
Annales Academia Scientiarum Fennicrc

Series A. I. Mathematica
Volumeo 8, 1983, 161-178

Ol{ MAXI},4iIZII{G oa-rpas FOR REAL BOUI{DED
UNIVALEI{T FUNCTIONS

OLLI TAMMI

1. Introiluction

Denote by s(å) the class of bounded univalent functions / defined in the

unit disc U: lzl=L:

S(b) : {fV'@ : b(z*azzz+...), lf(z)l < l, 0 < b = 1}.

Let ,S*(ä) be the subclass of this with all tåe coefficients a, real. In [4] the combina-

tion an*pa,,p€R, was maximized in §x(å) for such values of p that produced

algebraic extremal functions l. The present paper deals with the same problem

fot a4*pas. The formulae, however, are much more involved than those in [4].
It appears tlat also in the present case all algebraic extremal domains can be

determined. In [5] K. Zyskowska considered the combination a1* pa1,, h even

and k odd, in .Sa(å) and proved t}re existence of such an interval |-b=bp that
the left radial-slit mapping maximizes the combination. In the present paper the

exact value of sup å, is determined for h:4, k:3.

2. The use of the Power inequalitY

Start from the Power inequality true for oz, os, oq in S(b) and ,S^(å):

Aq,5 AQR.

This implies for the combination:

aa* pas = (tt*2as-27) au

Io- bB) -L aZ-# a?,+2a,es-»(o,-+ aä+ro,)+ 1212(r--b)- azl,

+ +(1 - bs) - | ,z- # a?,+r^(+ a._, uo,)+ 
^2t2(r 

- b) - az).

(1)
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We can eliminate the effect of a, directly by choosing

(2) l,: ar+t;

a4* ya s = lo- b) + + 
(r - b) p, + r,(2 - * - !),,+(, - + t - +) "z- + a! : F,.

The same result follows also if we transform (1) in the optimized form and
choose .å such that the right side is minimized:

3cras-Z aä* ba,
lu: 2(l-b)-a2 '

(3)

aE € i O- b') - + baZ- # al+ 2*^-V';H
Add here pa,r on both sides and write the right side in the form where a, is included
in a perfect square. This allows an estimation, free of ar:

aL + pa? = | $ - wt - i u,, - #,2 - (+ *,,)l-$ * eu - z1 a, - $ e 1t - u) - a,)l

- #41o,* u', - ]'e-(+.') Q 1t - a1 - a,))

= 1 <, - 
") 

- + u,s - # "z - ff +,,)l- f * eu - z) o, - t e o - b) - a,)J

: I t, - ut * | r, - ut u' * (z - rt - t) ", 
*(, - +, - +),2 - + af; : F,.

The equality condition defines the parabola in the arau-plane:

a2"
oB : -tr+ Q-3b) az* tt (1 - b) - azi.1o:

The corner point [2(l -b), 3-Bb+5å2] of the coeff.cient body lies on ttris curve.
When substituting in the optimizing expression of ,t the value of as from

10 we obtain, again, the choice (2) by aid of which a, was previously eliminated.
The equality function f of (2) is determined by Löwner's x(u):s-is(u),

b=u=|. In §*(å),/ is obtained already by aid of cos I from (2)in!l. The existence
of this, again, is equivalent to the existence of the number o. This, in turn, is
connected witJl- )" and a, by (3) in [4] and the first formula of (4) in [4]. When
substituting ).:azl pl2 we obtain the following necessary and sufficient conditions
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for the existence of o and thus for that of cos ,9:

8o* (6or-2+3p) o-Ltz-(9ar+6b+3tt) - 0,

(4:) +- !o''' < a,*ä ={* *o''',
b = o < 1.

3. The use of the Jokinen inequality

Next, consider the inequality of Jokinen for a2, as1a4 in S"(å) (cf. (10) in [a]

or directly (6.36) in [1]):

(5) ar-2arar*a|r-b2a2-12).(ar-az+l-b2) = lo+l)" -l =,1 = 0.

This yields

a 4 * pa s = (2a r- il. * p) a r- a$ * b2 a r- 2)" (l - bz - aZ) * | {' * 
^)''

Again, the effect of a, is eliminated by the choice (2):

(6) ;,: az+tl[-l,0],
glvrng

a a 
-t trt o s = - aZ + bz a r - Q a, -t ti (L - bz - aZ) * | ( + r, + l)''

The meaning of the choice (6) will be fully understood if we start from the

optimized rorm or (5) 

Ill?"ll?- 2) a z * 2 (a z *r ) xf; - { xf; ,

0 = *o : ).*l: 1ar-al!*l-bz}rtz - 1,

yielding

a a* pa 3 = sszl (3bz - 2) ar* 2(a z* l) xf; - ! fi + pa r;

as: al-l+b2+xB;

(7) a4* ltas= aZ+(3bz-2)ara 1t(al-l+bz)+12(az+ 1) +plxf; - { xfl

: ,r/l (az; az).

Figure 1 illustrates the maximizing choice of a, or ro:

*:2{(a,+t)+ t'ixo-4x8 : 0 = {* 
: 

:'.^: 
+fclo't1; »'

lxo: o; 3o'
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l* .,3^/\Jor) + uJ*212(ae +
3x
o

Figure 1.

following cases:

- Fz: 2'

Thus, we obtain max fl(ar) a) by choosing as according to the

(8) aa* ttas= I a!+(zu'-z) az* rt(a1- :+b') *+(or*r*+)
[rB + QU' -2) az* p@i- 1 + bz) : Fr; 30.

The upper bound Fz is sharp for

0 = x0 : 
^+1 

- (ar- a'r+I-bz)Ltz - az*r*+< 1 ; 2 : uaz* 2,

2a?+(2+ p)as*[r* 
+)' ,

u
=61rs-+

Z

AB:

i.g.,

)o.

i.g.,

30:

"il-L-z

The sharpness of FB requires that

xo: ),+1 - (ar-aZ+I-bz)rlz-g

as: a!-L+bz

In the case 20 the equality is really reached provided that the equality function
cos.9, determined by the formulae (11) in [4], exists. It is necessary and suffcient
for this ttrat there exist the numbers o1 and o, defined by (12) in [4] for l:az+ pl2.

lz(a,
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This yields the necess ary and suffi.cient existence con

62:[r-r,,--iu*IT,|(9) 
' 3az*2b*P6r: 62_T__Z_,

b=or=Oz=1.
The equality in the case 30 is reached on the lower boundaty arc of the coefficient

body (a2, ag).

ditions

l3

)

4. The upper bound for anl pag in terms of az€l-2(L-b),2(1-b)l

The curves 10 and 20 have a joint tangent in their common point where

(10) o,: -10-I.
A similar situation is valid in the common point of 20 and 30 where

(1 1)

this
the numbers

A2

Fn is

az+ z(r + p) a'i+(ru, * Zrtl- +) az* tftz + + + + + #,

Fz- F,: +(,,++b+å)'.

,F
I 

--
r 

2 '

changed at the points (10) and (11). Weof
ob

5

T

The order
by rewritin

Fz:

which yields

Thus

Fr= F, for az€ -+ b -+ .

For these values of a2 the upper bound Fz is thus better than FL

Power inequality.
Fz preserves its maximal meaning so far as az*l+p1230,

obtained from the

i.e., in the interval

-;$= oz= -ir-t
Lf a2*l*pl2=0, the number F, assumes the role of the maximum. This is
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seen if we compare the numbers Fz

Fr- tu
Thus

Fs=-F, for ar+t+t=0, i.e., az4-;t.
Altogether, we are led to the following estimation of an* pas in terms of

z(l-b); tt > 4b-6,

or:-t and rr:-10-t
is to be taken into consideration and, finally, the existence conditions (4) and (9)
governing the existence of the possible algebraic extremal function. Thus, the most
reliable procedure for performing the rather elementary but numerous comparisons
involved is to leave them to the unerroneus computer memory. In addition, one
must further take into account the comparisons of the local maxima achieved at the
end points of the validity intervals and at the vanishing points of the derivatives on
them.

5. The local maxima

Consider the functions F, in (12) separately.

r) -+u-t= a,=2(t-b).

(r3) Fi: -+l"r-ib-rt-t)o,*lp-zotr+#l: o.

The vanishing points of Fi are

(14) &1, dz : i?-tt-t)t6?-*-t)' +l e-zt't u-L)''' .

and Fs for which

: +(o,*t*+).

u -*, tt > 4b -6,

= sz= -r-t, p = 2_,4b,

that the use of (12) must be

11. Moreover, the order of the

(L2) a4+ ltas =

Ir,: Fz-+to,*lu*+) , -+b--+= dz€

I

= { Fz:r,+ +(r,+1+ 9', -1- $=az€--+t-
I n - a?z+(3 bz- 2)ar* tt(o!-l+bz), 2(I_-b)

Because the limits of Az do change with p we see

regulated according to the fixed value of p in questio
points
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a, is the local maximum point of F.. The locally maximizing / exists provided that

the conditions (4) are satisfied for ar:ar.

u2) -r-;=
)oz2-+b-+.

tä: 5ai+ 4(1 + F) ar+3bz *Ztt++- o.(1 s)

The equation

(l 6)

(15) holds at the points

§,,§, - lo+D.(*(l + ti'-'ry)"'
f, is the local maximum point of Fr. The existence conditions for the corresponding

.f are those of (9) for az:fi2.

3) -2(l-b) a ar=-t-+.

(17) Fi: 3a1+zPa2*3b2-2: 0'

This holds at

( r 8) ./r, Tz: -t-(# *'-lu')''' -

y, is the local maximum point. When existing on the interval 3) it gives the cor-

responding / which is of the type 2:2 and belongs to the lower boundary of the

coefficient body (a2, as).

6. The types of the extremal domains and their range§

The types of the extremal domains maximizing the functional aa*pa, are

denoted as follows:

A : the left radial-slit mapping,

B :2:2 belonging to the lower boundary arc of the coefrcient body (a2, as),

C :2:3,
D : L:3 or 3:3,

E : elliptic type.

The types a-D are those determined by the conditions (2)-(3) and (11)-(12)

in [4]. The elliptic type is not characterized in terms of Löwner's x and there is

no sharp inequality available for it. On the other hand, we know that the types

A-E represent all the solutions of the problem max (an* par) and that the algebraic

cases A-D are completely governed by (12). Thus we are sure that in the cases
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where (12) fails to yield a sharp result, the corresponding pair (å, p) is connected

with E.
In Figure 2 there are the ranges of the different types in the bp-plane obtained

from comparisons mentioned above. The boundary curves of these ranges will
next be studied more closely.

l) AaD.
Consider those values of b for which

2(l-b) s crr

i.e.,

(1e) ry=[*[+-sb-+)'++e-
This means that the local maximum given by A for o4

wirh D.
If p> -6-4b, we can square (19) in the form

(20) pz -4(1 -2b) p+4(r - h) (ttb

yielding either

3b)t-+)*

* pas exceeds

-l) -= 0

that connected

fi=bz:ry-
t1

(100 *4p+ 15pz1ttz
1-1t-+

(2r)

or

(22) b >,. 6r p +(100-ftr+15t'l*oL: lt T- zz '

The number bz=O provided that

-0. 828'427 = 2-2/2 = p = )+fr - 4.828'42'7.

The number bt= | for

-4=p=0.
The conditions (21) and (22) determine two regions inside of which the type A

is the maximizing case. However, according to Figure2 the regions where I remains

the extremal function are somewhat larger. The extensions will be studied later on.

2) DoE so that o:b; PT.
The type D can vanish so that the number o decreases below the limit å.

At the endpoint o:b we obtain from (4) and (13) for ar-ar:

22 6+ tt+{froo +4tt*t57fi)ttt

(23)
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Substituting ur:hp* k in the latter condition (23) we obtain for pr an equation
of the type p2+2Att+B:0. From this p:p(å) can be solved:

lt1, ltz: - At(Az- B}rtz : p(b);

/ _ 7 hk+ (18b -8) h + k+ 6b - 4n_w_,

(24) e :ryffff*{,
_ bttz _l,--

2_3btt2,

, 2(b3t2 - l)x:_q_{.

The boundary arc DaE obtained from this is the arc PT in Figure 2. We shall
return to the point P later on.

3) DaE so that o disappears through a double roota UP.
The type D may cease to exist also so that o disappears from R through a

double root of ttre equation (4). Thus, in the limit case

F(o\ : 8o*(6qr-2*3p)o-ttz- (9ar+6b+3p) :0,

(25) F'(;o):o =+ o : (6"'-2+z')''' ,

-4Fi - 7al-4[o- sb-+).,-.4(z-3b) rt* tt, - 0.

The solution of (25) can be parametrized in o. We have first from (25):

It - 16o3t2-16o+2+4b,

(26) ct:-+ osru*8o -+- zb.

This implies

It - -3ur*8o -2b,

which, together with the last condition (25), yields,

5*i+ G + 4b - 16o)d.L- l\bz *32bo *32o2+ 8b -32o - 0,

16)
aL : -T oltz* 8o -+-2b.-JJ
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This allows eliminating of a, and hence we obtain

b2f 8 (4o-s) b + +s2- Sos *2s * 16o2 - 16o : o;

(27)

, : -4 ,.ztz1.g,- -? '3 " 3'

This, finally, yields the parametrized solution:

b:4(s-4o)t(t+tr-+ol1'- I 
,'-16o2+8so-2s +rco)''' : b(o),

(2g) p: 4b+16ost2-l6o+2 : 4b-3s*8o : P(o),

16 'tn 
)

t : -ä dt2+8o-1,

b<o<7.
This gives at the endpoint o: I :

(2g) U : b :-8+166: 0.124'038'405, p:*30+4{ee : 2.496'153'620.

At the other endpoint o:b, according lo (26),

p: l$Sstz-t2b+2,

(30) t6 ,.,. )
ar: -i bLt2+6b-=.

By using these numbers in (25) or by substituting o:l in (27), we obtain for

å the condition
640 Ä4 2(31) ffA,-128biiz+glb'*ä biit-t6b-=:O.

Observe that the point (å, p) in question satisfies also the conditions (23),

because the value of p in (30) gives for ar in (23) the special value in (30). This

means that the arcs obtained from 2) and 3) meet each other at the same point

P : b : 0.428'576'811, p : 1.346'216'580.

Unfortunately, (31) does not allow a simple algebraic presentation for P.

4) DnA so that o : l.
For completeness observe that the type D can finally cease to exist so that the

number o increases above the limit 1. At the endpoint o:1 we obtain from (4)

and (13)
8 + (6az- 2 + 3 p) - (9a2* 6b + 3p; : g,

7 al- a @ - 9b) a'* 2a1t - a Q - 3b) P + ti : 0 ;

a2: o,t: 2(l-b)'
7 ai * a $ - 9 b) a, * 2u1p - 4 Q - 3b) p' + p2.

Llt
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The elimination of at yields the equality case of (20), i.e., we are at the equality
cases of (2t) and (22), as was to be expected.

5) CnD so that tlere exist two extremal domains; 
^SlR.

The type C can be transformed into the type D so that the maxima F, and
F, of (12) assume equal values for different values of arguments:

Fr(ar) : F2(pr);
(32)

ar * fr2.

This leads to the arc §R, according to Figure 2, with

.s:(0, 2_/r), ":(ro rln, 
38-l]{//1.

The coordinates of § follow from 1), those of R will be determined in the following
Section 6).

6) CnD so tåat there exists one extremal dornain; RQ.
Thetype C can betransformedinto the type D sothatthemaxima .å, and

F, of (12) arc equal for the same value of the argument uy:§r-qr. From the
first formula (12) and from (15) it follows for the boundary points:

fr2- ar: Fi: 5aZ+4(1 + p)az+3b2*2p*+- 0;

frz: az: -+ b -+ ,

Thus the boundary arc CaD with only one extremal domain satisfies the equation

(33) 47b2-4bp-] ur_z+u+6tt = o,

from which the connection trr:p(b) follows:

Fz-Ft: *(,,++b+å)'- o,

,(å b++)' -+(1 + p)(zb+p)+3bz*2p++.- 0.

(34)
6 - 4b 6 (1 - 8b + 13 .Sbz)Ltzp- 5 - .

The common point R of the curves in 5) and 6) is now determined by the app-
lication of the procedure for finding the corresponding point in [4]. This means that
the numbers at:fr2 must be double zeros of the equations Fi-F\:O. According
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to (14) and (16) ,r* r-n,,"], 

: ](+_sr_!),
)

fr,:_iGi_p),

ib-r'-t): -l{'*,),
P : lOb -6'(35) 
dt: fiz: -4b *2'

This is in agreement with the requirement ar:Br--2b13-pl3 in 6), implying

Fz: Ft-.

From (14) and (16) we obtain further the discriminant conditions:

fi(+-st-!-\' +4Q-3b)t'-tt' - o,

. 3br+2tt+4

$o*u>'-"'-r-' ':0,
162b2 - 3 pz - 8b p - 144b *20 P, * 32 : 0,

(36) 
3obz :8-4p*3p2.

The first condition (35) and the second condition (36) now yield

27b2-4Ob+14 :0i

(37) R: b : ry : 0.567'02t'63e,, : !4@ : -0.32e'783'6t5.

The validity of the first condition (36) can be checked directly. Similarly, the

condition Fr(ar)-Fr(Bz):0 of 6) holds at -R.

7) BaC with one extremal domain'

The types B and c give the same maxima for the same value of a, provided

that, according to (12),

F,(a) - F,(a) : +(rr*, *å)' : o.

Thus in this case

Fz:!z- az:;-f
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Thus the conditions FL$):Fi(y):O, according to (15) and (17), assume the form

(3S) 3b2: -1- ,**,

which is the equation of the boundary curve in question.
The boundary curves 7) and 4) satisfy the conditions (38) and (cf. (20))

rtbz-(2ptr2)b+r+ u-{ : o

yielding

(39) ,S: b : 0, p: 2-2{T;

(40) Q: b:8-512, p:26-20/2.

Direct calculation shows that the boundary curve (33) of 6) is satisfied at e.
Similarly, the boundary curve of 5) holds in s.

8) BnA.
The type ä shrinks into the left radial-slit mapping I provided that yr:

2(1-b):
yz: Fi : 3a|+2par+3bz -2 : 0,

aa: lz: 2(1 -b);

(41) ,: -tot?.qu:.-tsu' 
.* 4(t-b)

As can be directly checked, this holds at the point Q found above.

7. Completing the range of the type l. The Zyskowska-boundary.

1) The use of the upper boundary of the coefficient body.
we want to extend the validity of the maximizing type A for small values

of ä. First, find a curve in the bp-plane, above which the type A cannot exist.
Take the right upper part of the coefficient body (az, as), where ([2])

f(2, u) u f(2, o\:;6ffi; uclb'o7'

u(f(Z, u)-f(2, u)-t): z-z-r-2ot"ry, u(lo,tl.
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4) of .f (z) -.f (2, b):

'Arar(o) * osAa;

Zar(o) ar(o) - ar (o)';

From this we obtain for the coeffi.cients a, (v - 2,3,

oz: ar(o)*oAz,

aB : ar(o) *2oAraz(o) * ozAs,

a 4 : a n@) * o Ar(Zlu(o) + a r(o)') * 30

au(o) : az(o)' -2oa2(r) + \ - o',

a q(o) - oaz@)'- oz ar(o) -Zoar(o) +

Az:r(r-*),

As:3-8 !*, (*)',

A * : 4 - 20 ++ 30 (*)' - r4(*)'

Put

(42) o:l-d, d>O

and let d*0. For the combination an* pa, this yields the development

(43) a4+paz

: 4-20b *30b2 -t4bs * p(3 - 8ä + 5br) +(-2+8b-t5b2+4bp)odz+o (d3),

( )o=o for r=*-r**u:ro(b).
For å fixed choose F= Fo(b). For d small enough the left radial-slit mapping

(having d:0) cannot maximize the expression (43). Hence the extremal domain

ofthe type A cannot exist above the curve

(44) tt: tto\b): +2-Z*lt.
2) The use of the upper boundary of the algebraic part of the coefficient body.

We refer to the curve 1' of Figure 38 in [3], where the coefficients a2 and as

of the boundary function of the coefficient body (ar, aB, a4) are (cf. p. l5l in [3])

az: -+_ zb*8o--f o'tt,

at: aä+!*bz-.+ o2++ ostz +ff ,'; b = o < 1.
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The equality case of the optimized Power inequality gives oa and thus oE* [tosi

)'(,,-],a*ba,
2(I-b)-az

The substitution (42) applied in this formula yields now

(46) q* paa: 4-20b *3lbz-l4bs * p(3 - 8b + I5bz)+2( )oitz+ O (ds).

This confirms the above conclusion and strongly suggests that the curve (44) forms
a sharp boundary for the extremal type A.

3) The upper bound given by the Power inequality.
The maximizing point (ar, ar) Iies on the curve

10u20u30.

If p is big enough, this lies outside the coefficient body (ar, ar) in the a2ar-plane. The
right side of the Power inequality (cf. (a5) is maximized on the upper boundary
arc of the coeffi.cient body. we try to find those values of p for which the maximum
is attained for functions of type A. Necessary for this is that the unsharp upper
bound decreases when moved along the upper boundary arc to the left from the
po,nt a2:2(l-b).

In Section 6. l) we have the coefficients a2 and as on the upper boundary
arc. In the vicinity of the point ar:)(l -ä) we may, again, use the number
o:l-d, d>0. The Power inequality now yields

(47) aa* pag= 4-20b+30b2-t4b3* p(3-8å+5år) +( )odz+O(its).

The necessary condition for the decreasing of this upper bound for small values of
d is thus

( )o : -2+8b-15b2+4btt = o;

(45) aE* pas: 
+(1 - b\-! ur!-# aZ+ p(ts*2aras-

tt=*-z**u.(48)

It appears that this condition is also sufficient to guarantee that the upper
bound obtained from Power inequality is maximized at ar:271-ä). Hence the
curve (44) forms an extended boundary for the extremal domain A.

The curves (44) and (20) have a common tangent at a point where

1tb2 - (27t -t 12) b + 1 + p - $ : o,

t5b2-(4p+8)b*2 : 0.

This point appears to be U of Q9).
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From 6. l) we obtain the parametric presentation of the right part of the upper

boundary ofthe coefficient body. Thus we have for aa*pas

(4e)

oz:2(olno-b),
aB : aT-2oar+z(o -b)'+ I -b', b = o = L;

aE* pas = +(1 - b3) - * urr-# a!+Za,as* Fat-
(',- ]'z+uo,)'

2(l-b)-a2

p:l+

o*(-2(1-b)) :- -s+12b-7b2+2(1 -b)p = 3 -8b*5b2;

Figure 3.

Compare the tangents of the curves meeting at ar:)11-b), ar:3-8b+5b2.

4o, : +, *:-4otno-4b;da, do do

(!!a) : -4b.\daz) o:t
For the curve 1o

(do,l - t_za_L.l-dor)or:rrr-or:' 2'
The necessary condition for 10 to lie in the complement of the coefficient body is

t-zu-{ = -4b;(50) L

p=2*4b.

Require now that the point az:-2(l-b), ar:3-8b+5b2 of the coefficient

body is below the corresponding point of 10:

(51) p > 4-6b.

10

u
2
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We obtain the same condition by requiring that the vertex of the parabola 10 has

qz:4-6b-P=0.
Now

4-6b=2+4b for b<0.2.

Thus for the relevant values of å (5l)'implies (50). By requiring p>4 we are thus

sure that lo lies above the coeffi.cient body. For

2.496't53'620 : -30*4 | 66 = p = 4

the curve 10 meets the lower boundary arc of the coefficient body (Figure 3).

The maximum of the upper bound in (49) is now determined on the arc nx

(Figure 3). It is achieved at ar:)11-b) if

p = -30+4y'66,
(52) 

0<b< bo:4+2p-(-t4_+_t6p+4p2)rt2.
15

For

-0.828'427 : 2-21/, = p = 2 +2/2 : 4.828' 427,

(53) ? , 6+ tt (1oo*4p* lipzlrrz0<b<br: 7l 

-
the maximum is determined already from (12) and the extremal function is of the

type A. Thus, the validity of I is extended up to the value år. (52) and (53)

determine together the boundary of the region of A, the Zyskowska-boundary,
for an*par.
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