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LOCALLY UNIYALENT FUNCTIONS
IN THE UNIT DISK

NORBERT STETNMETZ

1. Introduction

Let J- be meromcrphic and locally univalent in the unit disk D and denote by

(1) {.f, ,) : (f " l.f')' - f, tf " ff)' : 2q(z)

the Schwarzian derivative of f.
A well known theorem of Nehari [7] states that f is univalent in each non-

euclidean disk of radius k-uz (k>l) if

(2) tqe)t=#
Hille [5] has shown that this theorem is sharp.

Later on, Ahlfors and Weill [] proved that J' extends continuously (with
respect to the spherical metric) to the boundary, provided k<1; in fact, they
showed that f(eiq) is Hölder-continuous of order I -k. This result was improved
by Duren and Lehto [3] who replaced the constant k in (2) by a nondecreasing

function )"(lzl), O-Ä-.1, and proved that f has a continuous extension to åD
if ),(r) tends "slowly" to l:

(3) ;,,:o(r"ra!) as r*r-.
Recently, Gehring and Pommerenke [4] showed that this remains true even under
the original Nehari condition A(r):ls:1.

It is well known that .f admits the representation

(4) f: Y, *r,

where v)1 and w2 are linearly independent solutions of the linear differential
equation
(5) w" + q(z)w : 0.
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We are mainly concerned with the boundary behaviour of f. Since

(6) f'-Lr 
wZ,'

where

I ,r wzl

llvr wzl

is the Wronskian of w1 and wr, and

(7) f+ ,- -\f,:l_ : , ,=l'1, ,=l+l"fl, lrrlr+ lwzlz 
)

we have to estimate the solutions of (5) from below as lzl*1.

2. Ä monotonicity theorem

Consider
(8) u(x): lwr(xeto)12-tlwr(xeie1l2,

0 fixed, where w, and w, are (not necessarily linearly independent) solutions
of (5). Then z is nonnegative in [0, l), and an easy computation gives

(9) u' : 2Re [e'o(wiil, +w|w)l
(z : xeie),

(10) u'2 = 4u(ltuilr+lrLlr)

by the Cauchy-Schwarz inequality, and

(11) u" :2(lw'rl,+lwLl2)-2uFtelezi0 q(xe'e)1.

Finally, we get, using the estimate

(12) Relezio q(xei\]= Q@)
and (10), (11),

(13) uu" = -2Q(x)uL+f, u'2,

i.e., u is a "supersolution" of the differential equation

(14) y":-2Q(x)r*#.

It seems quite natural to compare u with "subsolutions" of (14;, i.e. solutions of

(15) rn:" = -2Q(x)u2+f,u'2.

However, the usual monotonicity theorems do not apply immediately, since the
right hand side of (14) is not quasimonotonically increasing,
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Theorem l. Let Q be d,'fined,r? (0, 1) and let u and u be differentiable

in l0,l) and twice dffirentiable in (0,1). Assume further:

l. u is a nonnegatiae solution of (13) in 0< x<l;
11. t: is a positiae solution of (15) in O=x=l;

lII. a(0):o(0)=0 and u'(01>'r'791 o,

u(x) : x|+axs+o(xs) and u(x) : x2+Bxs+o(xs) as x * 0, where d = P.

Then
(16) tt >- t) in [0,1).

Remark. a) It is clear that Theorem 1 remains valid if (0, 1) is replaced by an

arbitrary interval (of course, III. has to be modified).

b) If we set (J':lfu,V':lfu, inequalities (13) and (15) are equivalent to

(17) {U, *} = {V, x},

and Theorem I may be interpreted as a monotonicity theorem for the Schwarzian

derivative: (17) implies (J'<V' if either (J'(O):y'791=0, (J" (0)=V" (0) or else

U' (x) : I I x2 - al x * o (l I x), V' (x): I I xz - B I x * o(l/x) as x *0 (a= §)'

Proof of Theoreml. Consider a:ulu in thelargestinterval (0,x0) containing

no zeros of a (if any). A short computation gives

(18) ats(a" u*a'u) = I (a' u)'

and so

(19) (o' u)' > o in (0, xo).

In both cases III. we have

(20) o(0) : 1 and co'(0) = 0,

implying a'a>o in (0, xo). Therefore, @ is nondecreasing in (0, xo) and so

o\x)> l, or, equivalently,

(21) u(x) =- u(x) = 0 in (0, xo).

By definition we must have xo:l, and Theorem 1 is proved'

3. Normal functions

A function f meromorphic in D is called normal if

(22) ty (1 - lrl')"f" (z)o *

(see Lehto and Virtanen [6]). In our case f is normal if and only if
tw, (z)12 + lwr(z)12 > 0.(23) inrft
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It is clear how Theorem 1 leads to normality criteria involving q(z). ln the simplest
case we have r.rrr(0):wi1o1:1,wi101:wr(0):0, and we may apply Theorem 1

to u(x):lwrTxeie)12+lwr1xei01l2 (we have u(x):l*O(xz) near x:0). Since
a(x):l -x2 satisfies D,u" : -21(l-xz)zpz+ l12u'r, by Theorem I / is normal if

(24)

By Nehari's theorem this is trivial if the real part is replaced by the modulus of 4.

Theorem 2. Let (12) be satisfied and suppose that, for some xs(lO,l), the
dffirential inequality (15) has a positioe solution in (xn,l) such that either

Re[e2'uq(xe")] = #

(2s)

or else

(26)

os x *xo* . Then there

(28)

where M is a constant.

Proof of C orollory.

(2e)

satisfies

(30)

in xoS x<1, where

(31) Q* @) -
Since

(32)

we have

(33)

(27) -f+ (r) = 
C

M in x6<l'l=1'
Corollary. Suppose

u(x) - L*o(x-xo)

u (x) - (x - xo), * o (x- xo)t

exists a positiae constant C -C (xo, f ) suc.h that

Then f is normal in D.

It is easily seen that

' (x-xo)'- 9-"]l
(1 - xr)'

pp,, : _2e* (x) r, ** ,,,

1 ((t+x)(l -xo))' , 2 1+x
Ti:xy l lfx- 2., ) + 1-r,' tx-24

#=*,
Q"(x)=,, 1==+=2 ,l-

(1 - x')' ' L- *o l-.xl'
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which is greater than the right hand side of (28) in xo=x<.l for x6 sufficiently

near to 1. Thus, Theorem 2 gives

as lzl-*1.

Let 0, 0 =0=2n,
fundamental system at

(34)

and therefore
(3s)

where c is the

(36)

4. Proof of Theorem 2

u(x): x2*o(xB)

u(x) - 1*o(x)

(frr, frr) is the canonical

ivr(r) -tvi@o):g, we have
be fixed and set zo: xo€'u . If
zo defined by ivr(r) - it;(r) - l,

(;;):t;;f ,:l:f ,!)t;;)
l,rrl'+ I wrl' z lrl'X -'(lirtl' * 1fr,l'),

Wronskian of w1 and w2 and

K -,q1ax (lr' Q),2+...+ l*LQ)l')lrl:ro '

is independent of g. For z(x): litlGete)12+lfir1xete1l' or u(x):litr(xete)12 we have

u(x):l*O(x-x)2 or u(x):(x-xs)z*O(x-xo)4, respectively (note that'f i@o):O).
In both cases Theorem 1 (applied to the interval (ro, 1)) gives r.r(x)>o(x) in

xn<x<l. Thus, by (7) and (35)

5. Conformal maPPing

Since both the Schwarzian of J' and the boundary behaviour of f are invariant

under Möbius transforms, we are free to choose special solutions of (1).

We will assume lhat w, and w, are defined by the initial values

wr(0) - w;(0) : 1, wr(Q) - w'L(Q) : 0.

Theorem 3. Let (12) be satisfied and assume that the coruesponding differential

inequality (1,5) has a positiae solution a in (0,1) such that either

(37)

(38)

(3e)

or

(40)
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as x*0, and

(4r) i -!:-
'/' 

u(*) =*'

Then f or I lf, respectiaely, has boundary aalues eaerywhere with modulus of continuity

(42) o(h) =,s!,1, lh., ,j ål (0 < h = tt2).

Corollary l. IJ'
(43) Relezio q(xeie11= 7z = nz

holds, then J" is bounded in 0<6<lzl-1.

Remark. The constant 7 cannot be replaced Lry z, as the example

(44) {.f, z) : 2nz

with the special solution
(45) 1G) : -n cot nz
shows.

Corollary 2. Suppose

(46) Refezioq(xei'y=ffi++9,

where ö((0, l) is a constant. Then f(eta) is Hölder-continuous of order l-ö.
Remark. If (2) holds true (0<k< l), then by Corollary 2 (with ä: I - l/l 4)

f(ete1 is Hölder-continuous of order lt-1r=l-k. This is the correct order, since
one particular solution of

(47) U, r|: T?ry
is

(48) .f(,):(F)", l,c:y'l-k.
Corollary 3. Let

(49) P.efezio q(xeiu)l = Q@)

and assume that the linear dffirential equation

(50) !" *Q(lxl)y : s

possesses a positioe solution in -l<x<|. Then f has continuous boundary aalues.
Moreoaer, if
(51) e(x)=dry
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then f(eto) has modulus of continuity

(s2) o(h):, (o-äO)

Remark. Recently, Gehring and Pommerenke [4] showed that under the

special Nehari condition

tq(,)i = GjaTil(s3)

(54)

/' maps the unit disk onto a Jordan domain, whose boundary curve has modulus

of continuity o(lllog(1/ft)), or onto the image of a parallel strip under a Möbius

transform. I am greatly indebted to Professor Lehto and the reviewer who pointed

out to me the Theorem of Gehring and Pommerenke'

6. Proof of Theorem 3 and its corollaries

Since ./':-tlrZ and g':(llf)':llw!, Theorem I gives in both cases

l.f'Q)l=llo(VD and lg'(z)l< l,lu(lzl), respectively, and (41) shows that f and

g lruu" finite boundary values everywhere. Proceeding as in Duren's book [2],

p. 75, we find

where r([/2, l) is arbitrary. The same holds true for g instead of f' setting

r:7-4, wherc ll2=rl=h:10-El, Theorem 3 follows from (54).

Proof oJ'CorollarY l. Since

u(x)-(ry)'

Theorem I gives

i.f,(,)i =(#)
One verifies easilY that

u (x) - x2(1 - x')ö

given by the right hand side

0(h) - o (h'-u),

(s5)

solves (15) with Q@)=L2,

(s6)

in ä = lzl-1.
Proof of CorollarY 2.

(s7)

satisfies (15), where O is

gives

(58)

and Corollary 2 is Proved.

of (46). Thus, Theorem 3



Proof of corollary 3. By assumption there exists a positive solution of (50).
We may assume that y is even and normalized.by y(O):l (otherwise we consider
(y (x) + y (- x))/2y(0)). rhen

(5e) u(.x): lr@, !;,T),:*,-*xa+...
satisfies

(60) uu" : -2e(x)u, +* u,r.
Setting

(61) r(x): ih,
we find 

o

(62) 
,{ #:,[ #0,=L, ]=x=1,

and so, by Theorem 3, f has continuous boundary values everywhere.
In the case Q(x):llQ-xz)z we have y(.x): /T:7 and,

(63) u(x) : irr-or(,rr-i_U,)'.
Thus, Theorem 3 gives

(64) o (h) = 
«r"e «rl-lrlaf- 

+ ,Gä ,

and Corollary 3 is proved
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