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ON HARMOI\IC FUI{CTIONS WITTI II{TEGRABI,E
MAXIMUM MOT}ULUS

J. G. CLUNIE and P. J. RIPPON

L. fntroduction

In [4] Hayman and Korenblum consider an extension of the Riesz-Herglotz
formula. They consider functions

(1.1) g(r): ä ,,r" : u*iu

that are analytic in g:{lzl=.1} 
"rd 

investigate conditions on ll so that g(z)
can be represented as

(r.2) g(z):+f ## (zl =1),

where p(r) measurable and llpll-=-. The necessary and sufficient conditions
for such a representation with llpll-=M are shown to be:

(i) rf
I(r, er, vrl : j u(reit) dt,

then 
er

ll(r, Er, Er)l = 2M (0 = r = l, -*< Qr< E, <*-).

(ii) If the real constants Er, p(E) are suitably chosen then

I(r, tpr, Ez) * p(Er)-p(Er) (r * 1)

for almost all fixed E2, where lp@)l=ll (i:1,2)'
It was also shown by Hayman and Korenblum in [4] that lf O<k(r)/ in

0<r< 1 and

(1.3) u(reiq)=k(t) (0<r=1, O=0=2n),

where u(z) is defined by (1.1), then the

1r-

f 'tl k(') dr < *{ V t-,

koskenoj
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implies that g(z) has a representation (1.2) with llpll-=-. on the other hand if
tlre above integral diverges, then g(z) exists as in (1.1), and (1.3) is satisfied, but
g(z) cannot be represented as in (1.2) with jlpll_=-.

In [5] Korenblum poses the problem of finding results analogous to the above
when (1.3) is replaced by the two-sided condirion

(r.4) lu(reio)l=k(r) (0= r-<1,0 <A=2n).

we shall show that for this problem one is led to consider l[ng1ar in place of
It(k(r)|!-r))lz4, and that if quite a weak regutarity 

"oräiiion 
for fr(r) is sa-

tisfied then the former integral has the same significance for the two-sided con-
dition (1.4) as the latter has for the one-sided condition (1.3). It is perhaps of
interest to note that such a regularity condition is included in Korenblum's
problem which appeared before the paper of Hayman and Korenblum.

Theorem L Suppose that (1.4) is satisfied, where 0=k(r)7 in O<r<l qnd
u(z) is defined by (l.l). If

then

V(r, er, ez)l = 1 2BJ (0 = r < l, - oo < er = ez-: f c,,)

and there is a real-aalued function p on ( - -, ..) satisfying

lp@)l=64J (-..< E <oo)
ond

(l.s)

sltch that
I(r, Er, E) - tt(Ez)-p(q) (r * 1)

fo, -6<.Er<.Ez<**. Hence g(z) has a representation (1.2), with llltll*=64J.

Remark. Finbarr Holland and Brian Twomey pointed out to us that this
is only a slight generalisation of f2, Theorem 5.71).

Theorem 2. Let k(r),/ in O=r=l with fr(O):l and Jlt<g1ar:*. I.f,
for some positiae integer n,(l-r)'k(r)\ ln 0=r=1, then there exists g:11qi1s
as in (l.l) with (1.4) satisfied, such that

I(r,0,n)** (r*1).

Hence the necessary condition (i) of Hayman and Korenblum is not satisfied.

However, we shall show that in the absence of some regularity condition as
occurs in Theorem 2 the two-sided result given in Theorem I is not best possible

1

{ tr@) dr - J=*
0

Irrkp* s) - tt (E)l = 1oo 
, 
j, k e) ctt [-*<E{-,0<r=+)
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(2.r)

for 0<r=l and '@<EL<.Ez<-. We now show that, for -@<E<@,

in the sense that the corresponding one-sided result of Hayman and Korenblum

is best possible.

Theorem 3. There exists o<k(r)/* in 0<r'l with [[ng1ar:a such

that if E:u*iu as in (l.l) and (1.4) is satisfied, then g(z) has a representation

(1.2) with llpll-=-.

2. ProofofTheorem 1

lf g(z):11-yio as in (1.1) then from Green's formula (or, see [4], proof of
Theorem l) we get

I(r, er., ez) : [, (Qei*'1 + -+-i'(Qe'*'1 +

so that

, 2k (q)aE-fr

dt

11

i tu (QeiE)1 + = 641 
'

then put 
1 ,

p(E): 
! 

u(Qeil)+ (-..< (p =oo)

rsions of Theorem l, apart from (1.5), follow immediately.

rove (2.2) we follow 12, Theorem 5.71and set I - (1 + r)12

sQ)--+I ffiu(qeio)dq (lrl- r<1).
-tu o

0= 0=2n,

,)t 
=L i" dE=+l

ls'Ur'u)l=#.

M (r) - nax ls (r)1,
lzl:r

11

i *@)rtr = r,i d, i ry dt -t / r(+)

! *rr)dr = 161 .

(2.2)

and if we t

(2.3)

the conclu
To pr

Then, for

ls' (rr'u

so that

(2.4)

Thus, if

then

so that

(2.s)
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By the maximum principle,

l+l=,*(+) (ta=i)
and so, for - @<E<@,

i tu?,'\t* = ,(*)*, ,[ M@) dr = u ,i M(r) dr = 64r

u, ."qrirado.
To prove (l .5) first note that from (2.1) and (2.3) we obtain

u@ + s1 - p1*) : j lo (tei<o+ "t1 - o 1te*11 
!!

to
: I(r,E,E+i+ I lu(tei{o+"t1-u1tet*11!r! (0=r< 1).

If O<r<R<1 and - 6<.E<.@)

i "1,r*1! 
: lt)(teiq) log rlf - i ry,bg t dt

and, since a4ed;:o(t1t-t)) (r*t) by (2.5), itfollows that

(2.6) p(E+s)* tt(E) : I(r, E, E+s)-lu(rei(o+"t)-uTreio)llogr

_ i fu, 
t 
ä:'.'t _r#91tog t dt

Take r:1-s with lf2=r=1, and then

ll(r, E,E*s)l = 't V{r",\ld0 = sklr) = [ oUro,.

Also, by (2.4), 
E r's

lla (rei{o+"r; - o (reio)ltog rl = 2 (t - n T 
" 

lffildr < t6skt+) = rr, j" k Q) dt.

In the same way, for - @<E<@)

V ryrogtdtl= i b'{,"*lr.c+ dt=t6 !r(+)dt=-32,iurn nn.

Using the above estimates in (2.6) we obtain (1.5).
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3. ProofofTheorem 2

Assume that the hypotheses of Theorem 2 are satisfied. Define e, (0<er= 1) by

(.3.1) k(l-e): P (P:1,2, ...).

Then e, decreases (strictly) to 0 as p increases to - and

(3.2) § ,,: -p:|

follows from ![k(r)dr:*. Now put

)"(r): §r'rc, (0<r<1).
p:L

If l-er-r€r=I-Eq,q>2 and K is a fixed positive integer, then

2(r) = Kq-r ; (l-en)tt', = Kq+ ; *, [-3].p:K.t+r p:G+r '( Eol

From the behaviour of (l -r)'k(r) and (3.1) we have

pei=qei @=q)
so that

Z = (+)''' =- 2tosL (p = Kq),

if K:K(n) is large enough. Hence for 1-er-r<r=l-tq and q>2,

A(r) = Kq-tq2 ; p-z < (.K+1) q =2(K+t)k(t-eq-t) =z(K+l)k(r),P:Ks+7
by (3.1).

Let nn be the least odd integer exceeding lleo and suppose that )i aornt

is the series arising from ,tr(r) when ru", is replaced by r"o. The sum of ttris series

is dominated by )"(r) and from (3.2) it follows that

(3.3) v. " :-1nn
Now define

u(reie) : 
åh 

ro, sin (noo),

and it follows easily that

I(r,o,n)::- 2?r', t* (r-l),
zt\tz p-L np

by (3.3). By the above we see also that

lu(reto)l=#?T= k(r) (0 < r = 1).
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Remark. One might consider how much the regularity condition on k(r)
in Theorem 2 can be weakened. The above argument can be modified without
too much difficulty to show that it is sufficient that

ffi=*r[* (#)) (o=r=Å=1),

for some a with 0=a=1.

4. ProofofTheorem 3

The fr(r) of Theorem 3 is a function of Besicovitch. We are indebted to Siobhan
Vernon for our knowledge of this function. The definition and relevant properties
of this function are given in the next lemma.

Lemma 4.1 tll. Let ar:Q, d*:l-2-2u (k:l;2,...) and clefine 1Q) for
0=r<l by:

"/(0): l, f(oo):2'u-', f is linear on fu*,ao*rl (k:0, 1,2,...).

fhen [[ f(r)dr:*, but if P(r) is a power series with non-negatiae cofficients and
P (r) 

= f (r) (0 =r 
<. l), 1tusn

j'o'drsc'

where C is somefixed positioe constant.

In what follows f will always denote the function of Besicovitch. Let u(z)
be harmonic in U with n(O):g and suppose that

lu(z)l =f(r) (lzl = r),
and let g:u*iu, as in §1. As in the proof of Theorem l, we have

(4.1) le'r,re,r)l =8fGlDl2) (o < r = 1).

From the proof of Theorem 1 it is clear that in order to prove Theorem 3 it is suf-
ficient to show that, for some fixed constant y depending only on the constant
C in Lemma 4.1,

Without loss of generality assume that 0:0. It is easy to show that

,t ls?r")ldr=v (o= o=2n).

,f lg (r) | dt = ! O- s) lg'(s)l ds
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and what we now prove is that

(4.2)

(4.3)

! (1 - r) ls' (r)l dr s y.

3 (0=q<1").

Let D be the subdomain of U bounded by segments of the lines from z:l
making angles X3nl4 with the positive real axis and the major arc of the tangential

circle {lzl:U{4. Suppose that (:E@) maps D onto the unit (-disc Z with

E(0):b, E\):l' and real z mapping into real (. Let z:rlt(O be the inverse

of E and in Z set

G(O - (1 -,1, (0)s'({ (0).

If one applies a conformal map to D which opens the angle nf2 at z:t
to an angle n and considers the map of Z onto this latter domain we see that it is
a convex mapping and maps {l(l:e} onto a conyex curve. When we relate this

to the mapping r! of V onto D we see that for I near to 1 at any rate the point

on the image of {l(l:e} farthest from the origin is ,lt(Q):r, say. An elementary

argument shows that for some positive constants o11o2 sUCh q,r neat I are

connected by
t-oz{l-P =r<l-or{L4.

From (4.1), (4.3), the factthat D subtends a Stolz angle at z:1 and the above

it follows that for some constant 14,

(4.4) lG(01 = xf(t-o1l/T:4. (l(l : e).

We now quote a result of Erd6s and Köväri which we require.

Lemma 4.2 131. If h(z) is an entire function and M(r,h):maxp1=,lh(,)1,
theru there exists a power series P(r) with non-negatiae cofficients such that

t M(r,h)i=-:fff=s (r=0).

Corollary. The result of the lemma remains true when h(z) is analytic in

U and M(r,h)lP(r) is consideredin O=r<L.

The corollary follows by the same argument as the lemma itself, mutatis

mutandis. Though the corollary is more convenient for our arguments the result

of the lemma itself could be used instead and so the validity of our results is not

dependent upon the corollary, whose proof is omitted.

Choose a power series P(g) with non-negative coefficients so that

1 M(e, G)

-<-<6 P(e)
From (4.4),

M(q,G) - 3P(q) = L8M(q, G) < L8xf(1'-r,11/ln).
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Define Q* by
Lemma 4.1.

(4.5)

Suppose

dk:l-orl/ l--Qk, i.e. 1- Q*:((t- a)loL),, where
We now follow the argument of Besicovitch in tl]

i 9on< const.{ V r- q

that P(q) -Zfr: bnQ" and write

(ä u,n"* å,u.

where M is a positive integer to be specified

ttq
later. We have

ex+t § u, n"

f '-ctq=
nt" lr-g

< 1 8xf (l - 01/ L au)'f
,k

= cgnrt. -!. {zru-t ezM(t- q,.) + Zzu ezM(t- qu * ,)}
t/ ll , -

: consr. -!- {2ru-t s(zMloz)z-zk+t +2zu s(zMloz)r-ru*'}.lu \

the ao are given in
to show that

'T'P(q) Qt+r

,t. Y',,-n-de: r! tlQ,

that

M

Z b" qf,
0

and that

or+r 2 u.r" oo or+r ,

{' ffi an = ;,b,sft.,"[' (#)" #
Now, 

Q*

'[' # dQ -'[' *';;':?* 
dq ='[' ffi an

and if we put M(L- Q):t the last integral becomes

M(L- qx) 
e- t ch I T e-t

^,1*,r@ 
M=ffi1 7dr'

Hence, for large k, writing o for 61,

au;t p1 - (e) 
dq =const. + {f@o)Qk 

M *-f(ao*Jqo-#},!- /r- q /\",J"'y'M'
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Now choose M-2'ut'kn so that the right hand side above is bounded by

"orrr.ff {22k-t ezkaloz l)zks(zloz)z-'n*'tn} < #
Hence (4.5) follows and consequently

l uto. a(4.6) I t5 dq < const.

With r:rl@) we observed earlier that if r, Q are near to l, then

1-or1h - p=r and from
(1-r)lg'(r)l = M(p,Q

it follows that for some fixed 4(O<r1<l),

i o-'tw'rr)\dr =- i *U-ff' e)a''

If we now set r:l -(t-r)21of,r". ottlin, for some 11' that

i o-')V'tr)ldr = *"u' i ffio'
and so (4.2) follows.

Concluding remark

Theorem 3 has a bearing on the 'best' regularity condition on k(r) in Theorem 2'

Though the condition considered at the end of §3 seems very weak indeed, the

Besicovitch function in §4 does not satisfy such a condition for any a.
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