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DIFFEOMORPHIC APPROXIMATION OF
QUASICONFORMAL AND QUASISYMMETRIC
HOMEOMORPHISMS

MAIRE KIIKKA

Introduction

Piecewise linear approximations for quasiconformal, bilipschitz and quasi-
symmetric embeddings have been constructed by Carleson [C], Véisdld [V], Kiikka [K]
and by Luukkainen and Tukia [LT]. We apply a result of Munkres [M, Theorem
4.1] to smooth these approximations into C~-embeddings in the homeomorphic
case. By [LV, V. 4.3] every finite K-quasiconformal mapping in dimension 2 is
locally the limit of a sequence of regular K-quasiconformal C*-mappings.

I wish to thank Pekka Tukia for suggesting this problem and Jouni Luukkainen
for a careful reading of the manuscript and for making several corrections.

1. Preliminaries

We will use the same notation and definitions as in [K] and [LT]. If Q is
a closed n-cube of R" with side length 2/, and center z,, define ag(X)=zo+/gX.
In open sets of R" we have canonical decompositions 2 into cubes as in [K].
Let I" denote the closed cube [—1,1]" in R" and J" the open cube ]—1,1["
If Qex’, then Q=ayl". For Q€ define

Py = Po(#) = (0" Q'|Q€X, O'nQ =0, Q" # Q).
Denote by #™ the set of all canonical decompositions of open sets of R". Set

P = {Po(H)|QeH €A™}
Then 2" is finite.
Let T be a triangulation of an n-dimensional PL manifold X in R". If
a k-dimensional open simplex ¢ of T has vertices a,...,a, we write o=
(dg, ..., a@). If 0=k=n—1, let {oy,....,0,} be the set of those n-simplices of
T which have ¢ as a face. Let

0, = (Qgs ..., gy Ahyrs - ab), P€{1, ..., p}.
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If x€6;, denote by ),j.(x),je {0, ..., n}, the barycentric coordinates of x in &;.
If s€]0, o[, set

V(o) = U {x€a,4(x) = s2i(x) forall [ =k, j= k).
i=1

Then V(o) is a closed neighborhood of ¢ in X.

For ¢€T set St(o, T)={r€T |0 isa face of t}.

Denote by T* the set of k-simplices of 7. If ACX, set T|A={ocT |cc A}
and T*| A={ccT" | o 4)}.

2. Results

The following theorem is analogous to [K, Theorem 2.1].

Theorem 1. Let n=2 or n=3 and let K=1. Then there exists K=1
with the following property: Let G and G’ be domains in R", let f:G—~G’ be
a K-quasiconformal homeomorphism and let ¢: G0, o[ be continuous. Then there
exists a K-quasiconformal C=-diffeomorphism f: GG’ such that F(x)— f(x) <e(x)
Jor every x€@.

Theorem 2 is analogous to [K, Theorem 3.1} and [LT, Corollary 3.3], and
Theorems 3 and 4 to [LT, Corollary 2.21] and [LT, Theorem 2.16], respectively.

Theorem 2. Let n=2 or n=3 andlet L=1. Then there exists L=1 with
the following property: Let G and G’ be open sets in R", let f: G—~G’ be an
L-bilipschitz homeomorphism and let ¢: G—]0, «<[ be continuous. Then there exists
an L-bilipschitz C=-diffeomorphism [: G—~G’ such that |F(0)— f(x) | <e(x) for
every x€G.

Theorem 3. Let n=2 or n=3 and let n: R’ ~R". be a homeomorphism.
Then there exists a homeomorphism #j: R, ~R. with the following property: Let
G and G’ be open setsin R", let f: G—~G’ be an n-quasisymmetric homeomorphism
and let e: G0, =<[ be continuous. Then there exists an fj-quasisymmetric C~-dif-
feomorphism f: G—~G’ such that f(x)—f(x)|<e(x) for every x€G.

Let 9o and B, be as in [K] and [LT].

Theorem 4. Let n and n be as in Theorem 3 and let ¢=0. Then there exist
a homeomorphism ij: R'.~R', and a finite set D of C=-embeddings &:2I"—~R"
with the following property: Let G be open in R",f: G—~R" an w-quasisymmetric
embedding and let A" be a canonical decomposition of G. Then there exists an
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fi-quasisymmetric C* -embedding f: G—R" such that

(1) d(f10,f10) = e0q
and
2 Bofaol21"€ D

for every Q€A
3. Proofs

Proof of Theorem 1. Let n=2 or n=3 and K=1. Let 0p=0yun=0 be
the constant of [K, p. 12]. The proof of [K, Lemma 2.2] shows that there exists
a finite set D=D(K) of PL embeddings of 2/" into R" with the following pro-
perty: Let G be a domain in R",f:G—~R" a K-QC embedding and A 'ex™
with U =G. Then there exists a PL embedding f*: G—~R" suchthat B f*o,|21"€ D
and [f*(x)—f(x)|<gq if x€Q€A . In fact, to see this, consider the maps y¢ in
K, p. 12].

We choose a triangulation © of [" such that glo is affine and d(go)<dy
if g¢D and o€t and such that glago isaffineif ge D, REPEP", ot and agoC2l”.
We may assume that t|Q is a triangulation of Q and that [0Q is a full sub-
complex (see [RS, p. 31]) of |Q for each of the 4" subcubes Q¢ {z+[0,1/2]"]
2€(1/2)Z"} of I". Furthermore, if n=3, we may assume for all 2-dimensional
faces S of these cubes Q that 7|dS is a full subcomplex of 7|S.

For each P€2" we next define a subdivision 7p of t such that, if G is open
in R" and if & is a canonical decomposition of G, then

3 T ={0gol|Q€ A, o€1p,}
is a triangulation of G.
We first suppose that Pc€#® and set
Ip =U{0I*nOR,NOR, | Ry, R,EP and R, # R,}.
Let y, be the triangulation of 0/® satisfying
W = @nI)u(J (gt ndl?)
RcP

and such that y,/0RN I3 is a subdivision of agT|d0RNAI® for every REP. Let
y, be the subdivision of t|0/® having

73 = (°naI)u( U (g 1Ip)).
R¢cP

Then 7,|Ip=7,/lp. Set ys={61N0s|0:€y1,05€7,}. Then y; is a cell complex
on I3, By replacing every (open) 2-cell o€y, which is not a simplex by the simplices
obtained by joining the barycenter of ¢ with the cells of y; in do, we get a trian-
gulation y, of d/%. Then y, is a subdivision of t|dI3.

Let 7, be the subdivision of t having tp=t"Uyy and 7,/0I3=y,.

To see that {tp| P€#?} is the desired family, suppose that above P =P,
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where Q€X' €x", and denote y(Q)=y; if l=i=4. Then, for cach Q'c¢x
with Q"N Q=0,0’#Q, we have ayy,(0)| 0nQ'=0y7,(Q0)|0QNQ’, whence
207:(0) | 0N Q' =0y y(Q) I QN Q" for i=3 and thus also for i=4. Therefore
%9Tp, | QnQ’:ch,‘cPQ, 1O0nQ'.

If Pe2?, the construction of tj is similar but easier.

For every A'€A4™ and Q€A we define a triangulation TPQ=T(.9£”, Q) of
2[" by setting

Tp, = a5'T|21",

where T is defined by (3). ¢
One can show that T, depends only on the set Pye 2", Instead of this fact
we could have used below the easier fact that the set {T(4", Q)| Qe €™ is
finite.
We are going to smooth the PL maps g€D in some neighborhoods of /"
The groups I'' of Milnor and Thom, cf. [M, Chapter 1], are zero for i€ {1,2,3};
see [M, Proof of Theorem 6.3].

For PE#" and 0=i=n—1 set
Up =U{¥ (0): a€Th[2J").
Then U} is a closed neighborhood of 1" in 21"
We first suppose that n=2. Let géD and P22 Then g|é is affine if
o€Tp. Let g€ Ty |2J2 We apply [M, Theorem 4.1] with ¥=int V,(0), #=¥"\o,
#=int V3(c) to obtain a homeomorphism

© =0, V(o) ~ gl(o)

p=g in ou(M(\¥()
(¢, gl¥(0)) < d(g0)/2,

and such that ¢ |int V(o) is a C'-embedding and ¢ is smooth on int V(o)
near the vertices of o; see [M, Definition 2.2]. This is possible because g | V(o)
is smooth on int Vy(¢)\o near ¢ and near the vertices of ¢ (cf. [M, Proof of
Theorem 2.8]), and because y(g | V1(0))€I*=0 (cf. [M, Definition 3.4]).

Define a homeomorphism

& ={0,,,: 0€TH2J?%): Up —~ gU3.

Let veTp|2J2 Because &5 |V,y(v) is smooth on int Vy(»)\v near » and

YW&p | V1(v))€I?*=0, we may apply [M, Theorem 4.1] to get a homeomorphism

such that

? = @g,00 Vi) ~ &V (0)
=g in vu(KON\%©)
d(¢, Z5|Vi(v)) < min {d(go?)|v€5* and o€ T3)/2,
and ¢ |int V;(v) is a C'-embedding. We get a homeomorphism
gp =U{e,,: vETR(2J%): Up —~ g US.

such that
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Then g9|int U% is a Cl-embedding. One may replace above C' by C=; see
[M, Chapter 9].

We construct the maps &5 and gp for every g€ D and PcZ?. ltis possible to
do this in such a way that the following condition is satisfied:

Let ic{0, 1}, je{l,2}, P,€P?, g€ T},j |2J% and let g, heD. If ¥, and ¥,
are affine bijections of R® y, St (g, Tp)=St (01, Tp)) and h=y, gy, in Vy(o,),
we have
(4) /ﬁ’z = ‘//z g’f’ﬂ/’l
in Vy(oy). Here Vy(o,) is taken in T, .

Let gp:int US—R? be the C~-embedding defined by gj.

If x€I?, we have

1gp(x)—g(0)| = 8p(x)—ZF ()| +185(x) —g(x)| = om

because d(go?)<d,, for all 26T | I

If n=3, we may proceed in the same way, because I''=0 for i€{l,2,3}.

Let n=2 or 3. Let G and G’ be domains in R", f: G—~G" a K-QC homeo-
morphism, &:G—]0, «<[ continuous and % a canonical (f, ¢/2)-decomposition
of G. Let f*: G—~R" be the PL embedding given in the first paragraph of the proof.

We define f: G—~R" setting
©) Flo = Bg'2e,25"10
for Qe whenever B f*a, | 2["=g (€D).

We show that f is well-defined and that
(6) F=B3'8r,05" in Uy =2(int UR,)
for each QeA". Let REA, R=Q, Rn Q=0 and xRN U,. There is v€T° | RN
#g(2J") such that x€Vy(v), where Vy(v) is taken in the triangulation 7 of G.
Let vo=0g'v, vp=0y v, g=Pof g | 2I" and h=Pg f*ag | 2I". Then St (vq, Tp )=
ag'ag St (vg, Tp,) and h=PBrPg'gag'ar in Vi(vg). Because Yy=ug'ag and
Y,=PBrBy" are affine bijections of R", it follows from (4) that

B hpoox* (x) = Br*(BrBo  Erog  aR) otk (x) = Bg'Zra 25 (X).

Hence f is well-defined and (6) holds.

By the construction, f is a C<-embedding. The maps &p|J" are quasi-
conformal. Set

K = max {K(&p|J") | g€D, PEP"}.

Then f is a K-QC embedding.

For Qe we have

O d(f10,£10) = d(f1Q, f1Q)+d(f*1Q. £10) = dmso+0o-
Hence |f(x)—f(x)| =2¢0p=<&(x) if x€Q€A". We may assume that
®) e(x) = min {d(f(x), 0G"), (1+1/(®)])7}

for every x€G. Therefore fG=G’; see [K, p. 8]. Theorem 1is proved. 0O
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Proof of Theorem 4. Let D be the sct of PL embeddings given by [LT, Theorem
2.16] and let &y =0J,y=>0 be the constant of [LT, 2.13], both with g=n and with
¢ replaced by ¢/2. Let D;={g€D|g:2I"-R"}. For each gD, and Pc2"
we obtain a C=-embedding gp:int Up—~R" with d(§p|1". g | 1" <6, in the
same way as in proving Theorem 1.

Let G be openin R", f: G—R" an y-quasisymmetric embedding and A €™
with U =G. Define f|Q by (5) for each Qc#'. Then f: G—R" is a C=-
embedding and (1) holds, because d(f|Q,f| 0)=0yso+e0g/2=e0, for every
ocx; see (7).

One can find D, prove (2), and then, since every ge€D is quasisymmetric,
construct #j with f being fj-quasisymmetric as D and #n* were obtained in the
proof of [LT, Theorem 2.16]. O

Proof of Theorem 3. Let A" be a canonical (f, ¢)-decomposition of G. Apply
Theorem 4 with e=1. It follows from (1) that |f(x)—f(x)|=¢,<e(x) if x€Q€X .
We may assume (8). Hence fG=G’". 0O

Proof of Theorem 2. Theorem 2 can be proved similarly to Theorem 1; cf. the
proof of [K, Theorem 3.1]. Also Theorem 2 foilows easily from Theorem 4: cf. the
proof of [LT, Theorem 3.2]. [
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