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DOMAINS WITH LIPSCHITZ MAPPING FUNCTIONS

FRANK DAVID LESLEY

1. Introduction

Suppose that I' is a closed Jordan curve in the w-plane, with interior € and
exterior Q*. Let f and f* respectively be conformal mappings of D={[{|<1}
and D*={{|>1} onto @ and Q*. Both fand f* may be extended to homeo-
morphisms between the closures of their domains and images, and we denote these
extensions by f and f* also. It is a much studied phenomenon that various geo-
metric properties of I' correspond to properties of the mapping functions or their
inverses. In particular, there are many results in which properties of I' imply
properties of the mapping functions. There are fewer where one assumes properties
of the functions to infer properties of I', and there are still fewer equivalences
between behavior of I' and boundary behavior of f or f*. In some cases, a con-
dition on f alone (for example) is equivalent to a condition on I'. For instance,
absolute continuity of f(¢'¥) is equivalent to the rectifiability of I' (and f*(e”)
is then absolutely continuous as well). Sometimes a “two sided condition”, one
involving both f and f*, is needed. An example of this is Ahlfors’ characteriza-
tion of quasiconformal curves in terms of f*~1of [1, Chapter 4].

In this paper we are interested in consequences of Lipschitz continuity on
dD of the mapping functions. We first recall a few definitions.

For w, and w, on I, let I'(w;, ;) be the arc of smaller diameter between
o, and w,. Then I' isa c-quasiconformal curve (or a quasiconformal curve) if
there exist positive ¢ and & such that for |w,—w,/<6 and we€l'(wy, w,),

|y — | + |0y — @y —
|1 — @,

C.

(1.1)

The curve I' is an asymptotically conformal curve if

(1'2) Iim Sup le_wol + |w0_wzl —
|, —w,| >0 g € I'(w,, ®,) le_w2l

1.

Suppose now that I' is rectifiable. For o;, w,€I'; let As be the length of the
shorter arc between ®; and @,. Then I is a bounded arclength-chordlength
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curve, or a quasismooth curve, if there exists ¢=>0 such that

As
|1 — @,

1)

(1.3) c

for all @, w,€I'. I is asymptotically smooth if

(1.4) im 45 _q

oy —wy|>0 |(u1—a)2]

1

The properties (1.2) and (1.4) have been studied by Pommerenke, who showed
them to be equivalent to certain properties of S ([10], see also [2], [8]). In [7], Holder
continuity of f and f* (as well as f~' and f*~1) was inferred from (1.1) with
Holder exponents depending on ¢ (see [9] also). The question then arose as to
whether Holder continuity of all of the mapping functions implied (1.1). This was
settled by Becker and Pommerenke [3] who constructed a curve I’ for which all
four functions are Hélder continuous but which is not a quasiconformal curve.

In this paper we consider the hypothesis that f and f* are Lipschitz conti-
nuous and ask what can be said about T

We begin by remarking that this implies Lipschitz continuity of S~ and f*1
on I' [6]. From the Lipschitz continuity of f and f~! it is easy to see that (1.3)
holds; I' is quasismooth. Our main result is Theorem 3. If I" is a quasiconformal
curve and f and f* are locally Lipschitz at {,¢dD with f({,)= [ (¢y)=w,, then
a local version of (1.2) holds. This “local asymptotic conformality” has been studied
by Rodin and Warschawski [12] and has several consequences, both for the mapping
functions and for I'. For example, the “Visser—Ostrowski limit” for f exists
and equals 1 at {, (Corollary 1). As another example, near w,, I' may be sand-
wiched between two asymptotically smooth arcs containing w, (Corollary 2).

If f and f* are uniformly Lipschitz continuous on 9D then I is locally
asymptotically conformal at every point of I, so that one might expect (1.2) to
hold, since the hypothesis is a uniform one. However, in Section 3 we construct
a curve I' for which f and f* are Lipschitz but for which (1.2) fails. In fact,
for any a=1, I' may be constructed so that the limit in (1.2) is at least «. In other
words, the ¢ in (1.1) cannot be taken to be smaller than o, no matter how small
J is.

In both sections we work with mappings between strip domains which cor-
respond to f and f*, and the principal tools are the Ahlfors inequalities. In Sec-
tion 2 we show that the Lipschitz continuity of f and ST at & implies that the
strips corresponding to Q and Q* have width nearly 7 in a certain sense (Theo-
rem 1). Then we show that the strips both have the “Ahlfors distortion property”
which means that the real parts of the strip mappings are given asymptotically by
the ““Ahlfors integral” (Theorem 2). The geometric consequences of this property [11],
together with our Theorem 1 then yield our main result.
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None of the three results follows from the hypothesis that f, /= and f*~!
are all Lipschitz continuous, as is seen from Theorem 2 in [6].

I would like to thank Burt Rodin, Uri Srebro and Steve Warschawski for
several enlightening discussions.

2. Consequences of Lipschitz continuity

In all that follows we assume that f and f* are conformal mappings of
D={{|<1} and D*={{|=1} onto Q=IntI' and Q*=ExtI respectively.
I' is a closed Jordan curve and the functions f and f* are extended continuously
to the boundaries of their domains. Without loss of generality in what follows,
we assume that for a certain {,€0D, f({o)=wo=r*(), fi{)=ws=[f*(i{,) and
f(=Ll)=wys=1*(—C). We then transform Q and Q* into strip domains via

w(w) = log%

where the branch of the logarithm in both @ and Q* is chosen so that for
wo=w(wy), we have Im wge(—mn, 7).

The domain Q corresponds to a strip X; which is bounded by two Jordan
arcs C; and C,, each with —e and 4+ as endpoints. Let C; be the arc
containing wg. Then Q* corresponds to a strip Z, bounded by C; and C,=
{w+2ni, weC,}. Letting z=log (({o+{)/({,—{)) for suitable branches of the
logarithm, D corresponds to S;={z=x+1iy; |y|<n/2} and D* corresponds to
S,={z=x+iy: n/2<y<3n/2}. The mappings f and f* correspond to mappings
wy(z) and w,(z) between S; and X;; and S, and X, respectively. We denote
their inverses by z;(w) and z,(w). The mappings extend continuously to the closures
of their domains and we use the same names for the extensions. Note that w;(— )=
Wo(— ) = — o0, Wi(+ 0)=wy(+ )=+, and wy(ni/2)=w,(ni[2)=w].

Next, we let 4, be the vertical line {w: Re w=u}. For each i=1,2, ¥;—4,
contains a component 2; in {Rew=<u} which has —e as a boundary point.
Let o;(u) be the maximal subinterval of 4,NZX; which is a common boundary
arc in X; of X and the component of ¥;,—Z] with -+ as a boundary point.
We let 6,(z) be the length of o¢;(x) and we note that 0,(u)+0,(u)=2n.

We recall the Ahlfors distortion theorem [5]: fix i and define

x;(u) = min_x;(w) and X;(u) = max_x;(w),
w€a,(u) wEa(u)

where x;(w)=Re z;(w). For u'<u, if
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then
2.1 xxwW—-XW)=n f 7 (t) —27.

The following lemma characterizes the Lipschitz continuity of f, /™1, /* and
f*71 in terms of the strip mappings (see [6]). We state the result for f; a similar
statement holds for f*. In all that follows M, M;, M,, ....,K, K, K,, ... denote
constants. The same symbols may be used for different constants in the statements
of different results.

Lemma 1. Suppose that [f({)—f(()|=K1|{—Co| for (o€0D and all (€D.
Then there exist M, and M, such that for w=u+ivcZ, with u=0, we have

2.2) x (W)—u =M, and
n—0, (t) _
(2.3) f 50 dt = M,.

If |fo)—f"wo)|=Kelo—wy| for wo€l and all w€eG then there exists
M for which
2.9 M; = x,(w)—u.
The lemma is stated locally, but if f and f~* are uniformly Lipschitz conti-
nuous in D and @ respectively, then M,, M, and M, are independent of {,.
We need a sharpening of the inequality between the harmonic and arithmetic
means.

Lemma 2. Suppose that 0.,0,, ...,0, are positive real numbers for which
>r10:.=2n, and that 0=(1/n) 3_,0,. Then
11 1 [ 271)2) n( 27:]2
(2.5) g'e— = [n+ ('g; 9i n -—'7_[—2 9——’1—— .
Proof. We recall a well known identity of Lagrange. For ai,...,a, and

by, ..., b, real,

(é; a; bi]2 = [é; a?) [éi b?]—% 2 (a;by—a, by~

Jik=1

Letting a;=V0, and b;=1/V90,, and noting that 0,0, =n> we have

n 11 (1 (6,—6)
A ) (" 7,200 )
1( 1 ((0 —2n/n)— (9,,—27r/n))2]
== |nt5- 2
0 2n j,k=1 T
1

-3k 202 -5 £ 020 2)

The lemma follows by summing the last term.
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Theorem 1. Let T be a closed Jordan curve and let f and f* be conformal
mappings of D and D* onto Q=IntI' and Q*=ExtI respectively. Suppose
that f and f* are Lipschitz continuous at (€ 0D, with f((o)=f*({o)=wy. Then
there exists M such that for 0,(u) and 0,(u) as above,

oo

(2.6) _22 J (O:@w)—n)pdu < M.

Proof. By (2.3) applied to f and f*, there exists M; such that for 0(t)=
(6:()+0:(1))/2 and for all u=0,

_ u pis 29(0
2.7 M, = Of 6.0 "o 00 a
F2(n—0(9) F OOz
=S "0 @+ fe(r) (2 00-w)a-3 [ S

by Lemma 2. From the proof of Lemma 2 we see that the difference of the last two
integrals is non-negative so that

(n 6(0)
/ o0 dt = 2

from which it follows that

(r—0(n)? Mn
of =

Applying this to (2.7) we obtain (2.6), with M =2M,n>.

Theorem 2. Under the conditions of Theorem 1, each X; has the Ahlfors
distortion property: For w=u+tiv and w=u'+iv'€X;

50— - [ 50 =

where 0o(1)~0 as u=u'—oo, uniformly in v and '

(2.8) o(1)

Proof. We work with X, the proof for X, being identical. It sufficesto
show that for some M,

dt=M

X (W) — f gl’z,)

since by a result of Eke [4, Theorem 2], this implies that for some f,
x, (W) — f—n—dt - f as u-—oo,
¢ 6

from which (2.8) follows.
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Now, by (2.2) applied to x; and x,, and by the distortion theorem, we have

Y 0,()—m

x —uU=u—x,W+M;= | ———dt+ M.
1 (%) ) +M= [ =5

From the inequality (0,—n)/0,=(rz—0,)/6,, it follows that

x (W)—u = f ——7£g—1(%;—)(201t—f—M4

so that

Yo
= dt+M,,
X1 (W) 6/. 01 (t) 4

and Theorem 2 is proved.

The inequality (2.8) has many geometric consequences, which are studied
extensively in [11]. The first result which we will use is the following. Fix i and
let H,={wcX;:y,(w)=t}. Here |t|<n/2 for X, and =n/2<t<3m/2 for Z,.
Then for u, sufficiently large the level line H,n{w=u+iv: u=>u,} is the graph
of a function v=¢,(u) for which @;(u)~0 as u—oo, [11, Theorem 7]. We will
use this result and Theorem 1 to show that I' is locally asymptotically conformal
at {,, assuming that I' is a quasiconformal curve. To this end we need to know
that the functions w;(z) are uniformly continuous for large x. This will follow
from the next two lemmas.

Lemma 3. Suppose that I' is a bounded quasiconformal curve. Let X be the
image of Q=IntI under

w = log (((1)—606’)/(60—600)),

for w, and wg on I as above and suppose that X is bounded by the curves C,
and C,, each with — <o and + < as endpoints. Then there exist §,>0 and K=1
such that for wy, wy, we€Cy (or all on C,) with w, between w, and ws and
[wy—ws| <8y, we have

W1 —ws|

=K.
[y — Wy

Proof. Let {=(w—wy)/(w—wy) and let C be the image of I' under this
mapping. Then C is also a quasiconformal curve so that there exists »>1 such

that for {,, (s, {3€C with {, on the finite arc 5123, we have ([1], Chapter 4),
(2.9) 1 —Lal/ 16— Cal <.
Now let wy, wy, ws beon C; with w;=log (1/{;). Then

|y — W — [log o/ = 318,/0—1] = 30— - 3x
[wy—ws| llOg(Ca/Cl)l TG/ T 1G4
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as long as
4 1 G| 1
(2.10) -a <3 and Z. <3
To guarantee (2.10) we note that by (2.9) it suffices to have
{5 1
On account of the inequality
(s - |wy—ws|
—=—1| = |e¥1™¥s—-1| = =2lw—w
G | | 1—|wy—wy| w1 =wa
for |w,—ws|<1/2, it follows that (2.11) is true for
1
[wi—ws| = — = .
%

Lemma 4. Let I' be a bounded quasiconformal curve and let f map D con-
formally onto Q=IntT. For (,€0D and w,=f({)€l, suppose that f and f~*
are Lipschitz continuous at {, and «, respectively. Let S and X be the cor-
responding strip domains with w(z) mapping S onto X as above. Then there exists
a constant M such that for any e=0, there exists 0>0 such that for
Zo=Xo+iPo€0S with xo=M and z"€S with |z2”—z|=6, we have |w(zo)—w(z")|<e.

Proof. We begin by citing a slight modification of Lemma 1 in [13]: For z,€dS
and r, O<r<l1, let k, be the semicircle {|z—z,|=r}nS. Then for every such
r<1 there exists a ¢, with r=g,=r"? such that the image of ke1 is a crosscut

of X with length
21 A 12
o= [log (l/r))

where A, . is the area of T,=w({|z—zo|<r, z€SY)).
We must now show that 4, , is uniformly bounded for all sufficiently large x,.
As in our Lemma 1, the local Lipschitz continuity of f and f~! implies the
existence of constants M, M,, and M, such that for x>M—1 and z=x+iy€S,

we have
M, =x—u(z) = M,.

Thus for x,>M and x,+r=x=x,—r we have
Xo+r—M; = u(z) = xo—r—M,

and T, is contained in a vertical strip of width 2r+(M;—M,). Since the length
of X! does not exceed 2n for any vertical line /, it follows that for x,>M,

A, ,=2nQ2r+M,—M,)

Zo,r —
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so that

I, = (4n2(2r+M1—M3))”2
o= log (1/r) ’
Now, let T, =w({|z—z|<g1, z€S}) so that T,cT,. Let w; and w; be the

endpoints of the image of kg; on C; (or Cy) and let C’ be the arc of C; (or Cy)
with w; and w; as endpoints. Then, for |z,—z”|=r we have

[w(zo)—w(z")| = diam T, = diam T, = diam C’+1,,.
For 6, and K asin Lemma 3, choose >0 so small that r<¢ implies that
I, <max (dy, &/(2K+1)). Since [wy—ws|<I, we apply Lemma 3 to see that
[w(zo) —w(z")]| = 2Kl, +1, <,
which proves Lemma 4. We may now prove
Theorem 3. Assume the conditions of Theorem 1 and that I is a quasiconformal

curve. Then T is asymptotically conformal at w,: As o, and w, approach w,
from opposite sides

lim |0y — | + | — | _

1.
;> 0, ]a)l—cozl

Proof. We may assume that w,=0. We work with wy(z): S;—~2;, which
we shall refer to as w(z), with inverse z(w). Then for w(w;)=w;=u;+iv,£C;,
7=1,2, we have

1 1—em
o +lwy] T [TTe| tenwe
le_wzl - 1 1—er| — |1+e“1—“2+i(01~vz—7‘)l
T 1—e™

where 0(1)~0 as u;, u,—><-. We may assume that u;=u, so that it suffices to
show that
1+ete

uzl_r)l;lo 11 +e“1-“2+i("1—02—ﬂ)| =

1.

To this end, given >0 we first choose a=0 such that u, —u,=a implies that

1+4et142

(2.12) l1+eu1—u2+i(ul—v2—n)]

< 1+s,

for any v, v,.

Next, choose b such that O0=wu,—u,=a and |v;—v,—n|=b yields (2.12).
Finally we show that there exists a real ¢ such that u,=c and u;—u,=a implies
that |v,—v,—7n|=b. By Lemma 4 there exist M and =0, such that for
z=x+iy€dS; with x=M, and for z"¢8§, with |z—z"|=5, we have

W@ —w()] < -
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Next choose u,>M so large that for u=u,, the level curves H,,_; and
H_,;5+; are given by the graphs of functions Prjz-5() and @ _a45), with
|@7,2-5@)| and |@” r545)| both less than or equal to K;=max (b/(7a), 1).

Suppose that w=u+iw€C; and w=u+iv'€H,;,_;. Then

n=b
(2.13) o—v'| = R
The inequality (2.13) also holds for w=u+iveC, and w=u+iv'€¢H_ ;5.
To establish (2.13), suppose that z(w)=x+in/2=z, z(W)=x"+i(n/2—6)=Z2,
z"=x+i(n/2—05) and w’=w(z"). Then
v—v'| = jo—v"|+ "=V = w—w'|+ K |u"—u| = 2lw—w"| = 7
Now, by Theorem 1 we may choose U, such that u=U, implies that

oo 2
(2.14) ) f (0,()—r)2 dt = [%] a.
We then let c=max (u,, U;) and suppose that wy;=u,=c, w;=u;+iv,€Cy,
Wy =1y +i0,€C; and u;—u,=a. We then choose u;+ivj€H 55 and uy+ivy€
H_,p5+s5. By (2.14) there exists uy€(uy, up+a) such that |04(us)—n|=b/7. Taking
us+ivs€C, and uy+iv,€C, to be endpoints of o(uz), with uz+iv,€ Hypo_5 and
us+iv,€ H_ 1545, we finally have

vy —(wa+1)| = |v;—v1|+ [v1—vs| + v — v
+ [v3— (0g 4 7)| 4 [vg — V3| + |0y — 03] + vz — v,

b b b b b
= 7+Kla+77"+7+7+1<1a+';7" = b,
which proves Theorem 3.
The following are consequences of Theorem 3 which follow from results in

[12]. The first is an immediate application of our result and Theorem 7 of [12].

Corollary 1. Assume the hypotheses of Theorem 3. Then

SOE= _
FO-1T)

lim
C"Co
{eD
for nontangential approach. The corresponding result holds for f*.

Corollary 2. Assume the hypotheses of Theorem 3. Then Qu{w,} and
Q* U {w,} each contain an open asymptotically smooth arc containing .

As we shall see, I’ need not itself be asymptotically smooth. The foregoing
means, however, that near w,, I’ is trapped between asymptotically smooth arcs.
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Proof. Recall the definition of an L-strip. R is called an L-strip of inclina-
tion 0 if
R={w=u+iv:a<u<e, ¢p_(u)<v<q_ (1)}

where a=—< and ¢, ¢_ are continuous functions such that for «’ >u,

lim ££00=0:@ _
Uu—>+oo u-—u

By a construction of Rodin and Warschawski [12, p. 135], the conclusion of
Theorem 3 implies that each of 2; and X, contains an L-strip of inclination 0.
In fact, if R, is the L-strip contained in X, with boundary curves given by the
graphs of ¢,, and ¢;_, each of ¢,, and ¢,_ may be taken to be smooth, with

¢1+(w) ~0 and o¢7;_(w) -0
and
P14 (W—@1_ (W) >7 as u oo

The image of the graphs of ¢;, and ¢,_ in the ® plane is an asymptotically
smooth arc in QU {w,}, containing w,. Similarly, the boundary of the L-strip
contained in X, corresponds to the asymptotically smooth arc in Q* U {w,} which
contains @,.

If the functions f and f™ are uniformly Lipschitz continuous on I, then the
curve I' is locally asymptotically conformal at every point. One might then ask
whether I' is then asymptotically conformal, or in light of Corollary 2, even asympto-
tically smooth. In the next section we shall see that I may fail to be asymptotically
conformal.

3. Construction of an example

We again use mappings between strip domains, and we shall use the same
notations as in Section 2. We shall construct a strip domain X, in the w=u+iv
plane, bounded by Jordan arcs C; and C,, each with —oc and + e as endpoints,
i.e. C; may be given parametrically by w=w;(t), — co<t<+ oo, with Rew;(r)>—oo
as t—>—o and Rew;(t)—>+o as t—+4o. As above X, will be the ‘“comple-
mentary” domain bounded by C; and C,={w+2ni: weC,}. We consider the
conformal mappings wy(z) and wy(z) from S; and S, onto X; and X, re-
spectively with  w;(—o)=—co, w;(4+o0)=+40, and w;(ni/2)=ni2¢0Z;, for
J=1,2. The inverses of these functions will again be denoted by z;(w). Similar
notation will denote inverses of defined functions. We define

ev—1
ev+1’

e?—1

(=5

w(w) =

in the appropriate domains, so that X, and X, correspond to the interior Q and
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exterior Q* of a closed Jordan curve I', while S; and S, correspond to D and
D*. Then f({)=w(wy(z({))) is a conformal mapping of D onto @, and f*({)=
o(wy(z({))) maps D* conformally onto Q.

We shall construct the curves C; and C, so that I' is not an asymptotically
conformal curve, but so that f and f* are Lipschitz continuous. We begin by
constructing ‘‘building blocks™.

Choose and fix «€(0, n/2). For each integer k=3, consider the following
circles in the w=s+it plane:

2
Ty: t—n)?+(s—k)? = [%-I—oc) R
n2
_4-,

n2
H

. g2 )2 —
Ty: 24 (s—ug) 7

Ty: 24 (s—uy)* =
where uy=k—(o2+20m)* and wu;=k+(o®+2am)"/% so that 7; is tangent to
T, and T,. Let L={s+it: s=0,1=n/2}. We trace a curve I'; as follows. Starting
at mi/2, move to the right, first on L to T,, thenon T, to Ty, Ty to T, T, to
L and then on L to +e. Let I'; be the reflection of I', across the s axis and
take ©, to be the domain bounded by I'y I U {ti : |[t|=n/2}.

Now let w(w)=—ie~“+w, for w,=2k+mi/2, and let D, be the image of
Q, under this mapping. Let X={w=u+iv: |[v|<n/2}. Delete from X the half
disks {w: |w—w|<1, v<n/2} and replace them with the D,. We christen the
resulting domain 2; and we let X,={w=u+iv: —n/2<v<3n/2}—X,. The upper
boundary of Z; is then a curve C,, with a sequence of double bumps going out
to + oo, decreasing in size. Under the mapping w=(e*+1)/(e"—1), X, is mapped
onto a domain Q which is nearly a unit disk, with a sequence of double bumps
converging to w=1.

In order to show that 9Q is not asymptotically conformal, it suffices to consider
the image of 0%, under W (w)=e~", since

and h(W) is conformal at W =0.
For each k(=3), let w;=—ie-k~i("/2—“>+wk and W] = —ie~*+ER2=D Ly
Consider the ratio
W (wi) =W (wi)| + W (w) =W (w)|

3'1) ra ”
( [ACA=LCA]
o™k — e M|t leTMe—eT K| e k1|4 [e "R~ 1]
Ie_w;c_e_le lewk_wl/c__ewk_wl/:‘ '

Then w,—w;=e ¥(sin (n/2—a)+icos (n/2—a))=u+iv and w,—wj =—u+iv.
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Furthermore v=cu for c¢=1/tan (n/2—a). Thus the quantity in (3.1) is

le—u+icu_1[ + leu+icu__

1

e = (1+)"2 4 0(1)
as k—oo, so that u—0. Thus we see that
sup o’ —o|+lo—0"] _ (432 = 1
[ =0"[~0 ¢ (e, ") |0’ —w”| - sin (/2 —a)’

which may be made as large as desired by taking « near /2.

We must now show that f and f* are uniformly Lipschitz continuous on dD.
We shall consider only f, as the proof for f* is essentially the same. The Lipschitz
continuity of f follows from the following result.

Lemma 5. With the notations above, suppose that there exist positive constants
M,,K; and K, such that for almost every z€0S; with Rez=x=>M; we have

dw,

@

(3.2) < K,

and for uy(z)=Re wy(z) we have
3.3)
Then there exist positive K; and & such that for almost every {€0D with [{—1|</,

x—u(2) < K,.

‘Q0<&.
Proof. We have, for {#=*1, z=2z({) and w=w,(2);
daf| _ |do dw1 dz 2e” dw, || (e#+1)?
dc| ™ | dw dac (e” +1)2 e
awy |, .. 1+e‘22__ awy | . . @
- le="| v el G (I1+o0(1) as x —ee. QED.

We first show that (3.3) holds. Recall the Ahlfors upper inequality proved in
[5, Theorem 3]: For u=0 and x;(w)=Re z;(w),

34 % ()~ “@—”fem

where the constant M, depends only on o« in our case. From this we see that

x (W)—u = f fgl—%)(t—)

for M;=M,+x,(0). Since 6(t)=n off of the intervals

[2k — e *+ (2 +2am?2 D e—k+@ +2an)!?]

3.5 dt+ M,
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and
0 = n—0,(f) = e~k+@+2am'?

on the corresponding interval, the integral in (3.5) converges as u-»<o, and (3.3)
follows.
We next note that the domain X, is such that the mapping z;(w)=x,(w)+iy:(w)

from Z; onto S, is ‘“‘semiconformal” [14]:
For any r, 0<r<mn/2, there exists u, such that

S$;DS, = {u—l—iv: u= u,,—%+r’< v < %—r}

and
(3.6) WETM yi(w)—v=0.
wesS,

This will be used in showing that (3.2) holds for w;. The proof of (3.2) is
somewhat delicate, and we must consider properties of the €.

For fixed k=3, let z,=z(w,) and define {(z)=Log (1/(z—z,))—(n/2)i for
z€S;, so that [Im{(z)<m/2|. Let w(w)=Log(1/(w—w))—(n/2)i for weD,.
Then {(@)={(z:(w(w))) maps &, conformally onto a strip domain S which is
bounded by the lines

and by a curve y, connecting the left endpoints of the lines. Observe that for

L€y, Im | =m/2.

Lemma 6. Let {(w)=¢& (w)+in(w) map Q, onto S, as above. Then there
exists M, such that for all k=3,
3.7 §k(0) =M.

S S
zy(We—1) =z

¢ __ g -n, -
{g——g—l—z—z. ¢ =log
and

1

(W +1) —z

{C=é—i%: ¢ =log

Furthermore, there exists M, depending only on o such that for w=s>M,
(3.8) M@ < @2+ )2 < 7/2, forall k.

Proof. Consider {;={(z:(w,—))€y. By (3.6), Im(z(wy—i))—7n/2—1 as
k—oo, so that |z;(w,—i)—z,|>1/2 for k sufficiently large. From this it follows
that ¢ ,(0)=Re{;<log2 for large k and (3.7) then follows.

1(Iext, let h(w)=n(w)—t. Then h, is harmonic in @, and for w=it€dQ,,
|t|<m/2, we have |h(w)|<n. On the rest of 0y, |h(w)|=a. Thus, for any £=0,
the two constants theorem and a standard comparison argument show that there
exists K=0 for which Re w=K implies that | (w)=a+e. We let w=s and
e¢=(n/2—a)/2 to obtain (3.8).
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Next we state a result which will be applied to the mapping w;(z) and to the
(). We state it for w;. The proof is essentially that of Lemma 3 in [6)].

Lemma 7. Let wy(z) map S conformally onto X, as above. Let w=w,(z)€
02, andlet r=0 and M =0 be such that:

(3.9) There exist circles T and T’ with radius r and tangent to 0%, at w, with
TCZ, and T'c(—1I)).

(3.10) The center of T is wy=w(zo), and Im zo|=M—<mn/2.
Then there exists K=0, depending only on r and M, such that

d

g
e (@ <K

Lemmas 6 and 7 will be used to prove

Lemma 8. There exist positive constants & and K’, depending only on «
such that for weCy with O<|w—w|<0 for any k=3, we have, for z=2z,(w)

’

n

e ()| <K

Proof. We shall establish that there exist constants M, K; and K, such that
for (€0S, with é=Re{=>M, we have

3.1D I d;g" (c)l < K;, andfor s5,(0) = Rew,(0)
we have
(3.12) =50 < K.

We begin by applying Ahlfors® upper inequality to the mapping {,(w) to see
that there exists M,, depending only on o such that

LO=GO) = [ o det My,

By (3.7) and the construction of Q,,
n—0(1)

Wd‘f = K2

&(@)—s = My+My+ [
0

so that (3.12) holds.

Next we may suppose that w=w ()¢’ with Re w=>nr/2. Then there exist
circles T and 7" which are tangent to I', at w and whose interiors are respectively
interior and exterior to Q,. We take the center of T to be at s, on the s axis,
and the radius of both circles to be r=(n/2)—a«. By Lemma 6 there exists M =0
such that for so=>M, [n,(so)|=((n/2)+)/2<n/2. Then apply the version of Lemma 7
for the mappings w,({) between half strips to establish (3.11), where K, depends
only on r and M, which in turn depend only on «. Lemma 8 is then proved
by the argument in the proof of Lemma 5.
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We may now show that (3.2) holds. Let <1 be as in Lemma 8 and let N(=3)
be such that for k=N, exp (—k-+(2+2um)"/?)<5/2. Let A={weCy:0=<|w—w=J,
k=N} and let B={wc0dS;: Re w=2N, weAu {w}}. Then any point of B is
on one of the lines »=n/2 or »v=—n/2, and for any such point, the condition
(3.9) holds with r=4§/2. Because of (3.6), there exists M,=2N such that (3.10)
holds for weB with Rew=M;. Thus (3.2) holds for almost every w¢dS, for
which Re w=M, and with K;=max (K, K’). Thus Lemma 5 may be applied to
wi(z) and it finally follows that f is Lipschitz continuous on oD.
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