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THE DILATATION OF BEURTING-AHLFORS
EXTENSIONS OF QUASISYMMETRIC

FUNCTIONS

MATTI LEHTINEN

l. lntroduction. The standard construction for a quasiconformal extension

of a real quasisymmetric function å is the one introduced by Beurling and Ahlfors [l].
They proved that a q-quasisymmettic h has a g2-quasiconformal extension to the

upper half-plane H. A careful examination of Beurling's and Ahlfors's estimation

shows that pz can be replaced by Q't' for g close to one and by 3pzl4 fot large

a I4l. T. Reed [6] has given the bound 8g, which is better than the previous ones

for large g. The bound 2q has been announced by wan-cai Lai [3], but the cor-

rectness of his proof has been doubted (cf. [7]). In this note we shall establish the

dilatation bound 29, using elementary methods different from those of Lai.

It is well known that to every quasisymmetric å there exist one or more extremal

extensions, i.e., quasiconformal maps /: H*H with smallest maximal dilation

among those quasiconformal self-maps of 11 which agree with ft on the boundary.

In general, the explicit form of the extremal extensions of a given å is not known.

If h is q-quassymmetric with q close to one, h has a Beurling-Ahlfors extension

with maximal dilatation also close to one. However, K. Strebel [9] has shown by

a simple normal family argument that no Beurling-Ahlfors extension of the g-quasi-

symmetric function h,h(x):x for x-O,h(x):qx, q>1, for x>0, can have

maximal dilatation arbitrarily close to the dilatation of the corresponding extremal

(which is explicitly known in this case).

In this note, we shall complement strebel's result by showing that if q(å) is the

the smallest number q for which å is g-quasisymmetric, then all Beurling-Ahlfors
extensions of h have maximal dilatation at least q(å). As a consequence of this

one sees that Beurling-Ahlfors extensions can have considerably larger dilatation

than the corresponding extremals. Consider, for instance, the affine stretching

x*iy*(y1iy of a square with sides parallel to the coordinate axes. If the map

is lifted with the aid of two conformal transformations to a K-quasiconformal map

f : H*H, the boundary function h--71nt satisfies g(h):l(():(l/16) exp(zK)

-112+o(l) [5, p. 81].

2. The upper bound. Given an increasing g-quasisymmetric h: Rr*Rl and
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a constant r=0, the Beurling-Ahlfors extension Jf,,,: H-H is constructed as

follows: for z:x*iy€ä, set

!x(z) -
0

v§ (z) - t h@* r) ctt,

-.v
and

2fo."Q) : a(z)* fr(z)+ir(a(z)- p(z)).

Since linear transformations do not affect the property of being p-quasisymmetric
or the dilatation of a quasiconformal mapping, we may make certain simplifying
assumptions when estimating the dilatation quotient of fo,, at an arbitrary z.

First, we may suppose that å is normalized, i.e., satisfies lu(0):g and å(l):1,
and secondly, we may restrict ourselves to the point z:i. These conventions are
obeyed in the rest of this section.

The dilatation quotient D of fo,, at i satisfies

(1) 2r (( + d@ +D-1) : (1 + r')(((1 + 6z) + (-r(1 + ry\) +zlt - (q)(r - r'),

where (:a*18*,(:urla*,4:§nl fr*.Sinceft isnormalized,oneeasilygets a*(i):1,
0,(i): -h(-l),a,(i):t- lihltldt and fr,(i):h(-1)-/'-, h(t)dt. The q-quasi-
symmetry of å immediately yields A-a=€=A. By a lemma of Beurling and Ahlfors
ll, p. 137),

(2) h(t) dt * p,

where ,i:(1+S)-1 and p--qL. It follows that ( and 4 both lie in the interval
U", pl.

Remark. The bounds in (2) are not the best possible. Equality in, say, the
right hand side of (2) holds for the non-quasisymmetric majorant for normalized
g-quasiconformal functions introduced by R. Salem [8] and later studied by K. Gold-
berg [2]. By applying (2) repeatedly to properly chosen subintervals of [0, l] one
obtains slightly sharper bounds. For our purposes the improvement is negligible,
and will not be taken into account.

The range of (€,q, Q is further restricted by the following

Lemma. If h is a normalizetl g-quasisymmetric Junction, then

v

{ h@* t) ctt,
0

,,*,/

(3)

and

(4)

D_{{

i ^(t) 
ctt= - , _l

h(t) dt = (2s+ h(t) dt -2qh(- 1)

h(t) dr.

Proaf. The q-quasisymmetry of h implies

h (t) - h(tr- L)12) = a(h((r - L)12) - h(- D)
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for all t€l-1,11, and (3) follows by integration. Also, since ft is normalized,

h(t)=--ah(-r) for all r€[0, 1], and (4) follows.

When we use the notation adopted above, (3) and (4) become

(s)

and

(6)

( = ((zq+ 1) q - 1)/(1- o

( = q(l -ril] -O.
when estimafing D from above, we simplify computations by taking r:1.

This is motivated by computations in [4], which indicate that for large Q, fo,,

with r close to 1 are the best choices for small maximal dilatation.

Theorenr 1. The maximal dilatation of the Beurling-Ahlfors extension

fnt of a q'quasisymmettic function h is at most 2q'

Proof. It suffices to prove D=2Q, where D is the dilatation quotient at

i of fo,, for a normalized q-quasisymmetric ft' By (1),

D + D-r : (((1.u6z)+(-1(1 +q\)lG +ri : F((, rt, O.

Since we may, if need be, replace h by g,g(x):h(-x)lh(-l), we may assume

(>1. With this restriction, .F is maximized for fixed ((,4) either at c:l or

ut th" lu.g"rt possible value of (. The first alternative can take place only for (=4'

In this case we have

Fr(€, 4, \ : @2 + 2(q - (2 -2) I G + d'z'

The nominator is a quadratic polynomial in 4, and it is negative for 4:0 and

4:1. ConsequentlY,

F(t,4, l) = F((, 1, l) : 4+ €-' = )"+ A-1

for ).<(<4, and D<).-r:Q*l=2a.
To estimate F fot ( large, we divide the square {(C, rDli= C= p, )'=r1= trt\ into

four domains Tr,Tl,T, and Tr. 7, is the triangle with vertices (p,)'), (p,lt)

and (v, v), where v:(q*1)/(3e+ l), Ti is 7, reflected ovet (:4,7, is the triangle

with vertices (,1, v), (v, v) and (A,1), and 7, is the trapezoid with vertices (i' l')'

0t,)"), (v,v) and (/.,v). If (i,q)€Tr, D+D-|=F(E,4,q), and we can compute

p Fr(t, I, Q) : (Z/f +Ztll - (o' t' + q' + l))l G + r»'.

Since Fr((,0, Q)=0 and F, can change sign at most once fot 4>0, the maxima

of F((,rt,S) io 7r areattainedonthelines Ir: (:4 or LziaC+(2a+l)4:q*l'
Since ,tr((, t, d:((+€-')(q*g-\12 the condition F(C, (, s)€F(v, v, g) holds

on 21n71. A lengthy but elementary computation shows that F(t,v'q)=2p*
(2s)-' is true for q=1. on L, we estimate Fr(q):F(l*n-t-(2*a-\4,4, Q)'

By computation,

(l - t»' k I 2 t ö F', (tD : - (2 s' + 2 s + l) qz * (4 qz * a s + 2) tt - k2 + 2 d'
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Since Fi(O)=0, F{(l)>Q, F, is maximized on LraT, either at 4:y or at q:).
The former case has already been treated, and a direct computation shows that
Fr(),):p1U,/., g) is at most 2O*ed-, if g>1.

Since (=1, F(€,4, d=FO5 L d for (=ry. Hence the estimation of
F(t,rl, q) in fi reduces to the work done in 2,.

Next consider ((, DeTz. By (6),

F(t, q, O = F(1, 4, s0 -dl! - O) : Fr(€, q).
By computation,

(1 - c),{n,+z#r_L)q(1 +(r)(1 +o
L-€

D +D_L

of fo,, &t i satisfies

- a (€, rilr + b (€, rilr-t,

+
a(1 -4il' )

and we see that (Fr)r((,0)=0 and (Fr), can change sign at most once for fixed (.
It follows that the maximum of F, is attained either on TloT, or on 4:y. fhs
former possibility has already been considered. Reasoning exactly as above, we see
that Fr((, v) is maximized either at 4:y or at (:). By direct computation one
verifies

(7) Fr(i, v) = 2o*ed-,.
To complete the proof, (€, D€T, has stin to be considered. By (5), we have in

this case

F(t, ry, 0 = F((, ry, ((2e+t)4-ty1- 0) : F,11,41.

The proof that Fr((,q)=20+Qp)-t in z, is carried out as above: by the con-
sideration of (fr)e the possible maximal set is reducedto 1:7 and Trn7r, and
on (- 1 one only has to take care of the points n:). and q:y.

Remark. As g**, (7) is asymptotically true as an equality. The upper
limit 2g cannot be improved without further restriction of the range of ((, tt, g.

3. The lower bound. In deriving a condition relating the lower bound of maximal
dilatations of f^,, to the deviation from symmetry of å, it is natural to consider
the smallest q for which å is q-quasisymmetric. we denote such a s by s@).

Theorem 2. Let h: Rr*Rr be quasisymmetric. Then the maximal dilatation
of euery f^,, is at least q(h).

Proof. For every a=a(h) there are points x,t(Rr such that
h (x + t) - h (x) : p (h (x) - h (x - t)).

There is no loss of generality in
By (1), the dilatation quotient D

assuming that h is norm alized and h(- 1) -t: g.

2q (C + ri a (€, ry) : (e - 1), + (e( * rt)r,

2q(€ *ry)',b (€, q) - (q + 1), + (e( -ry)v

where
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It follows that for fixed ((, 4)

(D+O''1' = 4a((,q\b((,q): Fn(6ti'

since h is p(å)-quasisymmetric, (5) and (6) imply that the distance of ((,4) from

T1 can be made arbitrarily small if q is chosen close to q(h). Considering (Fa){,

one sees as before that

Fn(t, q) z Fn(€, O : ((e- t)4+(s* l)n+(e'- 112((z-v(-z))l@qz)

= Fn(P, P)

holds in Tr. By direct computation one verifies

(8) FnQt, p) = (q* 8-t)'

as a strict inequality for g> 1. continuity of Fn together with (8) yield D+D-L>
s(h)+p(h)-r for the proper choice of q.
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