DIFFEOMORPHIC APPROXIMATION OF QUASICONFORMAL AND QUASISYMMETRIC HOMEOMORPHISMS

MAIRE KIIKKA

Introduction

Piecewise linear approximations for quasiconformal, bilipschitz and quasisymmetric embeddings have been constructed by Carleson [C], Väisälä [V], Kiikka [K] and by Luukkainen and Tukia [LT]. We apply a result of Munkres [M, Theorem 4.1] to smooth these approximations into C^{∞} -embeddings in the homeomorphic case. By [LV, V. 4.3] every finite K-quasiconformal mapping in dimension 2 is locally the limit of a sequence of regular K-quasiconformal C^{∞} -mappings.

I wish to thank Pekka Tukia for suggesting this problem and Jouni Luukkainen for a careful reading of the manuscript and for making several corrections.

1. Preliminaries

We will use the same notation and definitions as in [K] and [LT]. If Q is a closed *n*-cube of \mathbb{R}^n with side length $2\lambda_Q$ and center z_Q , define $\alpha_Q(x)=z_Q+\lambda_Q x$. In open sets of \mathbb{R}^n we have canonical decompositions \mathscr{K} into cubes as in [K]. Let I^n denote the closed cube $[-1, 1]^n$ in \mathbb{R}^n and J^n the open cube $]-1, 1[^n$. If $Q \in \mathscr{K}$, then $Q = \alpha_Q I^n$. For $Q \in \mathscr{K}$ define

$$P_{O} = P_{O}(\mathscr{K}) = \{ \alpha_{O}^{-1}Q' | Q' \in \mathscr{K}, \ Q' \cap Q \neq \emptyset, \ Q' \neq Q \}.$$

Denote by \mathscr{K}^n the set of all canonical decompositions of open sets of \mathbb{R}^n . Set

$$\mathscr{P}^n = \{ P_Q(\mathscr{K}) | Q \in \mathscr{K} \in \mathscr{K}^n \}.$$

Then \mathcal{P}^n is finite.

Let T be a triangulation of an *n*-dimensional PL manifold X in \mathbb{R}^n . If a k-dimensional open simplex σ of T has vertices a_0, \ldots, a_k , we write $\sigma = (a_0, \ldots, a_k)$. If $0 \le k \le n-1$, let $\{\sigma_1, \ldots, \sigma_p\}$ be the set of those *n*-simplices of T which have σ as a face. Let

$$\sigma_i = (a_0, ..., a_k, a_{k+1}^i, ..., a_n^i), \quad i \in \{1, ..., p\}.$$

doi:10.5186/aasfm.1983.0814

MAIRE KIIKKA

If $x \in \overline{\sigma}_i$, denote by $\lambda_j^i(x), j \in \{0, ..., n\}$, the barycentric coordinates of x in $\overline{\sigma}_i$. If $s \in [0, \infty[$, set

$$V_s(\sigma) = \bigcup_{i=1}^p \{x \in \bar{\sigma}_i | \lambda_l^i(x) \ge s \lambda_j^i(x) \text{ for all } l \le k, j > k \}.$$

Then $V_s(\sigma)$ is a closed neighborhood of σ in X.

For $\sigma \in T$ set St $(\sigma, T) = \{\tau \in T \mid \sigma \text{ is a face of } \tau\}.$

Denote by T^k the set of k-simplices of T. If $A \subset X$, set $T \mid A = \{\sigma \in T \mid \sigma \subset A\}$ and $T^k \mid A = \{\sigma \in T^k \mid \sigma \subset A\}$.

2. Results

The following theorem is analogous to [K, Theorem 2.1].

Theorem 1. Let n=2 or n=3 and let $K \ge 1$. Then there exists $\widetilde{K} \ge 1$ with the following property: Let G and G' be domains in \mathbb{R}^n , let $f: G \to G'$ be a K-quasiconformal homeomorphism and let $\varepsilon: G \to]0, \infty[$ be continuous. Then there exists a \widetilde{K} -quasiconformal \mathbb{C}^{∞} -diffeomorphism $\widetilde{f}: G \to G'$ such that $|\widetilde{f}(x) - f(x)| < \varepsilon(x)$ for every $x \in G$.

Theorem 2 is analogous to [K, Theorem 3.1] and [LT, Corollary 3.3], and Theorems 3 and 4 to [LT, Corollary 2.21] and [LT, Theorem 2.16], respectively.

Theorem 2. Let n=2 or n=3 and let $L \ge 1$. Then there exists $\tilde{L} \ge 1$ with the following property: Let G and G' be open sets in \mathbb{R}^n , let $f: G \to G'$ be an L-bilipschitz homeomorphism and let $\varepsilon: G \to]0, \infty[$ be continuous. Then there exists an \tilde{L} -bilipschitz C^{∞} -diffeomorphism $\tilde{f}: G \to G'$ such that $|\tilde{f}(x) - f(x)| < \varepsilon(x)$ for every $x \in G$.

Theorem 3. Let n=2 or n=3 and let $\eta: R_+^1 \to R_+^1$ be a homeomorphism. Then there exists a homeomorphism $\tilde{\eta}: R_+^1 \to R_+^1$ with the following property: Let G and G' be open sets in \mathbb{R}^n , let $f: G \to G'$ be an η -quasisymmetric homeomorphism and let $\varepsilon: G \to]0, \infty[$ be continuous. Then there exists an $\tilde{\eta}$ -quasisymmetric C^{∞} -diffeomorphism $\tilde{f}: G \to G'$ such that $|\tilde{f}(x) - f(x)| < \varepsilon(x)$ for every $x \in G$.

Let ρ_Q and β_Q be as in [K] and [LT].

Theorem 4. Let *n* and η be as in Theorem 3 and let $\varepsilon > 0$. Then there exist a homeomorphism $\tilde{\eta}: \mathbb{R}^1_+ \to \mathbb{R}^1_+$ and a finite set \tilde{D} of \mathbb{C}^{∞} -embeddings $\tilde{g}: 2I^n \to \mathbb{R}^n$ with the following property: Let G be open in \mathbb{R}^n , $f: G \to \mathbb{R}^n$ an η -quasisymmetric embedding and let \mathscr{K} be a canonical decomposition of G. Then there exists an
$$\begin{split} \tilde{\eta}-quasisymmetric \ C^{\infty}-embedding \ \tilde{f}\colon G\to R^n \ such \ that \\ (1) & d\left(\tilde{f}|Q,f|Q\right) \leq \varepsilon \varrho_Q \\ and \\ (2) & \beta_Q \tilde{f} \alpha_Q |2I^n \in \tilde{D} \\ for \ every \ Q \in \mathcal{K}. \end{split}$$

3. Proofs

Proof of Theorem 1. Let n=2 or n=3 and $K \ge 1$. Let $\delta_M = \delta_{M(n)} > 0$ be the constant of [K, p. 12]. The proof of [K, Lemma 2.2] shows that there exists a finite set D=D(K) of PL embeddings of $2I^n$ into R^n with the following property: Let G be a domain in R^n , $f: G \to R^n$ a K-QC embedding and $\mathscr{H} \in \mathscr{H}^n$ with $\cup \mathscr{H} = G$. Then there exists a PL embedding $f^*: G \to R^n$ such that $\beta_Q f^* \alpha_Q |2I^n \in D$ and $|f^*(x) - f(x)| < \varrho_Q$ if $x \in Q \in \mathscr{H}$. In fact, to see this, consider the maps γ_Q in [K, p. 12].

We choose a triangulation τ of I^n such that $g|\sigma$ is affine and $d(g\sigma) < \delta_M$ if $g \in D$ and $\sigma \in \tau$ and such that $g|\alpha_R \sigma$ is affine if $g \in D$, $R \in P \in \mathcal{P}^n$, $\sigma \in \tau$ and $\alpha_R \sigma \subset 2I^n$. We may assume that $\tau|Q$ is a triangulation of Q and that $\tau|\partial Q$ is a full subcomplex (see [RS, p. 31]) of $\tau|Q$ for each of the 4^n subcubes $Q \in \{z + [0, 1/2]^n | z \in (1/2)Z^n\}$ of I^n . Furthermore, if n=3, we may assume for all 2-dimensional faces S of these cubes Q that $\tau|\partial S$ is a full subcomplex of $\tau|S$.

For each $P \in \mathscr{P}^n$ we next define a subdivision τ_P of τ such that, if G is open in \mathbb{R}^n and if \mathscr{K} is a canonical decomposition of G, then

(3)
$$T = \{\alpha_Q \sigma | Q \in \mathscr{K}, \sigma \in \tau_{P_Q}\}$$

is a triangulation of G.

We first suppose that $P \in \mathcal{P}^3$ and set

$$I_P = \cup \{ \partial I^3 \cap \partial R_1 \cap \partial R_2 | R_1, R_2 \in P \text{ and } R_1 \neq R_2 \}.$$

Let γ_1 be the triangulation of ∂I^3 satisfying

$$\gamma_1^0 = (\tau^0 \cap I_p) \cup \bigl(\bigcup_{R \in P} (\alpha_R \tau^0 \cap \partial I^3)\bigr)$$

and such that $\gamma_1 | \partial R \cap \partial I^3$ is a subdivision of $\alpha_R \tau | \partial R \cap \partial I^3$ for every $R \in P$. Let γ_2 be the subdivision of $\tau | \partial I^3$ having

$$\gamma_2^0 = (\tau^0 \cap \partial I^3) \cup \bigl(\bigcup_{R \in P} (\alpha_R \tau^0 \cap I_P)\bigr).$$

Then $\gamma_1|I_P = \gamma_2|I_P$. Set $\gamma_3 = \{\sigma_1 \cap \sigma_2 \mid \sigma_1 \in \gamma_1, \sigma_2 \in \gamma_2\}$. Then γ_3 is a cell complex on ∂I^3 . By replacing every (open) 2-cell $\sigma \in \gamma_3$ which is not a simplex by the simplices obtained by joining the barycenter of σ with the cells of γ_3 in $\partial \sigma$, we get a triangulation γ_4 of ∂I^3 . Then γ_4 is a subdivision of $\tau |\partial I^3$.

Let τ_P be the subdivision of τ having $\tau_P^0 = \tau^0 \cup \gamma_4^0$ and $\tau_P |\partial I^3 = \gamma_4$.

To see that $\{\tau_P \mid P \in \mathscr{P}^3\}$ is the desired family, suppose that above $P = P_Q$,

where $Q \in \mathscr{K} \in \mathscr{K}^n$, and denote $\gamma_i(Q) = \gamma_i$ if $1 \le i \le 4$. Then, for each $Q' \in \mathscr{K}$ with $Q' \cap Q \ne \emptyset, Q' \ne Q$, we have $\alpha_Q \gamma_1(Q) | Q \cap Q' = \alpha_{Q'} \gamma_2(Q') | Q \cap Q'$, whence $\alpha_Q \gamma_i(Q) | Q \cap Q' = \alpha_{Q'} \gamma_i(Q') | Q \cap Q'$ for i=3 and thus also for i=4. Therefore $\alpha_Q \tau_{P_Q} | Q \cap Q' = \alpha_{Q'} \tau_{P_{Q'}} | Q \cap Q'$.

If $P \in \mathscr{P}^2$, the construction of τ_P is similar but easier.

For every $\mathscr{K} \in \mathscr{K}^n$ and $Q \in \mathscr{K}$ we define a triangulation $T_{P_Q} = T(\mathscr{K}, Q)$ of $2I^n$ by setting

$$T_{P_Q} = \alpha_Q^{-1} T |2I^n$$

where T is defined by (3).

One can show that T_{P_Q} depends only on the set $P_Q \in \mathscr{P}^n$. Instead of this fact we could have used below the easier fact that the set $\{T(\mathscr{K}, Q) \mid Q \in \mathscr{K} \in \mathscr{K}^n\}$ is finite.

We are going to smooth the PL maps $g \in D$ in some neighborhoods of I^n . The groups Γ^i of Milnor and Thom, cf. [M, Chapter 1], are zero for $i \in \{1, 2, 3\}$; see [M, Proof of Theorem 6.3].

For $P \in \mathscr{P}^n$ and $0 \le i \le n-1$ set

$$U_P^i = \cup \{V_1(\sigma): \sigma \in T_P^i | 2J^n\}.$$

Then U_P^i is a closed neighborhood of I^n in $2I^n$.

We first suppose that n=2. Let $g\in D$ and $P\in \mathscr{P}^2$. Then $g|\bar{\sigma}$ is affine if $\sigma\in T_P$. Let $\sigma\in T_P^1|2J^2$. We apply [M, Theorem 4.1] with $\mathscr{V}=\operatorname{int} V_1(\sigma), \mathscr{U}=\mathscr{V}\setminus \sigma$, $\mathscr{W}=\operatorname{int} V_2(\sigma)$ to obtain a homeomorphism

such that

$$\varphi = g$$
 in $\sigma \cup (V_1(\sigma) \setminus V_2(\sigma)),$
 $d(\varphi, g | V_1(\sigma)) < d(g\sigma)/2,$

 $\varphi = \varphi_{a,\sigma} \colon V_1(\sigma) \to gV_1(\sigma)$

and such that $\varphi \mid \text{int } V_1(\sigma)$ is a C^1 -embedding and φ is smooth on $\text{int } V_1(\sigma)$ near the vertices of σ ; see [M, Definition 2.2]. This is possible because $g \mid V_1(\sigma)$ is smooth on $\text{int } V_1(\sigma) \setminus \sigma$ near σ and near the vertices of σ (cf. [M, Proof of Theorem 2.8]), and because $\gamma(g \mid V_1(\sigma)) \in \Gamma^1 = 0$ (cf. [M, Definition 3.4]).

Define a homeomorphism

$$\tilde{g}_P^1 = \cup \{ \varphi_{g,\sigma} \colon \sigma \in T_P^1 | 2J^2 \} \colon U_P^1 \to g U_P^1$$

Let $v \in T_P^0 | 2J^2$. Because $\tilde{g}_P^1 | V_1(v)$ is smooth on int $V_1(v) \setminus v$ near v and $\gamma(\tilde{g}_P^1 | V_1(v)) \in \Gamma^2 = 0$, we may apply [M, Theorem 4.1] to get a homeomorphism

 $\varphi = \varphi_{q,v} \colon V_1(v) \to \tilde{g}_P^1 V_1(v)$

such that

$$\varphi = \tilde{g}_P^1$$
 in $v \cup (V_1(v) \setminus V_2(v))$,

$$d(\varphi, \tilde{g}_P^1|V_1(v)) < \min \{d(g\sigma^2)|v \in \bar{\sigma}^2 \text{ and } \sigma^2 \in T_P^2\}/2,$$

and $\varphi \mid \text{int } V_1(v)$ is a C¹-embedding. We get a homeomorphism

$$\tilde{g}_P^0 = \bigcup \{ \varphi_{q,v} \colon v \in T_P^0 | 2J^2 \} \colon U_P^0 \to \tilde{g}_P^1 U_P^0.$$

Then $\tilde{g}_P^0 \mid \text{int } U_P^0$ is a C^1 -embedding. One may replace above C^1 by C^{∞} ; see [M, Chapter 9].

We construct the maps \tilde{g}_P^1 and \tilde{g}_P^0 for every $g \in D$ and $P \in \mathscr{P}^2$. It is possible to do this in such a way that the following condition is satisfied:

Let $i \in \{0, 1\}, j \in \{1, 2\}, P_j \in \mathscr{P}^2, \sigma_j \in T_{P_j}^i \mid 2J^2$ and let $g, h \in D$. If ψ_1 and ψ_2 are affine bijections of R^2, ψ_1 St $(\sigma_2, T_{P_2}) =$ St (σ_1, T_{P_1}) and $h = \psi_2 g \psi_1$ in $V_1(\sigma_2)$, we have

(4)
$$\tilde{h}_{P_2}^i = \psi_2 \, \tilde{g}_{P_1}^i \psi_1$$

in $V_1(\sigma_2)$. Here $V_1(\sigma_2)$ is taken in T_{P_2} .

Let \tilde{g}_P : int $U_P^0 \to R^2$ be the C^{∞} -embedding defined by \tilde{g}_P^0 . If $x \in I^2$, we have

$$|\tilde{g}_P(x) - g(x)| \leq |\tilde{g}_P(x) - \tilde{g}_P^1(x)| + |\tilde{g}_P^1(x) - g(x)| < \delta_M$$

because $d(g\sigma^2) < \delta_M$ for all $\sigma^2 \in T_P^2 \mid I^2$.

If n=3, we may proceed in the same way, because $\Gamma^i=0$ for $i \in \{1, 2, 3\}$. Let n=2 or 3. Let G and G' be domains in \mathbb{R}^n , $f: G \to G'$ a K-QC homeomorphism, $\varepsilon: G \to]0, \infty[$ continuous and \mathscr{K} a canonical $(f, \varepsilon/2)$ -decomposition of G. Let $f^*: G \to \mathbb{R}^n$ be the PL embedding given in the first paragraph of the proof. We define $\tilde{f}: G \to \mathbb{R}^n$ setting

(5)
$$\tilde{f}|Q = \beta_{\bar{Q}}^{-1}\tilde{g}_{P_Q}\alpha_{\bar{Q}}^{-1}|Q$$

for $Q \in \mathscr{K}$ whenever $\beta_Q f^* \alpha_Q \mid 2I^n = g \ (\in D)$.

We show that \tilde{f} is well-defined and that

(6)
$$\tilde{f} = \beta_Q^{-1} \tilde{g}_{P_Q} \alpha_Q^{-1} \quad \text{in} \quad U_Q = \alpha_Q (\text{int } U_{P_Q}^0)$$

for each $Q \in \mathscr{K}$. Let $R \in \mathscr{K}$, $R \neq Q$, $R \cap Q \neq \emptyset$ and $x \in R \cap U_Q$. There is $v \in T^0 | R \cap \alpha_Q(2J^n)$ such that $x \in V_1(v)$, where $V_1(v)$ is taken in the triangulation T of G. Let $v_Q = \alpha_Q^{-1}v$, $v_R = \alpha_R^{-1}v$, $g = \beta_Q f^* \alpha_Q | 2I^n$ and $h = \beta_R f^* \alpha_R | 2I^n$. Then St $(v_Q, T_{P_Q}) = \alpha_Q^{-1} \alpha_R$ St (v_R, T_{P_R}) and $h = \beta_R \beta_Q^{-1} g \alpha_Q^{-1} \alpha_R$ in $V_1(v_R)$. Because $\psi_1 = \alpha_Q^{-1} \alpha_R$ and $\psi_2 = \beta_R \beta_Q^{-1}$ are affine bijections of R^n , it follows from (4) that

$$\beta_{R}^{-1}\tilde{h}_{P_{R}}\alpha_{R}^{-1}(x) = \beta_{R}^{-1}(\beta_{R}\beta_{Q}^{-1}\tilde{g}_{P_{Q}}\alpha_{Q}^{-1}\alpha_{R})\alpha_{R}^{-1}(x) = \beta_{Q}^{-1}\tilde{g}_{P_{Q}}\alpha_{Q}^{-1}(x).$$

Hence \tilde{f} is well-defined and (6) holds.

By the construction, \tilde{f} is a C^{∞} -embedding. The maps $\tilde{g}_P | J^n$ are quasiconformal. Set

$$\widetilde{K} = \max \{ K(\widetilde{g}_P | J^n) \mid g \in D, P \in \mathscr{P}^n \}.$$

Then \tilde{f} is a \tilde{K} -QC embedding.

For $Q \in \mathscr{K}$ we have

(7)
$$d(\tilde{f}|Q,f|Q) \leq d(\tilde{f}|Q,f^*|Q) + d(f^*|Q,f|Q) \leq \delta_M s_Q + \varrho_Q.$$

Hence $|\tilde{f}(x) - f(x)| \leq 2\varrho_0 < \varepsilon(x)$ if $x \in Q \in \mathscr{K}$. We may assume that

(8)
$$\varepsilon(x) \leq \min \left\{ d(f(x), \partial G'), (1+|f(x)|)^{-1} \right\}$$

for every $x \in G$. Therefore $\tilde{f}G = G'$; see [K, p. 8]. Theorem 1 is proved. \Box

Proof of Theorem 4. Let D be the set of PL embeddings given by [LT, Theorem 2.16] and let $\delta_M = \delta_{M(n)} > 0$ be the constant of [LT, 2.13], both with q = n and with ε replaced by $\varepsilon/2$. Let $D_1 = \{g \in D \mid g : 2I^n \to R^n\}$. For each $g \in D_1$ and $P \in \mathscr{P}^n$ we obtain a C^{∞} -embedding \tilde{g}_P : int $U_P^0 \to R^n$ with $d(\tilde{g}_P \mid I^n, g \mid I^n) < \delta_M$ in the same way as in proving Theorem 1.

Let G be open in \mathbb{R}^n , $f: G \to \mathbb{R}^n$ an η -quasisymmetric embedding and $\mathscr{H} \in \mathscr{H}^n$ with $\bigcup \mathscr{H} = G$. Define $\tilde{f} \mid Q$ by (5) for each $Q \in \mathscr{H}$. Then $\tilde{f}: G \to \mathbb{R}^n$ is a \mathbb{C}^{∞} embedding and (1) holds, because $d(\tilde{f} \mid Q, f \mid Q) \leq \delta_M s_Q + \varepsilon \varrho_Q / 2 \leq \varepsilon \varrho_Q$ for every $Q \in \mathscr{H}$; see (7).

One can find \tilde{D} , prove (2), and then, since every $\tilde{g} \in \tilde{D}$ is quasisymmetric, construct $\tilde{\eta}$ with \tilde{f} being $\tilde{\eta}$ -quasisymmetric as D and η^* were obtained in the proof of [LT, Theorem 2.16]. \Box

Proof of Theorem 3. Let \mathscr{K} be a canonical (f, ε) -decomposition of G. Apply Theorem 4 with $\varepsilon = 1$. It follows from (1) that $|\tilde{f}(x) - f(x)| \leq \varepsilon_Q < \varepsilon(x)$ if $x \in Q \in \mathscr{K}$. We may assume (8). Hence $\tilde{f}G = G'$. \Box

Proof of Theorem 2. Theorem 2 can be proved similarly to Theorem 1; cf. the proof of [K, Theorem 3.1]. Also Theorem 2 follows easily from Theorem 4; cf. the proof of [LT, Theorem 3.2]. \Box

References

- [C] CARLESON, L.: The extension problem for quasiconformal mappings. Contributions to Analysis, edited by L. V. Ahlfors et al., Academic Press, New York-London, 1974, 39-47.
- [K] KIIKKA, M.: Piecewise linear approximation of quasiconformal and Lipschitz homeomorphisms. - Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 30, 1980, 1–24.
- [LV] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, Berlin—Heidelberg—New York, 1973.
- [LT] LUUKKAINEN, J., and P. TUKIA: Quasisymmetric and Lipschitz approximation of embeddings. -Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 343—367.
- [M] MUNKRES, J.: Obstructions to the smoothing of piecewise-differentiable homeomorphisms. -Ann. of Math. (2) 72, 1960, 521—554.
- [RS] ROURKE, C. P., and B. J. SANDERSON: Introduction to piecewise-linear topology. Springer-Verlag, Berlin—Heidelberg—New York, 1972.
- [V] Väisälä, J.: Piecewise linear approximation of lipeomorphisms. Ann. Acad. Sci. Fenn Ser. A I Math. 3, 1977, 377–383.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 7 March 1983