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CONYERGENCE OF INFINITE EXPONENTIALS

f. N. BAKER and P. J. RIPPOI\

1. Introduction and results

Suppose that a is a complex number and set b:e",7(z):e"'. Defrne the

sequence

(1) wn:T'(l):ToTo o7(1), n:1,2, '..

where 7' denotes the n-th iterate of the map 7. If the sequence converges its

limit may be regarded as defining the infinite exponential

b

The long history of investigations of the convergence of (1) goes back at least to
Euler and is described with an extensive bibliography by R. A. Knoebel [6].

If w, converges with limit I' we have T(1):so^:7, so that i+0 and we

may put ),:e', giving exp (aet):st, and among the possible choices of / we take

the one which gives aet:t. We also have T'(),):aeol:a7:t.
If wn:) for some ns, &nd so for all fr=flo, we call the convergence terminat-

ing. Thishappensifandonlyifoneoftheequations 7"+1(l)-T'(l):0, n:0,1,2,...,
holds, that is e" - 1 : 0, exp (aeo) - eo :0, . . ., each equation expressing the vanishing

of an entire function of a. Thus terminating convergence occurs for at most a count-

able set of values a.

For non-terminating convergence the w,(:T(w,-r)) approach ).:et but

wn*),, while locally near )" the map 7(w) behaves like )'+t(w-L)+o(lw-).1).
Thus convergence can occur only if lll<1, that is for a which belong to the set

K" - {a; a - te-' for some lrl = 1"}.(2)

This was observed by A. Carlsson [2]. It remains an open problem to find whetler
it is not only necessary but indeed sufficient that a belongs to K" for (1) to converge.

Positive results include the assertion that (1) converges if a(K" and a is real

koskenoj
Typewritten text
doi:10.5186/aasfm.1983.0805



r80 I. N. Barrn and P. J. RtppoN

(Euler, see e.g. [6]), or if a€K" (Shell [9]) or a€Kr (Thron [11]) where

K" : {a ; a : te-t for lrl = log 2},

Kr : {a; lal = e-'}.

The set K"nR is the segment -e<a=lle.
By applying results of the Fatou-Julia theory of iteration 13, 4, 51 one can

settle most cases.

Theorem l. If a:te-t, ltl-l or t a root o.f unity, then the sequence (1)

conoerges to et.

For almost all t such that ltl:|, the sequence diuerges.

Thron considered also the composition of functions Ti(z):sot' with differing

values a;. Heproved

Theorem A [11]. If a;(Ky, i:1,2,..., then the sequence

(3) w,r: TroTzo... o Tr(1), Tr(z) - €or',

conuerges to a limit u such that llogul<|.

This may be regarded as expressing stability of infinite exponentiation with
respect to changes of the exponents .2, within the region Kr. A result of this type
remains true for other regions.

Theorem 2. If a(lt", so that a:te-t for some t 'rt'ith itl=|, then for any

neighbourhood N of et there is a corresponding neighbourhood U of a such that

for any sequence gt of points in U the sequence (3) conuerges to a limit in N.

Returning to the case of equal a; we can show

Theorem 3. F-or each n:1,2,... there is a countable set oJ'ualues a such

that wn:f"(l) ,r (l) satisfies wn--wn+kt k>1, while w,, is dffirent from v't .for
i=n, One may find such that ualues a with arbitrarily large real part.

A value of a in Theorem 3 leads to a sequence (1) with terminating convergence

and there is a countable set of such values a which lie outside K". However
a's of this type obviously fail to have the stability property of Theorem 2.

2. Lemmas from iteration theory

If / is an entire or rational function the n-th iterate /' (where 7t : f, f"+1 : foJ'n,
n:1,2,...) is a function of the same type. Iteration of rational functions was

studied extensively by Fatou [3] and Julia [5] and the analogous theory for tran-
scendental entire functions more briefly by Fatou [4].
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Suppose that f is a non-linear entire function. In fact in our applications

.f (z) witt always have the form f(z):eo', & constant' Denote bv gU) the set of
'points 

of the complex plane in whose neighbourhood the sequence f, n=1, fails

to be a normal family. The complement of I will be denoted bV gU\
A fixed point a of / is a solution of f (u):d' and f '(a) is called the multiplier

of o(. If l/,(«)l=1 the fixed point is called attractive and f'(z)+o( as tt-*,
uniformly in a neighbourhood of c, so that a€6(f). lf lf'(a)l>1 then a is

calledrepulsiveandclearlya<'qT\lff'(a):lthena€f(f)sincetheexpansion
near d of/gives

f (z): u+(z-a)*a^*r(z-a)^+L* ..., a^q1* 0, m > I

fn (r) : a+(z - a) * na-*r(z - a)^+1+.'.'

lf uea(f\ then for any limit function E of a subsequence fn* in the component

of G(f) which contains d we have E(a):s so that I is analytic and 9{'+1)1a1

is the limit of the (m*l)st derivative of the fn* at a, which leads to a contra-

diction.
We state some general properties of fr and 6.

L G(f) is open. F(f) is perfect and non-empty l4l.

In fact G is open by definition so fr is at least closed. For .f'(z):{' 2,ll

large solutions of eo':z are repulsive fixed points so ttrat in this case F is clearly

non-empty.

lI. g(f) and 9(f) are completely inoariant under f in the sense that if z(€
rhen f(z)(G, andiffurther f(w):z then w€6141.

7Il. For any integer p>1, fr(f):g(fo);14}

lY. If in a component D of G(f ) the sequence fn conuerges to afinite limitfunction

then D is simply-connected'

(This follows from applying the maximum principle to J'' -f* on any closed

curve which lies in D.)

Y. I/'. u is an attractirse fixed point of f then the component of G(f) which contains

a is simply connected and contains a singular point of f-t;13,4\.

If D is the component in question then f"-a in D, which is simply connected

by IV. If D contains no singularity of ,f-t then continuing the branch for which

f-r(u):a yields a function S(:f-') which is analytic and univalent in D and

byllmapsDintoDwithg(a):a.Ifåistheconformalmapoftheunitdisc
/ to D such that h(o):a the application of Schwarz's Lemma to h-togoh:k
shows that lk'(0)l<1, which yields lf'@)l:Ul{@)l>-1, & contradiction'
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yl. If u is afixedpoint of f suchthat f'(a) is aroot of unity, then a(F(f) but
a lies on the boundary of one or more components D of G(f) in which .f"-u as
n**, and at least one such D contains a singularity of "f-r. (proved in [3] for
rational f.)

If a is a fixed point of ,f such that -f'(a)-l is a primitive p-throor
then f'(a):d, (/'')'(u):7p-l so that d€g(/r):,qU).

of unity,

Let us simplify the notation by putting a:0. As shown in [], Theorem 2]
the expansion of F:f, about 0 has the form

F(z) - z*a*+Lzmn'*..., atn+i # 0,

where m:kp for some positive integer /c. It sufficies to study the iteration of ,F-

near 0 (since fr(F):g(f)) and this has been worked out e.g. in [3] and in some-
what greater detail in [1].

Near z:0 (see e.g. [], Lemma 4]) the set 6(F) contains a star of m equally
spaced domains Gi,7<-jsm, where each G, is bounded by a simple closed curve
which lies in the region qj<atgs-fi, and approaches z:0 in the directions
&tg Z :&i ; f;, Where

dj : -y +nlQm)-(2j - 1) rc|m,,

fri : -y-nlQm)-(2j -3) nf m,

y - (n*arg em+)lm.

Thus Br-ar:(4n)13m. Moreover we have F(Gr)cG, and F,(z)-O uniformly
as n+@ for z€Gr.

Now / and the branches of 7-t which vanish atzero permute the components
of € of which the G, form part. If ,f-, has no singularity in any of these com_
ponents then f -r (anå so F:1 :.f -p) is univalent in each such component D and
.F -1 maps D into itself. Here F -1 is understood to be the analytic continuation of

(4)

(s)

(6) F -L (r) - z - a*+Lzo' +t + ...

throughout D. The iterates (F -t)' are normal in the components D and in
particular in the star uGr.

By applying the theory described above to the local iteration of F-r (6) rather
than F (4) near 0 we see that there is a star of domains Gj, l=i=*, of the same
form as G;, but rotated through an angle nlm(by (5)) iuch that F-t(G,r)cG,,
and the iterates (F-t)' converge uniformly to 0 in uG'. Together the c, anå
G" forma region ä which includes a punctured neighbourhood 0< lzl<q of 0.ln H the sequence (F-t)' is normal, analytic and converges uniformly to 0.
Hence (F-t)'*O uniformly in the whole neighbourhood lzl=q.

This is impossible by the same argument which was used to show that a fixed
point of multiplier I is a member of g. Thus one of the components D, of G
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which contains a G., will also contain a singularity of 7-t. In the components

D, wehave F":fi'*0 since this holds in each G;' The function;f permutes

the Dj cyclicallyandwe have fk(z)*O as ft*- fot z ineach Dt'
TLe behaviour of iterates near a fixed point whose multiplier has the form

).:eznil,0 irrational, may be approached via the centrum problem (assume the

fixed point is at the origin): Find if possible a local change of variable

z - EQ) - t+bztT+ ..., t near 0,

which reduces the transformation

(8) z1: f(z) : )"2*azzz* "'
to the rotation tr:)"1.

Sucha E mustsatisfy E71:f(q(r)) andthecoefficients än of I areuniquely

determined by recursions which involve division by ),"*)'. Thus we have a small

divisor problem in which convergence of the series for E depends on how well

).,-1 a{proximates 1 (or 0 is approximated by rationals). Siegel [10] has proved

the foll,owing result, which has been further refined by Rtissmann [8].

YIt. There is a subset E of the unit circumference which has Lebesgue measure

2n and is such that for any f which is analytic near o and has the form (8) with

Ä(8, the corresponding series (7)for q has positioe radius ofconuergence.

It follows that if / is entire then the fixed point 0 belongs to G(f) and that

there is a neighbourhood N of 0 such that for any non-zero zo in N the images

J''(zo), n:1,2, ..., ate dense in a simple closed curve which lies in N and has

positive distance from 0.

3. Proof of Theorem I

Suppose that a:te_,, with |l|=1' so that e, is a fixed point of T(z):{,
*ittr *oitiptier r. since te-t is univalent in lrl=1 there is only one such / for

a given a and e' is the only possible limit for w, in (1)'

Suppose first that lrl-1' By property V e' belongs to a component D of

«(r1 which contains the only singular point of I-1, namely the origin. But

rio>co by II so that t(D and thus wn:7"(l) converges to e'. A similar

argnment applies if I is a root of unity, except that v is replaced by vI'
If lrl-1 and / belongs to the subset ,E of vII, then the fixed point e' belongs

to 6(T) and there is a neighbourhood N of et such that for any zo such that

zs*et, zs(N the images To(zd remain in N for n:1,2,... but fail to converge

to er. Thus the only way in which w,:7'(1) can converge to et is for u''n to be

equal to e' for 1>1o. Since this happens for at most a countable set of values

oi a (and hence of /), removing such a countable set of values from -E leaves

a set of measure 2n on l,l:1 for which (1) diverges'
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4. Terminating convergence

Consider first the case when w1:tr2:trs:...1 that is when e":exp(tgo),
so that ae":a*2nni for some integer n. Theorem 3 asserts that this last equation
has solutions of arbitrarily large real part. This is easy enough to prove directly
but it is convenient to quote the

Lemma 1 [Littlewood t7]). Suppose that J'e):sr-larz*... is analytic in
D: lzl<r and that u^ is a sequence such that for some constant K>r we haue

(e)

(10)

Then if f (r)*u*, t?t:|,2, ...,

If z - reio we have

whence

and

lu,,l = lu**rl = Klu*I, 1. 1 nt < co

U* -> w OS ln --> oo

in D we haue

V\llf@l= c,(1 -r)-", o = r < I,

where C, depends on ttl, ao and C2 depends only on K.

From this follows

Lemma 2. If f is an entire /unction and u^ is a sequence which satisJies (9)
and (10), then i/' f omits the ualues u^, m:1,2, ..., in a half-plane H it follows
that f has at most polynomial growth as z.** in H.

To prove Lemma 2 it suffices to consider ä as Imz>0. Then s:g(t):
i(l+t)l1-t), t:(z-i)l@-li) maps D:ltl-.I onto ä. Applying Lemma I to
f(E@) shows that

lr@(o)l = c,(1 -ltl)-',, itl = 1.

1 - I 
tl' : 4r sin ?lU'* 2r sin 0 + 1)

1- l/l > 2r sin g/(rz+2r sin 0+ 1)

lf'k)l = Cr{(r+ t)zl2r sin 0}c, - K(r/sin 0)r,,
if r>l sin 0>0.

Applying Lemma 2 to f(21:2s,-s, and the sequence u_:2mni in a half-
plane Re x=A proves the claim made at the beginning of §4.

To complete the proof of Theorem 3 we need to find a such that wn_r=wn:wn+t
(forgiven n > l). We haye wn:tyo+l if Z,(l): exp (aT,_r(l)):2,*r(l): 

"*p lofgijl',that is if aT,-1(l):aT,(l)*2kni for some integer n*O Q<:O is equivalent to
wn-t:wo). we have only to note that aT,(r)-aT,-r(r) is an entire function of
a which has very large growth on the positive real axis. The application of Lemma 2
to tlris function and to the sequenco u*:)7nvg shows that there are solutions
a of our problem in any region Re a>A.
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5. Proof of Theorem 2

Suppose ihat a:te-'where lr]-1. Given a neighbourhood N of e' and

g such that lrl=q=l choose a disc 7:{z:lz-etl=i, d=0} such that ZcN
and also lfi/)l-a in /, T,(Å)c/':{z: lz-etl=sd}, where To(z):so' (and

Ti@t):1).
Now / belongs to the component D of G(eo") which contains e' and in

which T!*s'. Thus there is a positive integer p such that Tl0)€/'. By continuity
there is a neighbourhood t/ of a such that

(i) UcK
(ii) for any a1, ...,a0 irt U we have

Tn, o T o, o .,. o To r\1)( /,

(iii) for any b in U we have Tu(Å)c/,
(iv) for all b in U we have lf[Q)l=)":ll2(1,+pS=1 for all z in /.

Suppose that a, is any sequence of points in U and set Tr:To.. For any

n we have Tn+ro...oT,*r(l)€/ by (ii), and w,*o:Ty',...oTnoTn*.o...oI,,.r(l)€
Tro...oT,(/) which by (iv) has diameter at most »,"d. lf n>kby (iii) both w,*r,
wk+p are in Tro...oTo(/) so that lrn*o-*o*o)=D,kd- Thus w. is a Cauchy

sequence which converges to a limit inside ZcN. The proof is complete.

6. Periodic sequences of exponents

Suppose that for some natural number k and for all n we have an+k:ut,
As in Theorems A and 2 set Ti(z):soi" .

Theorem 4. If the sequence oJ' exponents is periodic with period k and i.f

where either ltrtr...toi=1 or t1t2...t1, is a root oJ'unity, end w,,:TroT2o...oTn(l),
then for at least one p tvith O<p<k the sequence wmk+j conuerges to et' as

m+ @.

In the case /c:1 this reduces to Theorem 1. For k>l it has some similarity
to Theorem 2.

Put tpr:7rsTi+ro...aTi*x-t. Then if t, ate as in Theorem 4 and ii:sti vr"
have Tn().,*1):,1,n so that i, is a fixed point of E, and further ei(Ä):tr...t,.
Thus under the assumptions of the theorem l'; belongs to a domain D in which

theiterates e{-Li as N*-. D containsatleastoneof thesingularities of E;-1,

185
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that is one of the k values

0, fr(0) : l, ..., TroTi+to... "7i*r-r(0).
Thus for such a value f we have Ei(il*O 4s nt+6t that is TioTr*ro...o
Ti***-r*o(0)*rti as m+@ for some O=p-k. Choosing i:l gives the result
claimed.
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