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DOMAINS WITH LIPSCHIT Z MAPPING TUNCTIOI{S

IIRANKDAVID LESLEY

1. Introduction

Suppose that I' is a closed Jordan curve in the arplane, with interior O and

exterior Q*. Let f and 1f* respectively be conformal mappings of D:tl(l=t)
and D*:{l(l=t} onto O and O*. Both /and f* muy be extended to homeo-

morphisms between the closures of their domains and images, and we denote these

extensions by f and /* also. It is a much studied phenomenon that various geo'

metric properties of i- correspond to properties of the mapping functions or their

inverses. In particular, there are many results in which properties of .l- imply

properties of the mapping functions. There are fewer where one assumes properties

of the functions to infer properties of -l', and there are still fewer equivalences

between behavior of .l' and boundary behavior of / or f*. In some cases, a con-

dition on f alone (for example) is equivalent to a condition on -l-. For instance,

absolute cåntinuity of f(eto) is equivalent to the rectifiability of ,l' (and f*("")
is then absolutely continuous as well). Sometimes a "two sided condition'n, one

involving both f and f*, is needed. An example of this is Ahlfors' chatacteriza-

tion of quasiconformal curves in terms of f*-rot [1, Chapter 4].

In this paper we are interested in consequences of Lipschitz continuity on

0D of the mapping functions. We first recall a few definitions.

For o, and a, on .l-, let .f(ar., cor) be the arc of smaller diameter between

crr, and co2. Then i- is a c-quasiconformal curve (or a quasiconformal curve) if
thereexistpositive c and ä suchthatfor larl-c,rrl=ä and ro6€i-(or,@z),

(1.1)

(t.2)

lal,-arol *laro-rrrl

-E;ff<c'
The curve f is an asymptotically conformal curve if

larr-arol * lro-rrl. lim, sup
lrr- @zI *0 

aro € l(ci, arz)

:1.
lc»r- rprl

Suppose now that .l' is rectifiable. For a1, @2(.1; let ls be tle length of the

shorter arc between at, and o,. Then l- is a bounded arclength-chordlength

koskenoj
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curve, or a quasismooth curve, if there exists c > 0 such that

(1.3)

lor all @1, @2(f .

(1.4)

- 
Åt 

-,,l*r- arl - r'/

f is asymptotically smooth if

lim , ot 
, :1.

lrrr-rorl-+g lCDt- @zl

The properties (1.2) and (1.4) have been studied by pommerenke, who showed
them to be equivalent to certain properties of /([r0], see also I2l, Igl). In [7], Hölder
continuity of f and f* (as well as -f-, and Jr*-r) was inferred from (l.l) with
Hölder exponents depending on c (see [9] also). The question then arose as to
whether Hölder continuity of all of the mapping functions implied (l.l). This was
settled by Becker and Fommerenke [3] who constructed a curve l- for which all
four functions are Hölder continuous but which is not a quasiconformal curve.

In this paper we consider the hypothesis that f and f* are Lipschitz conti-
nuous and ask what can be said about l-.

We begin by remarking that this implies Lipschitz continuity of y-r and 7*-ron ,l' [6]. From the Lipschitz continuity of / and f-, itis easy to see rhat (1.3)
holds; l- is quasismooth. our main result is Theorem 3. If j- is a quasiconformal
curve and f and f* are localty Lipschitz at (o(OD with /((0):.f*((o):oo, then
a local version of (1.2) holds. This "local asymptotic conformality" has been studied
by Rodin and warschawski [12] and has several consequences, both for the mapping
functions and for .l-. For example, the "visser-ostrowski limit,, for 7 eiists
and equals I at (o (corollary 1). As another exampre, near cD,, f may be sand-
wiched between two asymptotically smooth arcs containing oo (corollary 2).

lf f and f* are uniformly Lipschitz continuous on 0D then i- is locally
asymptotically conformal at every point of i-, so that one might expect 1t.21 to
hold, since the hypothesis is a uniform one. However, in section 3 we construct
a curve r for which / and f* are Lipschitz but for which (1.2) fails. In fact,
for any a=1, I may be constructed so that the rimit in (1.2) is at least s. In other
words, the c in (1.1) cannot be taken to be smaller than a, no matter how small
ä is.

In both sections we work with mappings between strip domains which cor-
respond to .f and f*, and the principal tools are the Ahlfors inequalities. In Sec-
tion 2 we show that the Lipschitz continuity of f and f* at (o implies that the
strips corresponding to o and e* have width nearly n in a certain sense (Theo-
rem l). Then we show that the strips both have the "Ahlfors distortion property',
which means that the real parts of the strip mappings are given asymptotically by
the "Ahlfors integral" (Theorem 2). The geometric consequences of this propertylt t1,
together with our Theorem I then yield our main result.
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None of the three results follows from the hypothesis that
are all Lipschitz continuous, as is seen from Theoretn 2 in [6].

I would like to thank Burt Rodin, {.Jri Srebro and Steve

several enlightening discussions.

f, f-' and f*-t

Warschawski for

2. Consequences of Lipschitz continuity

In all that follows we assume that f and f* are conformal mappings of
D:{l(l=1} and A*:{l(l=1} onto Q:lntf and O*:Ext.l- respectively.

l- is a closed Jordan curve and the functions / and f+ are extended continuously
to the boundaries of their domains. Without loss of generality in what follows,
we assume that for a certain (o(\D, f(h):coo:f*(h), f(i(i:@;:f*(i(i and

fGh):ali:f*Gh). We then transform O and O* into strip domains via

w(a\:ton !'(-']..\_/ -_. (alo_a;)

where the branch of the logarithm in both O and Q'r is chosen so that for
w'o:w(a'), we have Imw'o((-n,nl.

The domain O corresponds to a strip )r which is bounded by two Jordan

arcs C, and C2, each with -- and *- as endpoints. Let C, be the arc

containing uri. then O* corresponds to a strip ), bounded by C, and Ci:
{w*2ni,w(C2}. Letting z:log«(r+(y((r*(» for suitable branches of the
logarithm, D corresponds to ,Sr:{z-x*iy;lyl=nl2} and D* corresponds to
Sr:{2:ytriy:nf2=y-3x12\. The mappings f and /* correspond to mappings

wr(z) and wr(z) between ,S1 and 21, and ,S2 and Z, respectively. We denote

their inverses by z1(w) and zr(w). The mappings extend continuously to the closures

of their domains and we use the same names for the extensions. Note that w1( - -) :
wz(- *): - @, w1(* *):wr(+ -; : a -, and wy(nif2):w2(nil2):y;.

Next, we let Au be the vertical line {w: Re w:a}. For each i:1,2, Zr- Au

contains a component Ei in {Rew=rz} which has -6 as a boundary point.
Let oi(u) be the maximal subinterval of l"e:'Ei which is a common boundary
arcin Zi of Ei and the component of Et-Ei with *6 as a boundary point.
We let 9r(u) be the length of oi(u) and we note that 0r@)*02(u)=2n.

We recall the Ahlfors distortion theorem [5]: fix i and define

xi(u): ,.pj,?r 
x;(w) and x,(u) - #åär*,(w),

where xi(w)-Re zi(w). For Lt'1u, if

dt

->>

0,(t)!
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f

The following lemma characterizes the Lipschitz continuity of f,f-l,f* and

f*-' in terms of the strip mappings (see [6]). We state the result for f; a similar
statement holds for f*. ln all that follows M, Mr, Mr, ..., K, Kr, Kr, ... denote
constants. The same symbols may be used for different constants in t}re statements
of different results.

then

(2.1)

Lemma l.
Then there exist

(2.2)

(2.3)

x{u)-ti@)>*!#-27T.

x, (w) u € Mt and

!Wdt<M2'

Suppose that lf(}-fK)l =r, l(-hl fo, (o(OD ond oll ((.D.
Mt and Mz suchthat.fo, w-u+iu(E, with u>0, w*€ haue

If lf-'(a)-f-11coo)l=&la-c»sl for @o(f and all a(A then there exists
MB .fo, which

(2.4) Ms s xr(w)-u.

The lemma is stated locally, but if / and 7-t are uniformly Lipschitz conti-
nuous in D and O respectively, then Mr,Mz and M, are independent of (0.

We need a sharpening of the inequality between the harmonic and arithmetic
means.

Lemma
Zi=t?i€Zn,

(2.5)

.. ., 0n are positiöe reol numbers ./br which

Then

(e,-4') -#(,-+)')

2. Suppose that 0r, 0r,
and that 0:(1 ln) Zi=r|,.

å+=-+1"*#(å
Proof. We recall a well known identity of Lagrange. For at,...,an and

br,...rbn real,

(å,, u,)' : (å,1 å'l - +,,ä-,,o, o o - a,, b )'
Letting ar:@ and br:tll/|r, andnoting that 0r0o=v2, we have

å+:#(***,,ä,eqH)

z,b,-+)'-#

1( L

Tl"+ 2n

1( t
Et'* "

n

2
i,k:L

- (0o- 2nln))z
rE,

((0i -2nln)

,,ä,(',- +)[o-- +))
The lemma follows by summing the last term.
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Theorem l. Let I be a closed Jordan curue and let f and .f* be conformal
mappings of D and D* onto O:Int f and O*:Ext f respectiuely. Suppose

that f and f* are Lipschitz continuous at (oQ|D, with f((o):.f*(h):ro. Then

there exists M such that for 9r(u) and 0r(u) as aboae,

(2.6) å i<u,Ar-r)2du=M.,:r 0

Proof. By Q.3) applied to f and./*, there exists M, such that for ä1t;:
(0r(r)+0r(r))12 and for all u>Q,

(2.7) M, > i =+*:^-'9^r\! o''^'- d 9r(t) ' 0r(t) A@ -"

=_ ik#_r,.+ !#(å r,,or _d)at_z !9#,,,
by Lemma 2. From the proof of Lemma 2 we see that the difference of the last two
integrals is non-negative so that

iwo'=!'
from which it follows that

iWat=M]r".
Applying this to Q.7) we obtain (2.6), with M :2Mtnz.

Theorem 2. Under the conditions of Theorem l, each Zt has the Ahlfurs
distortion property: For w:u*ia and w'-u'+iu'<Ei

(2.8) lx,(w)-x,(w')- i "o"
| ,i o'141 

: ottl

where o(l)*0 as u=tt'**, uniformly in o and ts'.

Proof. We work with .81, the proof for .8, being identical. It sufficesto
show that for some M,

.,@-i#dt<M,

since by a result of Eke [4, Theorem 2], this implies that for some B,

.,(r\--i#dt*§ as ,+@s

from which (2.8) follows.
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Now, by Q.2) applied to x. and xr, and by the distortion theorem, we have

x1(w)-u< u-xr(w)*1a,= i !tP;2il+M.- ! or(r) q' 
' tr' '

From the inequality (0r-n)l0r=(n-0r)10r, it follows that

xr(w) -u= {wdr+Mu

!*dt+Mn'

so that

xr(w) =

and Theorem 2 is proved.
The inequality (2.8) has many geometric consequences, which are studied

extensively in [11]. The first result which we will use is the following. Fix i and
let Hr:{wQZi:yt(w):1}. Here ltl=nl2 for »L and nl2<.1<!vp for »2.
Then for ao sufficiently large the level line Hrn{w:u*its:u=uo) is the graph
of a function o:Er(u) for which qi@)*O äs u+@; [11, Theorem 7]. We will
use this result and Theorem I to show that f is locally asymptotically conformal
at (0, assuming that i- is a quasiconformal curve. To this end we need to know
that the functions wi(z) are uniformly continuous for large x. This will follow
from the next two lemmas.

Lemma 3. Suppose that f is a bounded quasiconformal curoe. Let Z be the
image of O:Int I under

w : log ((a-a'01@-aro)),

for ao and a( on f as aboue and suppose that 2 is bounded by the cuntes C1
and C2, eachwith -* dnd l* asendpoints. Thenthereexist ör>0 and K=l
such that for w1,w2,ws(C1 (or all on C) with w, between w1 and w, and

lrr-w"l<öo, we haae

lwr_wrl 
= r.

ly/r - wsl

Proof. Let (:(a-a)l@-a() and let C be the image of i- under this
mapping. Then C is also a quasiconformal curve so that there exists z=1 such

that for A,Cz,6€C with (, on the finite arcfir, we have ([l], Chapter 4),

Q.e) lh-$lllh-e,l=x.
Now let wt,wz,w, be on C, with wr:1sg (1/(y). Then

lrr-rrl lloe Grle)l 
= 

3,!!r,!=(r-),1 

=3,\!r-,!r) < 3x
114,1-luJ - 1t.cg16;511 = m = ar-6r; 

< r
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as long as

(2.10)

To guarantee (2.10)

(2.tt)

On account of the inequality

for lnt-wrl=ll

: lpwt-,{3 - 1l = , 
111,, 'tl , = 2lw1- wr[l' rl:l-llvr-lvgl -zt

ows that (2.L1) is true for

1
T
J

it suffices

T

T.

lG
la
we

-rl
note to have

I
=T and

that by (2.9)

l*-,1
2, it foll

l*r,- *ul
1

.

6x
ös.

Lemma 4. Let I be a bounded quasiconformal curoe and let .f *op D con-

formatly onto Q:lntl. For Cy(OD and ao:f(qo)(.|, suppose that f and 7-t
are Lipschitz continuous at (o and a, respectiaely. Let S and Z be the cor-

responding strip domains with w(z) mapptng S onto E as aboae. Then there exists

a constant M such that for any 8=0, there exists ä=0 such that for
zo:xs*iys€|} with xo=M and z"€S with lz"-zo1<ö, wehat;e lw(z)-w(2")l=6.

Proof. We begin by citing a slight modification of Lemma I in [13]: For ze(å§
and r,0=r-1, let k, be the semicircle {lr-rol:r}n,S. Then for every such

r=1 there exists a gr with y=qr<rllz such that the image of kn, is a crosscut

of .E with length

, -( 2rA,o,, lLlz
'q, - (log(llr))

where A,o,, is the area of T":w111r-zol=r,z€S)).
We must now show that A,0,, is uniformly bounded for all sufficiently large xo.

As in our Lemma 1, the local Lipschitz continuity of f and./-l implies the

existence of constants M,Mr, and Ms such that for x=M- I and z:x*iy€9,
we have

Mr= x-u(z) = Mr.

Thus for xo>M and xs*r-x>-xs-r we have

xs*t-Ms=- u(z) > xo-r-M,

and T, is contained in a vertical strip of width 2r+(Mr-Mr). Since the length

of ^En/ does not exceed 2n for any vertical line /, it follows that for xo>M,

A,o,, € 2n(2r* Mr- Mr)
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so that

, - (4n2(2r+Mr- M)luz
"n'-( log(l/r) )

Now, let Tr,:w({lz-zol=Qt, z(S}) so that T,-Ta,. Let w, and w, be the
endpointsof theimage of kq on C. (orCr) andlet C' bethearcof C1 (orC2)
with wr and w, as endpoints. Then, for lzo-z"l:r we have

lw(z)-w(z)l = diam f = diam 7n, < diam C'+1a,.

For äo and K as in Lemma 3, choose ä=0 so small that r=ä implies that
/n,=max (öo,el(2K*1)). Since lw1-wul=ln, we apply Lemma 3 to see that

lw (z) - w (z')l = 2Kl o,* lo, < e,

which proves Lemma 4. We may now prove

Theorem 3. Assume the conditions of Theorem I qnd that I is a quasiconformal
curve. Then I is asymptotically conformal at @o: As a, and co, approach ao

from opposite sides

lr, - arrl * lrcoo- rcorl

lcor- c»rl

Proof. We may assume that @o:0. We
we shall refer to as w(z), with inverse z(w).
j -1,2, we have

- 1.

work with wr(z): Sr t Er, which
Then for w(@ j):w i: uj*iar€C i,

I a su'-u'
+o(1)

Iim
@i* @o

larrl * lluorlW,T
where o(I)*0 as uL,

show that

'*l#l-r
l'-@l

l.l2+ a. We may

I 
1 + €ut- uz * i(ur- ur- ")l

assume that ut> uz so that it suffices to

I a su'-u' :L.
I 
1 + €ur- uz *i(ot- ur- ")l

To this end, given e>0 we first choose a>0 such that ur-ur>a implies that

I a su'-u'

lim
ll2+e

(2.12)

for any uL, az.

Next, choose b such
Finally we show that there
that lor-az- nl=b. By
/-x+iy€\& with x=M,

I 
1 + €ut- uz * i(u r- u r- n)l

that 0= u1- uz= o and lrr-1)z- Tcl=b yields (2.12).

exists a real c such that uz> c and u1- uz= a implies
Lemma 4 there exist M and ä = 0, such that for
and for z" (. St with lz - z" l= ö , we have

lw(r)-w(r')l = *
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Next choose us>M so large ttrat for u=uo, the level curves Ho12-5 and

H-r*+a are given by the graphs of functions Q*n-a(u) and E-,12a5(z), with

lq'*i.-u@)l and lE'_n12a5(a)l both less than or equal to Kr:631(blQa),|).
Suppose that w:u*ia(Cr and w':u*ia'(Hnlz-a. Then

lu - u'l(2.13)
b

<-

7

The inequality Q.l3) also holds 1s1 w:u{ia€C2 and w':u+ia'CH-*t216.
To establish Q.l3), suppose that z (w) : 7 * in f 2: z, z (w') : a' 1, i (n f2 - ö) : 2',

z":x*i(nl2-ä) and w":w(2"), Then

Ir:-o'l = lu-u"l*lu" -u'l = lw-w"l*K1lu"-ul = 2lw-w"l =- +.
Now, by Theorem 1 we may choose Us such that u>Uo implies that

(2.14)

We then
w2:u2*ia

us*iar€C1
us*iuie H

* lu, -(un*n)l + lt)4-uol+lun-u;l+lr|-url

which proves Theorem 3.

The following are consequences of Theorem 3 which follow from results in

[2]. The first is an immediate application of our result and Theorem 7 of ll2l.

Corollary 1. Assume the hypotheses of Theorem 3. Then

ti* f'=\!)G 
=,9! : t

i;b f@-f((,)

for nontangential approach. The corresponding result holds for f*.
Corollary2. Assume the hypotheses of Theorem 3. Then Ou{aro} and

O* u {aro} each contain an open asymptotically smooth arc containing cor.

As we shall see, i- need not itself be asymptotically smooth. The foregoing

means, however, that near @o, I is trapped between asymptotically smooth arcs.

:
,,f (e,(o -n)'dt = (+)' o'
uo

let c:max (uo, Uo) and suppose that utZttzZ c, wL:ut*irr€.Cr,
z(Cz and u1-Ltz=o. We then choose ur*iuieHnp-a and uz*tu'r€

By Q.L$ there exists us€(ur, ur*a) such that l0r(ur)-Tcl=b17. Taking

and ua*iunQC2 to be endpoints of o(us), with uz*fui€Hntz-a and

-ntz*öt we finallY have

= +*Kta+!*!*l*Kra++ E b,
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Proof. Recall the definition of an Z-strip. R is called an L-strip of inclina-
tion 0 if

R : {w : u*iu: a<u<*, E-(u)<.u=.<p*(u)}

where a> -- and e+,e- are continuous functions such that for Lt'=u,

,r^ E+(u')-Et(u) _ o.r**- U'- U

By a construction of Rodin and Warschawski [2, p. 135], the conclusion of
Theorem 3 implies that each of ), and ^X, contains an Z-strip of inclination 0.

In fact, if R1 is the Z-strip contained in ^E, with boundary curves given by the
graphs of g* and tpy, each of gr+ and Ey- may be taken to be smooth, with

and al+@) *o and ai-@) *o

Er+(u)-Er(u)-n as 4+@.

The image of the graphs of g1a and Er- in the o plane is an asymptotically
smooth arc in Ou{aro}, containing a;0. Similarly, the boundary of the Z-strip
contained in ), corresponds to the asymptotically smooth arcin Q* u {a;o} which
contains «ro.

If the functions / and f* are uniformly Lipschitz continuous on J-, then the
curve l- is locally asymptotically conformal at every point. One might then ask
whether ,f is then asymptotically conformal, or in light of Corollary 2, even asympto-
tically smooth. In the next section we shall see that .l- may fail to be asymptotically
conformal.

3. Construction of an example

We again use mappings between strip domains, and we shall use the same

notations as in Section 2. We shall construct a strip domain f, in the w:utiu
plane, bounded by Jordan arcs C1 and Cr, each with - - and * - as endpoints,
i.e. C, may be given parametrically by w : w i (t), - * <. 1 <. -1- -, with Re ll. (r ) * - -
as ,*-- and Reu;(l)**- as t***.As above .E2 will be the"comple-
mentary" domain bounded by C, and Ci:{w*2ni:w(Cr\. We consider the
conformal mappings wr(z) and w2Q) from ^S1 and ,S, onto .I, and Z, rc-
spectively with w;(- -): - -, w;(* -): * -, and wr(nil2):v;12€02i, for
j:1,2. Thc inverses of tlese functions will again be denoted by z/w). Similar
notation will denote inverses of defined functions. We define

in the appropriate domains, so that .I1 and ^E, correspond to the interior O and
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exterior O* of a closed Jordan curve f, while ,S. and ,S2 correspond to D and

D*. Then f(O:a(wr(z((») it a conformal mapping of D onto o, and f*(O:
a(wr(z(O)) maps D* conformally onto O*.

We shall construct the curves C, and C2 so that f is not an asymptotically

conformal curve, but so tlat f and f* are Lipschitz continuous. We begin by

constructing "building blocks".
Choose and fix a((0,n12). For each integer k>3, consider the following

circles in the (D:s+it plane:

Tt: Q - Tc)'+ (s - k)' : (+.o)',

Tz: P+(s- ur)'- +, Te: tz +(s - ur)' - +,
where uz:k-(a2*2an)tlz ur| us,:k+(a2+2an1llz, so that Tt is tangent to
T, and Tr. Let L: {s+iti s>-0, t:nl2}. We trace a curve i-o as follows. Starting

at nil2, move to the right, first on L to Tr, then on Tz to Tr, T, to Tr, Tu to
L and then on L to *-. Let f'o be the reflection of ,l-o across the s axis and

take Qo to be the domain bounded by f 1,vl|v {ti : ltl="lZ}.
Now let w(ro):-ie--+wo for wu:)l;anil2, andlet Do be the image of

Oo under this mapping. Let 2:{w:u*ia:lul=nl2). Delete from .I the half
disks {w: lw-wol=|, o<.nl)) and replace them with the Do. We christen the

resulting domain ), and we let Zr:{w:ulia; -nf2=o-3n12}-E1. The upper

boundary of .X. is then a curve Cr, with a sequence of double bumps going out
to f -, decreasing in size. Under the mapping q:(e**l)l@* -l), Z, is mapped

onto a domain O which is nearly a unit disk, with a sequence of double bumps

converging to ar: l.
In order to show that 0Q is not asymptotically conformal, it suffices to consider

the image of 02, under W(w):e-', since

le-'; - e - r'll

- h(w)

lr*u- 
w'" 

- ewk- *'ll

T+W
())

and h(W ) is conformal at
For each k(=-3), let

Consider the ratio

l-e-* I-W

W:0.
wi: -ie*k-i(nl2-o) *wx and w'i,,: -ie-kai(nl2-o) *wx.

(3.1) lw (w) -w (wk) I + lw (* o) -w ("01

le-*L - e-rxl+ le-,x - e-*'i"l _ le*u-*L - Ll+ le'"-*'l, - Il

Then w1,- w'o: s-k(sn (nt2 - w)* i cos (n 12 - a)\ : v a;p and w *- w'1. : - u * ia.
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Furthermore ?):ctt for c:lltan ("12-a). Thus the quantity in (3.1) is

le*"+icu- 1 | * le"licu- 1 
|

- (1 +c2)Lt2+o(1)
(e" - e-")

as k**, so that u*0. Thus we see that

lim suD la'-al+\a..-a"l > (1ag2\trz: _-1=...
1,,1äi*o -rif,l,,,t lt»'-a"l - \^ I !' sin (ttl2-a)'

which may be made as large as desired by taking a near nf2.
We must now show that f and f* are uniformly Lipschitz continuous on 0D.

We shall consider only f, as the proof for f* is essentially the same. The Lipschitz
continuity of / follows from the following result.

Lemma 5. With the notations aboae, suppose that there exist positiue constants

Mr,K, and K2 such that for almost euery z€ilSt with Rez:x=Mr we ha:,-e

(32) l#url= *,
and for u1(z):\s wr(z) we hatte

x-ut@) = Kz.

Then there exist positiae K, and ö such that for almost eaery ((0D with l(-ll-ö,

lffnl= *,
Proof. We have, for (++1, z:z(() and w:wr(z);

l#l:l#ll#llftl:lår.ll#llryl
:l+lv*tlffif :Wlex-sL(z)(t+o(1)) as x+6. eED.

We first show that (3.3) holds. Recall the Ahlfors upper inequality proved in

[5, Theorem 3]: For u=0 and x1(w):Rez1(w);

x,(u)-a(o)= "i#*M,

(3.3)

(3.4)

(3.5)

where the constant .&1, depends only on a in our case. From this we see that

for Ms-Mz*rr(O). Since O(t)-N off of the intervals

lzk - e-k + (az + uan)rl 2, 2k + e-k + (az * lan)L/ z1
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and
0 = n - 0{t) < e-k+(ez +zuft)rt 2

on the corresponding interval, the integral in (3.5) converges ?s u**, and (3.3)

follows.
We next note that the domain ^X, is such that the mapping z{w)-x{w)*iylw)

from .I, onto §1 is "semiconformal" [14]:
For any r,O<r<nf\ there exists z, such tlat

and
(3.6) _Igr,(r)-r: o.

w€§,

This will be used in showing that (3.2) holds for wr. The proof of (3.2) is

somewhat delicate, and we must consider properties of the Ok.

For fixed k>3, let 21,:21(w1) and define ((z):Log(ll@-zy))*(nl2\i for
z(Sr, so that llm((z)=nl2l. Let a(w):yot(ll(w-w))-(nl2)i for w(Dr,.
Then (o(a;):((21(w(ct))) maps Oo conformally onto a strip domain ,Se whichis
bounded by the lines

1

+1)-zp
of the

Lemma 6. Let (o(a):(o(a)+iqk@)) map Q1, onto 51, as aboae. Then there

exists M1 such that for all k>3,
(3.7) (oQ\ = a,.

Furthermore, there exists M2 depending only on a such that for ruo-s=Mz

(3.8) l,lo(r)l = @12+a)12 - rl2, for all k.

Proof. Consider 6i:((zr(w1,-i))?t*. By (3.6), lm(21(wp-i))-nl2-l as

k--, so that lzr(wo-i)-21,1>112 for fr sufficiently large. From this it follows

that (o(O)=Re(i=log2 for large k and (3.7) then.follows.

Next, let h{a):4y(a)-r. Then /zo is harmonic in O1 and for a:itQDQx,

Itl=n12, we have lhe(a)l=n. on the rest of \Qo,lho(a)l=q. Thus, for any e>Q
the two constånts theorem and a standard comparison argument show that there

exists K>0 for which Rear=K implies that lho@)l<a+e. We let al:r and

6=@12-u)12 to obtain (3.8).

,S1 r s,: {u*iu: u> u,,-}+t'-<I) < +_ rl

1

rDzt(w *{r: C+i!: (=rosl
l)

es. Observe that for

t)

lin

zt(wx

points

I

d

-zk
and

[- Tt

and by a curve Tx connecting the left en

Kyx, llm (l=7t12.
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Next we state a result which will be applied to the mapping wr(z) and to the
ro(0. We state it for wr. The proof is essentially that of Lemma 3 in [6].

' Lemma 7. Let wr(z) map S1 conformally onto Z, as aboae. Let w:wt(z)(
0\ and let r>0 and M>O be such that:

(3.9) There exist circles T and T' with radius r and tangent to 0\ at w, with

TcE, and T'c1-2r7.
(3.L0) The center of T is wo:l41(zo), and llmzol=M<n12.

Then there exists K>0, depending only on r and M, such that

l#'"1=*
Lemmas 6 and 7 will be used to prove

Lemma 8. There exist positiae constants ö and K', depending only on a,
such that for w€Ct with O<lw-wrl<ö for any k>3, we haae, for z:21(w)

l#,,1- *'
Proof. We shall establish that there exist constants M, K, and K, such that

ibr (€å§r with (:Re (=M, we have

(3.11) l*rnl= *,, and for sr(g: Rearl(e
I at '.1

we have

Q.lz> (-sy(O < Kr.

We begin by applying Ahlfors' upper inequality to the mapping (p(co) to see

that there exists Mr, depending only on a such that

6o(r)-(o(o) = i +-dt*M,.{ ulr)
By (3.7) and the construction of Oo,

(o(ar)-s = M,+Mz+ iWdr = K,

* *i,t#'f]Tl}';,rr*e 
that ,:,rrriq with Re a=nr2. rhen there exist

circles T and 7 which are tangent to lo at o and whose interiors are respectively
interior and exterior to Qy, we take the center of 7 to be at so on the s axis,
and the radius of both circles tobe r>(nl2)-a. By Lemma 6 there exists rly'>O
such that for so=M, Vt*(sr)l=((nl2)+a)12=ft12. Then apply the version of Lemma 7
for the mappings rrro($ between half strips to establish (3.11), where K, depends
only on r and M, which in turn depend only on c. Lemma 8 is then proved
by the argument in the proof of Lemma 5.
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we may now show that(3.2) holds. Let ä= 1 be as in Lemma 8 and let N(=3)

be such that fo r k > N,exp ( - k + (a 2 * 2an7a t z)' 
ö | 2' Let a : {w (c r : o < lw - w ol < ö'

t<=-N) and let B:{w(å^Sr: Re w>2N, w€Aw {wp}}. Then any point of 'B is

on one of the lines o:nl2 ot 't):-nf2, and for any such point, the condition

(3.9) holds with r:ö12. Because of (3.6), there exists M1>2N such that (3.10)

holds for w(B with Fiew>Mr. Thus (3.2) holds for almost every ur€å,s1 for

which Re w>-Mt and with Kr:max(K,K')'Thus Lemma 5 may be applied to

w{z) andit finally follows that f is Lipschitz continuous on 0D'

References

[1] Anlrors, L. V.: Lectures on quasiconformal mappings. - D. van Nostrand company' Inc.,

Princeton, New Jersey-Toronto-New York-London, 1966'

[2] Becrrn, J., and Cn. PomvnnnNrn: Uber die quasiconforme Fortsetzung schlichter Funk-

tionen. - Math. Z. 16l, 1978,69-80.

[3] Brcrrn, J., and Cn. Pom,InnnNrs: Hölder continuity of conformal mappings and non-quasi-

conformal Jordan curves. - Comment. Math' Helv', 57, 1982,221--225'

[4] Ers, B. G.: Remarks on Ahlfors'distortiontheorem. - J. Analyse Math. 19, 1967,97-134.

[sj JnNxrNs, J. A., and K. orrnwl: on results of Ahlfors and Hayman. - Illinois J. Math. 15'

1971,664--671.

[6] Lnsr,sv, F. D.: on interior and exterior conformal mappings of the disk. - J. London Math.

Soc. (2) 20, 1979, 67-78.
[7] LEsrnv, F. D.: Hölder continuity of conformal mappings at the boundary via the strip method'

- Indiana Univ. Math. J. 31, 1982, 341-354.

[8] Lrsrnv, F. D., and S. E. W.lnscnlwsrr: Boundary behavior of the Riemann mapping func-

tion of asymptotically conformal curves. - Math' Z' 179, 1'982,299-323'

[9] NÄrrr, R., and B. Pnr,rl: Quasiconformal circles and Lipschitz classes. - Comment. Math'

Hetv. 55, 1980, 485--498.

[10] Porr,narnrNrr, cn.: on univalent functions, Bloch functions and vMoA. - Math. Ann. 236,

1978,199-108.
RoorN, B., and S. E. Wanscnnwsrr: Extremal length and univalent functions III. Consequences

of the Ahlfors distortion property. - Bull. Inst. Math. Acad. Sinica 6, 1978, 583-597.

RoorN, B., and s. E. &nscnlwsrr: on the derivative of tho Riemann mapping function

near a boundary point and the Visser-Ostrowski problem. - Math' Ann. 248, 1980'

125-137.
[13] Wanscnnwsrr, S. E.: On the degreo of variation in conformal mapping of variable regions. -

Trans. Amer. Math' Soc. 69, 1950,335-356.

[l4] Wa,rscruwsrr, s. E.: on the boundary behavior of conformal maps. - Nagoya Math. J. 30,

1967, 83-101.

San Diego State UniversitY
Department of Mathematics
San Diego, California 92182

USA

Received 25 January 1983

t11l

u21


