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SHMPI,IFIET} PROOFS OF SOME BASIC THEOREMS
FOR QUASIREGULAR MAPPINGS

MARTTI I. PESONEI\

1. Introduction

In what follows -/' will always denote a non-constant r-dimensional quasi-

regular mapping of a domain Gc R' into R'. We recall that the branch set -81 is

the set of those points in G at which / is not locally homeomorphic, and that

N(y,f,l) is the number of all points in the set /-l(y)nl. our notation and

terminology is adopted from [1].
The purpose of this paper is to present new simplified proofs for the following

well-known theorems in the theory of quasiregular mappings'

1.1. Theorem. The condition (N) is satisfied, i'e', iJ' AcG and m(A):O,

then m(fA):O. Moreoaer m(fB):O.

I .2. T he o re m. The transformation -forntula

E) dm(y)

holds wheneaer h: R"*10, *f and EcG are measurable.

1.3. Theorem. For a.e. xeG,Jt(x)+O. Consequently m(Bt):O.

Re§etnjak's original proof for the condition (N) does not make use of the

fact that / is discrete and open. In the present proof these properties of f play

an essential role. It should be noted that 1.1 is not needed in proving the discreteness

and openness of / (see [4]).
Theorem 1.2 is a direct consequence of the proof of Theorem 1.1. Earlier the

transformation formula was obtained by the use of a general theorem 13, p' 3641

the proof of which requires a heavy machinery of algebraic topology'

The original proof [1, 8.2] of Theorem 1 .3 is based on the K;-capacity inequality.

Our proof instead is, based on the use of the Ko-path family inequality and Poleckii's

lemma.
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2. The proofs of Theorems 1.1 and L.2

Because J' is continuous
that if f is injectiae, then

(2.r)

and a.e. differentiable, it is a basic fact of real analysis

m(J'E) =

for every Borel set E in G. In fact, the equality holds in (2.1). This is a consequencc
of the following result, which is obtained by a Cr-approximation.

2.2. Proposition. ForeueryBorelset E in G

m(fE)

Proof. we first show that n-intervals in G can be approximated by ri-intervals
whose boundaries / maps into null-sets. To do this, fix a closed r-interval e in
G and let e be positive. Let Q' be a closed n-interval in G so that ecint e,
and m(Q'\Q)<e. lf m(f\Q)>O for every n-interval eo,eceoce,, then
there is a positive number p and a sequence of n-intervals 0,, ece,ce,, with
disjoint boundaries such that m(f\Q)>- p for every i. But this is impossible. since

z
i = N(f,Q)m(fQ) { -,

where
N(f, Q): sup {N(y, f, Q)lt$'\.

Hence, m(f\Qi:g for some n-interval Qo=Q with m (Qo\Q)=e.
Let e, be positive. It follows from the definition of the Lebesgue measure

and from the approximation result mentioned above, that since JJ is locally
integrable (/'is ACL"), there exists a sequence of closed r-intervals e,cG with
m(f0Q,):9, such that EcUrQ, and

on the other hand, m(JE)= Zt"(fQt), so that it remains to show that the propo-
sition holds for any closed n-interval Q in G satisfying m(f\e1:g. By[5;27.7]
there are Cl-mappings fr,fz,...,which converge c-uniformly to / and whose
Jäcobians Jr, converge to J, in I[". Set y:pq and Xr:y.,n. In order to
show that xi*x a.e.,we first pick a point y in fQ\f\e and n<jtethatthe local
topological degree p satisfies p(y,fi, int e): p(y, f, int e)>0 for 7 >.70, since
the convergence is c-uniform and / is sense-preserving. Hence y(fie if j= jo,
and 4(y)*X(y). Outside fQ the convergence fir+y is obvious, so that yr*y

["dm

= !Jydm.

{ Z xraQ,clm
Rn t.

4 {rvdm= !rrdm*e,.
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a.e. in R'. To complete the proof we apply Fatou's lemma, and get

ru(fQ) : 
of 

y dm = j*oo pir i** J** Q a

where the latter inequality comes from elementary calculus'

Theorem 1.1 is an immediate consequence of 2.2; for the last statement, recall

that Jt:O a.e.in 81. Since / satisfies thecondition (N), itis obvicus that(2'l)
and2.2 hold in fact for any measurable set E in G.

To prove the transformation formula, we fir:t consider the case that h:
Zi=ra1Xr,(=-0) is a simple Borel function. Since m(fBt):g and Jt:g a.s.

in' 81, *ö rruy assume that E does not meet By. Let E1,82,... be a measurable

partiticn of the set -8, such that each Eo is contained in a domain on which / is

injective. Then

a jw(fEonB 1)

Finally, 1f tt>O is measurable, then there is an increasing sequence (å) of simple

Borel functions, which converge to h a.e.. It follows from (2.1) that also hio f *l1s 7
a.e. outside the sct {x: J y@):O}, and hence Theorem 1.2 follows by the monotonic

convergence theorem.

3. Proof of Theorem 1.3

Frorn 1.2 tt foltows easily (see [1; 3.2]) that

M(D 4 KoU)N("f, A)MUr)

:Zoi t Jydm: Zj ,k Ekn i- rB i 
j,k

oixsi Z xrruclru : 
of 

hN(' , f, E) dm.

I r^o-f) Jy dnt
E

rrz
RNJ

(3. 1)

if ,l- is a path family in a Borel set AcG, and N(/ A)<*' This path family

inequality and Poleckii's lemma 3.2 will be needed in the proof of 1'3'

3.2. Lem mal21. If f0 is the /amily oJ' oll closed paths in G on

not absolutely precontinuous, then M Ufo):0.
Recall that "f is called absolutely precontinuous on y if 1'"y is

and if the reparametrization 1l* of y with

.f oy* : (f 
"y)o

is absolutely continuous. Here a0 denotes the paramettization of a by means

of path length.

Proofofl.3,SupposethatJ,:0inasetofpositivemeasure.Thissetthen
contains a Borel set B of positive measure suchthat BcQ, whete Q is a closed

n-interval in G, and that J' is differentiable and f'(x):O for every xCB. Let

which J is

rectifiable
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fu be the family of all closed intervals y in Q parallel to er:(I,0,...,0) with
IrXnds=O. Fubini's theorem implies that M(f )>0. By 3l

0 < M(f )lKs(f)N(tQ) = MU|B),

so that according to Poleckii's lemma there is a path y€l-B such that y* is ab-
solutely continuous. Thus

l(f o y\

o= [xuas: I (xroy*)1y*,ldm,.: 
*Irly*,ld*r,

and consequently mr(y*-18)=0. On the other hand, for mr-a.e. t<?*-rg,

1 : l(fol)o'(t)l: l(f oy*)'(t)l: lf'(y* (r))7+'(r)l : g.

which is clearly absurd. Therefore Jrlj a.e. Since "/r:g a.e. in By, it follows
that m(Bj):o.

3.3. Remark. In [2] Poleckii uses 3.2 to prove his celebrated Kr-path family
inequality. In his proof he needs the result 1.3, whose original proof requires tre
use of the Kr-capacity inequality. This latter inequality is quite hard to prove, and,
on the other hand, is a special case of the Kr-path family inequality. It is therefore
important to have a proof for 1.3 which does not make use of the Kr-capacity
inequality.

S. Rickman has pointed out that it would also be possible to modify the proof
of the Kspath family inequality in such way that 1.3 is not needed in the proof.
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