— = M) = M(g(T))= MT)=——.
Alogampny= = Z M= ZM(sW))= ZMT) = 17
The first inequality follows from Lemma 2.7, the second from 2.5, the last from
2.6 and the equality from 2.3. This string of inequalities together with Lemma 2.10
implies

1 .> L3 1/m p/ -1 = ( < 1/m p’ )_1
logR/rzmjgl(IOgm RIM)l=m jglogm R'/M;| .

Consequently, []", M;=16(rR’/R)". But R’/R—1 as R— due to the normaliza-
tions of g, thus J[" M;=16r"

We now show that the constant 16 cannot be replaced by a smaller constant.
Consider first the case m=1. Fix a€(l, =) and &€(0,n) and let f. denote the

mapping of the complement in C of the set
Sea={z: |zl =1, e =argz = 2n}U[1, a]u{ee™: 0= g = 1}

onto a straight I-star S=[0,a’] such that f(z)-0 as z—0 and normalized:
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fi(e)=0co and f,(z)/z>1 as z—>-. Here a’>1 will depend on & and a. Such
a mapping exists by the first part of the theorem. By Carathéodory’s convergence
theorem f(z)=lim,,.,fiz) exists and defines a conformal mapping of the kernel
D=C\B\]l, a] with respect to < of the domains D, of f,, 0<e<m, onto the
slit domain C\ 0, a”] for some a”>1, Since each f, can be continued analytically
across the slit [1, a] the convergence is uniform with respect to the spheric metric
in C\B(@{)\[1,a] for any r>1. It is also easy to see that diamf,(B)—0 as
e—~0, and thus C(f,)={0,M} where O<M =limy,,;lim,_,M(,f)=
lim,,; M(r, f). By computations one has M =(16(a+(1/a))—32)/(a+(1/a)+2)—~16
as a— o, This proves the sharpness of the inequality in (ii) in the case m=1.

For m=>1 choose a branch g, of f,(z™)"/™ and get M;~16"" as ¢~0,r—1
and ag— for all 1=j=m. This proves that the constant 16 in (ii) cannot be
replaced by a smaller constant.

3.3. Remark. In the example given in 3.2 [[", M(r)~16/" for one value
of r, namely r=1. We do not know whether 16 is the smallest possible constant
in the following inequality, which follows from Theorem 3.1. (ii)

lim sup r=™ [ M;(r) = 16.
r—- j=1

We now establish a local version of Theorem 3.1.

3.4. Theorem. Let D be a domain in C which is locally m-connected at
0€0D, m=1. Suppose that the connected component E of 0D which contains
0 is not a point and that ENODN\E=0. For r=0 sufficiently small DnB(R)
has m simply connected components Dr), 1=j=m, with OE_D_;(_r).

Let f be a conformal mapping of D into the complement of a straight m-star
S such that C(f,E)cS and g(z)~0 as z—0. Then

limsupr=™ [ M;(r) <o
r—-0 i=1

where M (r)=sup, D) [f @)

Proof. Let F denote the connected component of C\D which contains E.
Since S is compactin C and C(f, E)=S, F has a simply connected neighborhood
U such that UndD=E and such that f(U)cB(R’) for some R’>0. Extend
each arm of S until it first meets f(@U). This divides f(UnD) into m domains
D). We may assume that the domains Dj lie, respectively, in the sectors 4; which
are obtained from C, when the arms of S are extended to oo. If this is not the
case, delete from U the sets f~1(D;n4,) for all i>; and replace U by an appro-
priate subset. Choose R>0 such that B(R)cU and such that DnB(r) has
m connected components D(r) 1=j=m with 0¢D;(r) and D,(r)cD;=f"%D)),
1=j=m, whenever 0<r=R. For r€(0, R) and 1=j=m let I',=I(D,(r), dU, D;)
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and I';=I(fD;(r), dB(R’), 4,). Then
M) = M(F(I'))= M)
by 2.5 and 2.3. Next, 2.6 and 2.7 imply

m 27Z
2AMI) = e wmm

and
S = S M)
iSilogd(R/M )™ — & o
Hence

L 3 (log 16V R/ M)~ = (log Rjr)~?
m j=y N
and by 2.10 it follows that
I M; = 16(R/Ry"r™
i=1

which implies the assertion of the theorem.

4. Applications

We now show how modified versions of the Denjoy—Carleman—Ahlfors
theorem follow directly from Theorem 3.1 and the classical Phragmén Lindelof
principle.

4.1. Theorem. Let E be a non-degenerate continuum in C such that «cE,
and such that D=CN\E is locally m-connected at .

If f is analytic in C, bounded on EN\{} and unbounded in each component
of D\B(r) for all r=0, then liminf,_, .. r~™?*log M (r)=0.

Proof. With no loss of generality we may assume that 0¢ E. By 3.1 (i) there
is a conformal map of D onto the complement of a straight n-star S such that
g(z)>0 as z—oo, g(0)=< and zg(z)—-1 as z—0. Extend the arms of S to .
This divides C into m congruent sectors D}, 1=j=m. Let D;= g D)), g;=2g|D;.
Then F;=fog;"' is bounded on 9D;.\{O} and unbounded in D;. Thus, by the
principle of Phragmén Lindeldf there are positive constants o;, 1< =m, such that
a;=r""log M, (r) for 1=j=m and all sufficiently small r>0 For sufficiently
large 7, D\B(r) has m connected components D,(r) such that €D;(r) and

,(r)CD I=j=m. Let Mjr)=sup {|g(z)|: z€Dj(r)}. By Theorem 3.1(ii),

Mir)=16r—" and by the maximum principle M, (M =M sIp, (=M }(r).

Hence

m

]]1 Z’ Mm% log My, (M) r=" 2 log™ M, (r).
j=
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Therefore, r~™/log M (r)=1/4(J],#;)""=0, for all sufficiently large r. This
completes the proof.

42. Corollary (Denjoy—Carleman—Ahlfors). If f is entire and has m
distinct finite asymptotic values, then lim inf r~™2log M (r)=0 as r—ee.

Proof. Let y;,j=1,...,n be disjoint asymptotic arcs. Then f is bounded on
E=Uy; and unbounded between any two adjacent arcs. The assertion follows,
now, from 4.1.

43. Theorem. Let the point O be an isolated essential singularity of a holo-
morphic function f defined in a domain D. Let E be a non-degenerate continuum
in C such that 06 ECDU{0} and such that DN\E is connected and locally m-con-
nected at 0,m=1. If f is bounded on EN{0} and unbounded in each component
of B()NE for all r=0 then liminf,_, ™2 log M ((r)=0.

Proof. By 3.1(i) there is a conformal mapping g of C\E onto the complement
of a straight m-star S such that g(z)—~0 as z—0, g(es)=c> and g(z)/z—~1 as
z— oo, Extend the arms of S to e-. This divides C into m congruent sectors 4;,
l1=j=m. Let D;=g 4;), Dj=g(D;) and g;=g|D;. Then each Ij=fog;*
is bounded on 94;nD] and unbounded in Dj. Tt thus follows by the principle
of Phragmén—Lindelof that there are positive constants «;, 1=j=m, such that
o; =rm2log M, (r) for all sufficiently small »=0. Since 0 is an isolated boundary
point of 0D and since DN\E is locally m-connected at 0 it follows that for suf-
ficiently small r=0, B)nD\E has m components D;(r) having the property
that 0€dD;(r) and D;(rycD;. Let M;(r)=sup.cp |g(z)]. Then by 3.1

LM (r)=16/". By the maximum principle M, (M (r)) M, (r) M (r). Hence

j]=]1 = j]=]1 M;(ry"*log My, (M;(r)) = 4" r™*/*log" M (r)

and so lim inf,_, ™ log M(r)=0.

4.4. Corollary. Let 0 be an isolated essential singularity of a holomorphic map f.
If f has m distinct finite asymptotic limits at 0, then lim inf,_,,7™? log M (r)=0.

Proof. Let y;, 1=j=m be m disjoint asymptotic arcs, then E=UJ}_,7;
satisfies the conditions of Theorem 4.3., f is bounded on E and by Lindelof’s
theorem unbounded between any two adjacent arcs. The corollary then follows
by 4.3.

45. Theorem. Let f be analytic in U={z:Imz=>0} having m, m=>1,
distinct asymptotic limits at the point 0. Then liminf,.qr™ Y*log M(r)=0
Where M(}’):sup[z!:,,zév If(z)['

Proof. Let 7, ...,7, be the asymptotic paths associated with the asymptotic
limits. We may assume that y, and 7y, start at the point i, that ys, ..., 7m-1
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lie between y; and 7y, and that [p,|ln|y;/={0} for all pairs {i, j} i=j other than
{1, m}, for which the intersection consists of the end points i and 0. Let D denote
the bounded component of U\, ly;] and D'=¥(D) where ¥(z)=2z2 and let
M’'(ry=sup {|f(¥YX2)|: |z|=rz€D’}. Then M’(r®)=M(r) and, as a consequence
of 4.1., lim inf /"~**log M’(r)>0 as r—0. Therefore lim inf/™=*log M(r)=0.

5. Distortion theorems for conformal and quasiconformal mappings

We now study the growth of conformal and quasiconformal mappings f : B"—~R"
near the boundary. Suppose that y=lim,.,f(x) for some acdB". The growth
of |f(x)| or of |f(x)—yl|, if y=eo, near a is usually estimated in terms of |x|
or equivalently in terms of the distance of x from 0B"; cf. [10] or [6], [8] and [5].
Here, the growth will be estimated in terms of the distance from the point a.

A particular attention is given to the case where f assumes the same limit at
several boundary points. We show that this imposes certain restrictions on the growth
of f. And conversely, if a certain rather mild growth condition is imposed on f,
then the degree of f|0B" must be bounded. This generalizes results by Essén [5],
see also [1], and Spencer [10] in C and results by Miniowitz [8] in R", n=2.

5.1. Theorem. Let f:B"—~R", n=2, be a quasiconformal mapping such that
f(x)=~0 as x—a; for m=1 distinct points a,€0B", 1=i=m. Then there exists
ry>0 such that m components, say D[(r), 1=i=m, of B"(r)nfB" have the prop-
erty that 0€9D;(r), a,£0D,(r) where D,(r)=f"YD/(r)) and such that

m 1/m
( ]]d,.] = cr®
i=1

Jor all re(0,r)). Here di=d(r)=sup,cp|x—a| a=(m/2K)"""" and c=0 is
a constant which does not depend on r.

Proof. Choose R>0 such that the balls B,=B"(J1+R%a;, R), l=i=m,
are disjoint and ry=>0 such that D;(r)cB; for O<r=r, and 1=i=m. Let
r;=I(D(r), B"(r,), Di(r,)). Each family I';=I(D;(r),dB;, B") is minorized by
f7XI7) and thus M(F)=M(f~XI})), 1=i=m, by 2.5. Now, 2.3. and 2.6. imply

S m(rrp) =K 3 M = Kyo, o [10g™2)

and on the other hand

m

[ lle]l_" = i;; M(T)

o

i=1

by 2.9. Therefore

m R 1—n r 1-n
= o
2 [log a ) = 2K, [log r] .
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Application of 2.10. with «;=log (4,R/d;) yields

m ), R]l'" 2K, [ ro]l'"
n—1 n = .
m (logi=1 ) =— log " .

Hence (JJ, d)'™=cr* for re(0,r,] where ¢=21,R/r; and a=(m/2K)"""".

5.2. Corollary. Suppose that f:B"—R", n=2, is quasiconformal and that

y=lim,_, f(x) existsfor some m=1 points a;¢0B",1=i=m, and apoint y€ R". Let
M(r) = max WU )=yl if y#ee
and
M@= min  inf |fG)] i y=ee.
Then
(a) lirrn#ionfr"’ M@) =0 if y#oo
and
(b) lim sup PM@F) <o if y=-eo,

where =K, m)!",

Proof. 1t is enough to consider the case y=0, since the general case can be
reduced to the case y=0 by composing f with either a translation or a Mobius
transformation which maps <« to 0. Let », be as in Theorem 5.1. Pick ;=0
such that M(r)=r, for r<r,. Let Dj(M(r)) denote the connected component
of B"(M(r))nf(B") which contains f(B"(a;, r)nB"), D,(M(r))=f"YDj(M())
and d;=sup,¢p ey X —al, 1=i=m. Thenby 5.1

m 1/m
r=mind; = [ ]]di) =cM(r)”
i=1

where a=1/f=(m/2K,)*"* and ¢>0 is a constant which does not depend on r.
This implies the assertion of the theorem.

5.3. Corollary. Let f:B'—R" be a continuous mapping which is quasi-
conformal in B" and let m=1 be an integer. Suppose that each point acdB" has
a path y,:[0,1)~B" such that y(t)—~a as t—1~ and such that for some y=>
(2K,/ m)l/n— !

f@-f@| __

(a) liigl%u!p —al if fla) = e

and e

(b) liminfx—al"[f(x)| =0 if f(z) =
x€ly,l

Then at most m—1 distinct points on 0B" can have the same image y.

Proof. Suppose that m distinct points @;€dB", 1=i=m, have the same
image y. Suppose first that y=o. Let ry, D;(r) and d; be as in Theorem 5.1
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and suppose that r, is sufficiently small so that [v,|00D;(r) =0 for 1=i=m.
For each r€(0,7] choose an index i such that d;=min,<;=,d; and a point
X€ [y, |N0D(r). Then by 5.1,

m 1/m
w—al=d=([Ta) = o= clre-rar

for some constant ¢>0 where 1/a=(2K,/m)""~*>y. It thus follows that |f(x;)—
f(@)|/|x;—a;|?—~< as r—0 contradicting (a). Similarly, the case y=oo contra-
dicts (b).

5.4. Remark. The last corollary is void in the event that f is meromorphic
(n=2, Ky=1), unless m=3. A particular case of 5.3 when m=3 (n=2, K,=1)
was conjectured by Piranian and proved for m=3 by Essén [5] and by Aharonov [1].
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