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ON HARMONIC FUNCTIONS WITH INTEGRABLE
MAXIMUM MODULUS

J. G. CLUNIE and P. J. RIPPON

1. Introduction

In [4] Hayman and Korenblum consider an extension of the Riesz—Herglotz
formula. They consider functions

(1.1) g(z)=§a,,z"=u+iv

that are analytic in U={|z]<1} and investigate conditions on u so that g(z)
can be represented as

(1.2) (z)—— f Z?:l,” L

where u(t) measurable and |pf<-oe. The necessary and sufficient conditions
for such a representation with |uf..=M are shown to be:

@ If
?, )
I1(r, 01, @y) = f u(re') dt,
k21

then
(01, 0| =2M (0=r<1, —co< @y < @y <+o0).

(ii) If the real constants ¢, t(¢p,) are suitably chosen then

I(r, @1, @3) ~ (@) —u(py) (—1)

for almost all fixed ¢,, where |u(p))|=M (j=1,2).

It was also shown by Hayman and Korenblum in [4] that if O<k(r), in
0=r<1 and
1.3) u@e®y=k@r) O=r<1, 0=0=2n),

where u(z) is defined by (1.1), then the
1 —
f l/_kﬁz dr <
0 1—7r
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implies that g(z) has a representation (1.2) with |u||..<o. On the other hand if
the above integral diverges, then g(z) exists as in (1.1), and (1.3) is satisfied, but
g(z) cannot be represented as in (1.2) with ||g].< .

In [5] Korenblum poses the problem of finding results analogous to the above
when (1.3) is replaced by the two-sided condition

(1.4) lu@re®) =k(r) O=r=1, 0=0=2n).

We shall show that for this problem one is led to consider f ok(r)dr in place of
[5 (k(r)/(1 —r))"2dr and that if quite a weak regularity condition for k(r) is sa-
tisfied then the former integral has the same significance for the two-sided con-
dition (1.4) as the latter has for the one-sided condition (1.3). It is perhaps of
interest to note that such a regularity condition is included in Korenblum’s
problem which appeared before the paper of Hayman and Korenblum.

Theorem 1. Suppose that (1.4) is satisfied, where O<k(r), in 0=r<1 and
u(z) is defined by (1.1). If

1
[ k@ dr=J<o,
0

then
II(V, P15 <P2)| = 128J (Oé r < 1, -°°<(P1 = (Pz <:+°°)

and there is a real-valued function p on (—eo, ) satisfying

(@) =64 (—oco< ¢ <)

and
1
(1.5) lu(@+s)—pu(e)| = 100 f k(?) dt (—oo< @ <o, 0 <s= —;—)
1-s
such that

I(r, o1, @3) = (@) —pu(p)) (r—1)

Jor —eo<@i<@y<+oo. Hence g(z) has a representation (1.2), with ||p|.=64].

Remark. Finbarr Holland and Brian Twomey pointed out to us that this
is only a slight generalisation of [2, Theorem 5.7]).

Theorem 2. Let k(r), in 0=r<1 with k(0)=1 and [Lk(r)dr=-<s. If,
Jfor some positive integer n, (1—r)"k(r)\ in 0=r<1, then there exists g=u+iv
as in (1.1) with (1.4) satisfied, such that

I(r,0, 1) > = (r >1).

Hence the necessary condition (i) of Hayman and Korenblum is not satisfied.

However, we shall show that in the absence of some regularity condition as
occurs in Theorem 2 the two-sided result given in Theorem 1 is not best possible
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in the sense that the corresponding one-sided result of Hayman and Korenblum
is best possible.

Theorem 3. There exists 0<k(r), e in 0=r<1 with f},k(r)dr:oo such
that if g=u+iv as in (1.1) and (1.4) is satisfied, then g(z) has a representation
(1.2) with || < -ce.

2. Proof of Theorem 1

If g(z)=u+iv as in (1.1) then from Green’s formula (or, see [4], proof of
Theorem 1) we get

r . d r ) d
@1 10, 91,0 = [ v(0e®) “E— [ w(oe™) T2
0 0

for 0=r=<1 and —co<@,<@y<o. We now show that, for —co<g@<eco,

(2.2) [ lv(e)] % = 64],

and if we then put
1

23) w@) = [ oo L (mmzp =)

0

the conclusions of Theorem 1, apart from (1.5), follow immediately.
To prove (2.2) we follow [2, Theorem 5.7] and set ¢=(1+r)/2 so that

nQe 0
g() = 2n L uee) do (|2 =r <1
Then, for 0=0=2n,
o = L [ lu(ee )] L[ k(o) 2k (0)
’ 0y < = = — =
g ()| = T Of 0®—2¢r cos @ +1? do = 0*—2¢rcos ¢ +r? d 0*—r?
so that
Lo 8k
2.4 lg’ (re’®)| = —1%)—
Thus, if
M (r) = max lg(@!,
then
_ Y k((1+1)/2) ' (1—1—1}
fM(r)dr 8jd f — o dt = 80fk-7—dt
so that

1
(2.5) [ M@)dr = 16J.
0
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By the maximum principle,

1

0l ufl) (<=4

and so, for —co<@=<oo,

1 1 1
[ ]u(ref¢)|ﬂ = M[l]+2 [ M@ydr =4 [ M(r)dr = 64]
0 r 2 1)2 1/2

as required.
To prove (1.5) first note that from (2.1) and (2.3) we obtain
! . . dt
u(@+9)—n(@) = [ o) v ()] —

0

= I(r, o, p+5)+ f [v(tei("’+s))—v(tei"’)]—[lt—t- O=r<1).

If 0<r<R<1 and —wo<@p=<oo,
R

g dt . dv(te'®
;/' v(te"P)—t-—: [v(te'?) log ]k — f UE; )logtdt

r

and, since v(te’’)=o0(1/(1—1)) (t~1) by (2.5), it follows that

(2.6) w(@+s)—pu(p) = I(r, @, o +s5)—[v(re'*+) —v(re?)] log r
1 . .
ov(1e'?+9)  Ju(te'?) ]
——rf[ PY ~ log t dt.
Take r=1—s with 1/2=r<1, and then
@+s 1
[(r, 0, p+59)| = / lu(re'®)| do = sk(r) = f k() dt.
@ 1-s
Also, by (2.4),
o+s i 1
. . ov(re') [1 + r]
i(e+s)y __ i | < — = _— =
[v(re'®*9)—v(re'?)]log rl = 2(1 r)(/ 50 do = 16sk 3 _321_‘/; k() dt.

In the same way, for —oo<@<-oo,

lfl av(z‘f""’) log  di] = f g’ (te'*)] log%dté 16/%[%] dt = 321_f:k(9) do.

0

Using the above estimates in (2.6) we obtain (1.5).
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3. Proof of Theorem 2

Assume that the hypotheses of Theorem 2 are satisfied. Define ¢, (0<g,=1) by
3.1) k(l—e)=p (p=1,2,..).

Then ¢, decreases (strictly) to 0 as p increases to < and

(3‘2) Z 8p = oo

follows from [§k(r)dr=ec. Now put
) = S 0=r<1)
p=1
If 1—¢,_;=r<l-¢,¢g=2 and K is a fixed positive integer, then
W)= Kgt 3 (e =Ket 3 e (-2,
p=Kq+ p=Kq+1 &p
From the behaviour of (1—r)"k(r) and (3.1) we have

ey =qey (p=gq)
so that

1/n
&2(3] =210g? (p=K
5, = Ug) =2legy (r = Kq),
if K=K(n) is large enough. Hence for 1—¢,_;=r<Il-—¢, and ¢=2,

1) = Kq+q* > pr=(K+1)q=2(K+Dk(l—g,_;) = 2(K+Dk(),

p=Kq+1
by (3.1).
Let n, be the least odd integer exceeding 1/¢, and suppose that >7°a,r"
is the series arising from A(r) when r'» is replaced by r". The sum of this series
is dominated by A(r) and from (3.2) it follows that

(33) S
1 "p
Now define
u(re'®) = Z’ 7 sin (n,0),
and it follows easily that
160,09 = 30z Sers = =,

by (3.3). By the above we see also that

ure| = e S k() O=r =1,
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Remark. One might consider how much the regularity condition on k(r)
in Theorem 2 can be weakened. The above argument can be modified without
too much difficulty to show that it is sufficient that

k(R) _

1—r B
W:exp[a-(l—_-i]] (0:-_—7'<R<1),
for some « with O<a<1.

4. Proof of Theorem 3

The k(r) of Theorem 3 is a function of Besicovitch. We are indebted to Siobhan
Vernon for our knowledge of this function. The definition and relevant properties
of this function are given in the next lemma.

Lemma 4.1 [1]. Let 0y=0, ou=1-2"% (k=1,2,...) and define f(r) for
0=r<1 by:

SO) =1, flo) =22, fis linear on [oy, 04 41] (k=0,1,2,...).

Then f o f(r)dr=oo, but if P(r) is a power series with non-negative coefficients and
P(r)=f(r) (0=r<1), then

1
[ Pdr=c,
0

where C is some fixed positive constant.

In what follows f will always denote the function of Besicovitch. Let u(z)
be harmonic in U with #(0)=0 and suppose that

lu@| =) (2] =),
and let g=u+iv, asin §l. Asin the proof of Theorem 1, we have

(X)) lg’ (re®)| = ﬂ(—i% O=r<1.

From the proof of Theorem 1 it is clear that in order to prove Theorem 3 it is suf-
ficient to show that, for some fixed constant y depending only on the constant
C in Lemma 4.1,

1
[ lge®ldr=y (0=0=2m.
0
Without loss of generality assume that 0=0. It is easy to show that

[le@ldi= [ (1—5)|g (5)]ds
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and what we now prove is that

4.2) [ a=nig@dr=y.

Let D be the subdomain of U bounded by segments of the lines from z=1
making angles +3n/4 with the positive real axis and the major arc of the tangential
circle {|z|=1/ V2). Suppose that {=¢(z) maps D onto the unit {-disc ¥ with
¢(0)=0, ¢(1)=1 and real z mapping into real {. Let z=y({) be the inverse
of ¢ andin V set
43) GO =1y Q)W ©)-

If one applies a conformal map to D which opens the angle /2 at z=1
to an angle 7 and considers the map of ¥ onto this latter domain we see that it is
a convex mapping and maps {|{|=g¢} onto a convex curve. When we relate this
to the mapping  of ¥ onto D we see that for ¢ near to 1 at any rate the point
on the image of {|{|=¢} farthest from the origin is Y(g)=r, say. An elementary
argument shows that for some positive constants ¢;,0, such g, r near 1 are

connected by
l—o,)V1—0 =r = 1—0,V1—0.

From (4.1), (4.3), the fact that D subtends a Stolz angle at z=1 and the above
it follows that for some constant x,

(4.4) GO =#(1-0,V1=0). (| =0
We now quote a result of Erd8s and K&vari which we require.

Lemma 4.2 [3]. If h(z) is an entire function and M(r, h)=max =|h(z)|,
then there exists a power series P(r) with non-negative coefficients such that

1 M(r, h)

c="py =} =0

Corollary. The result of the lemma remains true when h(z) is analytic in
U and M(r, h)|P(r) is considered in 0=r<1.

The corollary follows by the same argument as the lemma itself, mutatis
mutandis. Though the corollary is more convenient for our arguments the result
of the lemma itself could be used instead and so the validity of our results is not
dependent upon the corollary, whose proof is omitted.

Choose a power series P(¢) with non-negative coefficients so that

1 Mo, G)

g<-—PTQ—)—<3 O0O=9<1).

From (4.4),
M(o, G) = 3P(0) < 18 M (0, G) = 18xf(1—0,V1—0).
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Define ¢, by ay=1—0, V1—g,, i.e. 1 —g,=((1—0y)/0,)>, where the «, are given in
Lemma 4.1. We now follow the argument of Besicovitch in [1] to show that

4.5) f V}% do = const.

0
e! V1—o¢ 0 VI_Q

where M is a positive integer to be specified later. We have that

M
Q1 Zb Q M 7+1[Q]M dQ
o Vl o Ok VI_Q
Qp+1 M d
= 18xf(1—0,1/1—g,) f [ ] QQ ;
and that
Q41 angn . Ok +1 M
T——do = 3 btiia [ [ ¢ ) o
0 V -0 1 0 OQr+1 VI_Q
Q41 M
— 0 de
= 18xf(1—0y V1—0441) [ ] —.
of 1 k+1 Qkf %) Yi—g
Now,
Q41 M Q41 eMlog(1-(1—¢)) Q41 e~M1-o

deo 0=
Vl Q s V]-_Q o VI"Q

and if we put M(1—g)=t the last integral becomes

R ki PR

et dt 1 f°°;
M(1_0k+1) Vt_/ﬁ M H ;

Hence, for large k, writing ¢ for oy,

M(l_ek)

III\

f Vll)(_a) dg = const. W {flow o™ +f ()0}

= const. —— {22 e2M( -0 4 22" e2M (1= 0y 1)}

= const. —— {22 elaMlotz= " 4 9ok peMiena=E Y
M
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Now choose M=2%"'k* so that the right hand side above is bounded by

—ok

k2

const
k2

const. (2251 ektia? 4 22 p2lan2 = TR <

Hence (4.5) follows and consequently
fl Mg, G)
0 Vl — @
With r=y(¢) we observed earlier that if r,¢ are near to 1, then
1—0,/1—p=r and from

(4.6) dg = const.

(1-nlg' M= M(e, G)
it follows that for some fixed n(0<n<1),

fl(l—r)!g’(r)[dré flM(l—(l—o__zr—)i, G] dr.

n 2

If we now set t=1—(1—r)?/c% we obtain, for some #’ that

M(t, G)

Yi—1¢

j(l—r)}g’(r)\dr = const. fl

and so (4.2) follows.
Concluding remark

Theorem 3 has a bearing on the ‘best’ regularity condition on k(r) in Theorem 2.
Though the condition considered at the end of §3 seems very weak indeed, the
Besicovitch function in §4 does not satisfy such a condition for any o.
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