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LOCALLY UNIVALENT FUNCTIONS
IN THE UNIT DISK

NORBERT STEINMETZ

1. Introduction

Let f be meromorphic and locally univalent in the unit disk D and denote by

Q) 2y =Y =5 =24()

the Schwarzian derivative of f.
A well known theorem of Nehari [7] states that f is univalent in each non-
euclidean disk of radius k=2 (k=1) if

@ 96) = =

Hille [5] has shown that this theorem is sharp.

Later on, Ahlfors and Weill [1] proved that f extends continuously (with
respect to the spherical metric) to the boundary, provided k<1; in fact, they
showed that f(e') is Holder-continuous of order 1—k. This result was improved
by Duren and Lehto [3] who replaced the constant k in (2) by a nondecreasing
function A(|z]), 0<A<I, and proved that f has a continuous extension to 0D
if A(r) tends “‘slowly” to I1:

1 1
(3) WZO(IOgtT] as r —-1—.

Recently, Gehring and Pommerenke [4] showed that this remains true even under
the original Nehari condition A(r)=k=1.
It is well known that f admits the representation

Wy
wy’

4) f=
where w, and w, are linearly independent solutions of the linear differential

equation
) W+ q(z)w = 0.
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We are mainly concerned with the boundary behaviour of f. Since

o £
where
Wi Wo

S wiwg
is the Wronskian of w; and w,, and

I le]
7 +* p— = .
2 I7 = TR = ot P

we have to estimate the solutions of (5) from below as |z|-1.

2. A monotonicity theorem

Consider
(®) u(x) = wy (xe’) |2+ |wy(xe)]2,

0 fixed, where w; and w, are (not necessarily linearly independent) solutions
of (5). Then u is nonnegative in [0, 1), and an easy computation gives

) u = 2 Re[e" (W)W, +w;iw,)]

(z = xe),

(10) u'? = du((wi2+|wsl?

by the Cauchy—Schwarz inequality, and

(1D u” = 2(Jwi[*+ |wj[*) — 2u Re [¢* g (xe')].
Finally, we get, using the estimate

(12 Re [¢? g (xe)] = O (x)

and (10), (11),

(13) uu” =20 (x) u2+% u'?,

ie., u is a “‘supersolution” of the differential equation

y_ y®
(14) y'==20(x)y+ 5
It seems quite natural to compare u with ‘“‘subsolutions” of (14), i.e. solutions of

15) w” = —20(X)v2+ = v
( 2

However, the usual monotonicity theorems do not apply immediately, since the
right hand side of (14) is not quasimonotonically increasing.
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Theorem 1. Let Q be defined in (0,1) and let u and v be differentiable
in [0,1) and twice differentiable in (0, 1). Assume further:

1. u is a nonnegative solution of (13) in 0<x<1;
I1. v is a positive solution of (15) in O0<x=<1;
1. u(0)=v(0)=0 and u' (0)=2'(0) or

u(x) = x2+oxd+o(x® and v(x) = x*+px*+o(x®) as x -0, where o = f.
Then
(16) u=v in [0,1).

Remark. a) It is clear that Theorem 1 remains valid if (0, 1) is replaced by an
arbitrary interval (of course, III. has to be modified).
b) If we set U’=1/u, V'=1/v, inequalities (13) and (15) are equivalent to

17 (U, x} = {V, x},

and Theorem | may be interpreted as a monotonicity theorem for the Schwarzian
derivative: (17) implies U’=V"’ if either U’(0)=V"(0)=0, U" (0)=V"(0) or eclse
U'(x)=1/x2—a/x+o(1/x), V'(x)=1/x2—B/x+o(1/x) as x—0 (xz=p).

Proof of Theorem 1. Consider w=u/v in the largest interval (0, x,) containing
no zeros of u (if any). A short computation gives

(18) v v+’ v) = % (0’ v)?
and so

19) (0’ v)Y =0 in (0, xg).
In both cases III. we have

(20) w(0)=1 and o’ (0)=0,

implying @»=0 in (0, x,). Therefore, w is nondecreasing in (0, x,) and so
w(x)=1, or, equivalently,
(21) u(x) = v(x) >0 in (0, x,).

By definition we must have x,=1, and Theorem 1 is proved.

3. Normal functions

A function f meromorphic in D is called normal if

(22) sup (1=1zPf*@)<e
(see Lehto and Virtanen [6]). In our case f is normal if and only if

twq (2)|2+ Iwa (2)[2 = 0.

@3) inf
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It is clear how Theorem 1 leads to normality criteria involving ¢(z). In the simplest
case we have w;(0)=w,(0)=1, w(0)=w,(0)=0, and we may apply Theorem 1
to  u(x)=|w;(xe”)2+|wy(xe”)2 (we have u(x)=1+0(x?) near x=0). Since
v(x)=1—x* satisfies »0” = —2/(1—x2)?v*+ 1/2v2, by Theorem 1 f is normal if

1
210 le —_—
24) Re[e?? g(xe'?)] = =
By Nehari’s theorem this is trivial if the real part is replaced by the modulus of q.

Theorem 2. Let (12) be satisfied and suppose that, for some x,€[0, 1), the
differential inequality (15) has a positive solution in (x,, 1) such that either

(25) v(x) = 14+0(x—x,)
or else
(26) v(x) = (x—X0)*+0 (x —x,)?

as x—>xo+. Then there exists a positive constant C =C (x,, f) such that

C ,
27 ¥ = () in x,<|z|<1.
Corollary. Suppose
(28) Re [e¥ g(xe®)] = 1 M
q == xz)z 2

where M is a constant. Then f is normal in D.

Proof of Corollary. 1t is easily seen that

(29) v= (x—Xxo)2— g ioiz
satisfies
(30) V=20 () v o
in xo=x<1, where
iy — | ((1+x)(1—x0>]2 2 Llix
31 0*(x) = T—x U 1+x—2%, 1—x% 14x-—2x,"
Since
2 l+x 1

T+x—2x, — 1—x,
we have

. 1 2 1
(33) 0*(x) = = + T Tow
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which is greater than the right hand side of (28) in x,=x<l1 for x, sufficiently
near to 1. Thus, Theorem 2 gives

. _ 1 _ 1
/ (Z)_O(v(lzl)]_a(l—lzlz)
as |z|-1.

4. Proof of Theorem 2

Let 0,0=0<2m, be fixed and set zo=xpe”. If (W, W) is the canonical
fundamental system at z, defined by Wy (zo)=Wwy(zo)=1, W2 (z0)=W;(z5)=0, we have

Wi wi(zg) Wi(2o) Wy
4 [Wz) = (w2 (zo) wg(zo)] [%]
and therefore
(35 Wy 2+ |wsf? = [e2K 71 (W 2+ o),

where ¢ is the Wronskian of w; and w, and

(36) K = max (W @+ + Wi ()P)

is independent of 0. For u(x)= [1y(xe")[2+ W (xe”)[* or u(x)= [ws(xe?)2 we have
u(x)=140 (x—Xo)* or u(x)=(x—x0)*+ O(x —x,)", respectively (note that ¥;(z)=0).
In both cases Theorem 1 (applied to the interval (x,, 1)) gives u(x)=v(x) in
xo=x=<1. Thus, by (7) and (35)

@37 /¥ =

5. Conformal mapping

Since both the Schwarzian of f and the boundary behaviour of f are invariant
under Mobius transforms, we are free to choose special solutions of (1).
We will assume that w, and w, are defined by the initial values

(38) w1 (0) = w;(0) =1, w,(0) = wi(0) = 0.

Theorem 3. Let (12) be satisfied and assume that the corresponding differential
inequality (15) has a positive solution v in (0, 1) such that either

(39) v(x) = x*+o(x®)
or
(40) v(x) =14o0(x)
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as x—0, and
bodx
(41) —— <
1,2f v(x)

Then f or 1[f, respectively, has boundary values everywhere with modulus of continuity

. h Yodx
(42) o = min [——v(l_n) +21_[ Ty O=r=12.

Corollary 1. If
(43) Re [e?9 g (xe)] = 1% < n?

holds, then f is bounded in 0<d=|z|<]1.

Remark. The constant A cannot be replaced by =, as the example

(44) {f; 2) = 22
with the special solution

(45) f(z)=—mcotnz
shows.

Corollary 2. Suppose
0(2—90) o(1+9)

(46) Re [e*g(xe®)] = (1—x? 1—x2 °

where 6€(0, 1) is a constant. Then f(€") is Holder-continuous of order 1—36.

Remark. If (2) holds true (0<k<1), then by Corollary 2 (with 6=1— V1—k k)
f(€?) is Holder-continuous of order Y1—k=1—k. This is the correct order, since
one particular solution of

) (3 = e

is

@8) £(2) = (1+ ] v = VT
Corollary 3. Let

(49) Re[e* g (xe)] = O (x)

and assume that the linear differential equation

(50) y'+0(x)y =0

possesses a positive solution in —1<x<1. Then f has continuous boundary values.
Moreover, if

1) 0 = =
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then f(€) has modulus of continuity

1

Remark. Recently, Gehring and Pommerenke [4] showed that under the

special Nehari condition
1

(53) lq(2)| = =
f maps the unit disk onto a Jordan domain, whose boundary curve has modulus
of continuity O(1/log (1/h)), or onto the image of a parallel strip under a Mobius
transform. I am greatly indebted to Professor Lehto and the reviewer who pointed
out to me the Theorem of Gehring and Pommerenke.

6. Proof of Theorem 3 and its corollaries

Since f'=—1/w? and g =(1/fY=1/wj, Theorem | gives in both cases
|f(2)|=1/v(lz]) and |g'(2)|=1/v(|z]), respectively, and (41) shows that f and
g have finite boundary values everywhere. Proceeding as in Duren’s book [2],
p. 75, we find

1
BN o] = rl0— o dx
(54) @) —f@) = —5=+2 [ 355

where r€[l/2,1) is arbitrary. The same holds true for g instead of f. Setting
r=1-n, where 12=n=h=|0—¢|, Theorem 3 follows from (54).

Proof of Corollary 1. Since

(55) () = [ sin/{lx )2

solves (15) with Q(x)=42, Theorem 1 gives

. 2
'’ = /l’
(56) @)= (sinilzl)
in 6=|z|<l.
Proof of Corollary 2. One verifies easily that
57 v(x) = x2(1—x?’°

satisfies (15), where Q is given by the right hand side of (46). Thus, Theorem 3
gives

(58) Q(h) = O (W9,

and Corollary 2 is proved.
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Proof of Corollary 3. By assumption there exists a positive solution of (50).
We may assume that p is even and normalized by »(0)=1 (otherwise we consider

() +»(=x))/21(0)). Then

AT . Q00

(59 v(x) = [Y(x) Of yT(f)_] =X —'—3—x4+-~-
satisfies
(60) " =—20(x) 02+i2 v'2,
Setting
61) Y(x) = /x _dr_

g V@’
we find

x d[ B x Y/(t) 1 1 .

©2 mvm”JYmm<nmrifx“’

and so, by Theorem 3, f has continuous boundary values everywhere.
In the case Q(x)=1/(1—x%)? we have y(x)=)J1—x® and

1 5 1+x)?
Thus, Theorem 3 gives
4 8
(64 20 = Gogamy* Tz am

and Corollary 3 is proved.
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