CONDENSER CAPACITIES AND REMOVABLE SETS IN W^{1, p 1)}

TORBJÖRN KOLSRUD

Introduction. The purpose of this paper is to characterize the sets E in \mathbb{R}^d , $d \ge 2$, closed and of Lebesgue measure zero, which are *removable* for the Sobolev space $W^{1,p}$, 1 , in the sense that

$$(*) W^{1, p}(\mathbf{R}^d \setminus E) = W^{1, p}(\mathbf{R}^d).$$

In [7], Vodop'janov and Gol'dshtein stated that (*) holds if and only if E is a null set for *p*-condenser capacities, or equivalently (see Hesse [2]) a null set for *p*-extremal length. Here we present a short proof based on a so-called *strong-type capacitary* estimate (well known in potential theory) but with respect to condenser capacities. This is supplied in Theorem 7. In Theorem 9 we state and prove a somewhat more general version of Vodop'janov and Gol'dštein's result.

I want to thank Lars Inge Hedberg and Olli Martio for their help and valuable comments.

1. Definition. In \mathbb{R}^d , $d \ge 2$, let Ω be an arbitrary open set, and let 1 . $We define <math>L^{1,p}(\Omega)$ as the class of (real-valued) distributions in Ω with partial derivatives of order one in $L^p(\Omega)$:

$$L^{1,p}(\Omega) = \{ u \in \mathscr{D}'(\Omega) \colon |\nabla u| \in L^p(\Omega) \}.$$

We drop Ω from the notation when $\Omega = \mathbf{R}^d$: $L^{1, p} = L^{1, p}(\mathbf{R}^d)$.

Equipped with the functional

(1)
$$u \to \left\{ \int_{\Omega} |\nabla u|^p \, dx \right\}^{1/p},$$

 $L^{1, p}(\Omega)$ becomes a semi-normed space.

We remark that $C^{\infty}(\Omega) \cap L^{1,p}(\Omega)$ is dense in $L^{1,p}(\Omega)$, and that the quotient space $L^{1,p}(\Omega)/\{\text{constants}\}$ is a Banach space when Ω is connected. For these and other properties of $L^{1,p}$ -spaces, we refer to Maz'ja [5, Kapitel 1].

¹⁾ Originally included as Chapter 9 in the author's preprint [4].

2. The Sobolev space $W^{1,p}(\Omega)$ consists of all $u \in L^{1,p}(\Omega)$ such that in addition, $u \in L^{p}(\Omega)$. The functional

(2)
$$u \to \left\{ \int_{\Omega} |\nabla u|^p \, dx \right\}^{1/p} + \left\{ \int_{\Omega} |u|^p \, dx \right\}^{1/p}$$

makes $W^{1,p}(\Omega)$ a Banach space. In analogy with $L^{1,p}(\Omega)$, the $C^{\infty}(\Omega)$ members of $W^{1,p}(\Omega)$ form a dense subset (w.r.t. the norm (2)).

3. Definition. Let $E \subset \mathbb{R}^d$, $d \ge 2$, be a closed set of zero Lebesgue measure. We say that E is *removable* for $L^{1,p}$ (or $W^{1,p}$) if $L^{1,p}(CE) = L^{1,p}$ (or $W^{1,p}(CE) = W^{1,p}$).

One may check that removability in $L^{1,p}$ and $W^{1,p}$ are equivalent concepts, and we will only treat the former case.

Since m(E)=0, removability of a set E means the following: Given a function $u \in L^{1,p}(CE)$, there is a function \tilde{u} in $L^{1,p}$ such that $u=\tilde{u}$ a.e.

We remark that there is nothing sacred with \mathbf{R}^d as the underlying set. One could equally well treat the problem of when $L^{1,p}(\Omega \setminus E) = L^{1,p}(\Omega)$ for some open set Ω , and the answer is completely analogous to our Theorem 9 below.

Before turning to the problem of removability, we need one more concept.

4. Definition. Let Ω be an open subset of \mathbb{R}^d , and let $A_0, A_1 \subset \Omega$ be compact and disjoint sets. The (1, p)-condenser capacity of (A_0, A_1) with respect to Ω is defined as

(3)
$$\Gamma_p(A_0, A_1; \Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^p \, dx: \, u = i \quad \text{on} \quad A_i, \, i = 0, \, 1 \right\}.$$

The functions u in question can be assumed continuous on Ω and we may also take the infimum over all u's such that $u \leq 0$ on A_0 and $u \geq 1$ on A_1 . (See §6 below.)

We will also write Γ_p^{Ω} for the map $(A_0, A_1) \rightarrow \Gamma_p(A_0, A_1; \Omega)$ and we will omit mention of the set Ω when it equals $\mathbb{R}^d: \Gamma_p = \Gamma_p^{\mathbb{R}^d}$.

5. If $M_0, M_1 \subset \Omega$ are two disjoint, not necessarily compact, sets, we define

(4)
$$\Gamma_p(M_0, M_1; \Omega) = \sup \{ \Gamma_p(A_0, A_1; \Omega) : A_i \subset M_i, A_i \text{ compact}, i = 0, 1 \}.$$

For a real-valued and continuous (say) function $u \in L^{1,p}(\Omega)$, we define

(5) $\Lambda_{j,k}^n = \{ u < j + k \cdot 2^{-n} \}, and$

$$M_{j,k}^n = \{u > j + (k+1) \cdot 2^{-n}\}, \quad j, k, n \in \mathbb{Z}, \quad n \ge 1, \quad 0 \le k \le 2^{n-1}.$$

With this definition, $\Gamma_p(\Lambda_{i,k}^n, M_{i,k}^n; \Omega)$ makes sense.

6. It is well known that one can truncate functions in $L^{1,p}(\Omega)$. Furthermore, for any constant λ

$$\nabla \max(u, \lambda) = \nabla u \cdot \mathbf{1}_{\{u < \lambda\}}$$
 a.e.,

(6)

and similarly

(7)

$$\nabla \min (u, \lambda) = \nabla u \cdot \mathbf{1}_{\{u > \lambda\}} \text{ a.e}$$

Hence in both cases the semi-norm of the contracted function is no greater than that of u.

The following result is analogous to Theorem 2.1 in [4].

7. Theorem. If $\Lambda_{i,k}^n$ and $M_{i,k}^n$ are defined as in (5), then

(8)
$$2^{-np} \cdot \sum_{j,k} \Gamma_p(\Lambda^n_{j,k}, M^n_{j,k}; \Omega) \leq \text{const.} \int_{\Omega} |\nabla u|^p \, dx.$$

Proof. Assume first that u takes its values in [0, 1]. Let $\eta(t)=0$ on $(-\infty, 0)$, $\eta(t)=t$ on [0, 1] and $\eta(t)=1$ on $[1, \infty)$.

For $k \in \mathbb{Z}$ we define $\eta_k(t) = \eta(t-k)$. Then $\|\eta'_k\|_{\infty} = 1$ for all k. Also, define $F_k = \eta_k \circ (u \cdot 2^n) \in L^{1,p}(\Omega)$. Then $F_k = 0$ on $\Lambda_{0,k}^n$ and $F_k = 1$ on $M_{0,k}^n$, so

$${\varGamma}_p({\Lambda}^n_{0,\,k},\,{M}^n_{0,\,k};\,\,\Omega) \le \int\limits_{\Omega} |
abla F_k|^p.$$

Now, supp $(\nabla F_k) \subset N_k = \{(k-\gamma) \cdot 2^{-n} < u < (k+1+\gamma) \cdot 2^{-n}\}$ (with obvious modifications when k=0 or 2^{n-1}) where $\gamma \in (0, \frac{1}{2})$, so that $\sum_k 1_{N_k} \leq 2 \cdot 1_{\Omega}$. Furthermore,

$$\nabla F_k \leq \|\eta'_k\|_{\infty} \cdot |\nabla u| \cdot 2^n = 2^n \cdot |\nabla u|.$$

Hence we get

$$2^{-np} \cdot \sum_{k} \Gamma_{p}(\Lambda_{0,k}^{n}, M_{0,k}^{n}; \Omega) \leq 2^{-np} \cdot \sum_{k} \int_{\Omega} |\nabla F_{k}|^{p} dx \leq 2^{-np} \cdot \sum_{k} \int_{N_{k}} |\nabla u|^{p} dx$$
$$\leq 2 \cdot \int_{\bigcup N_{k}} |\nabla u|^{p} dx \leq 2 \cdot \int_{\Omega} |\nabla u|^{p} dx.$$

By (6) and (7) we may write $u = \sum_{j \in \mathbb{Z}} u_j$ where $j \leq u_j < j+1$ and $u_j \in L^{1, p}(\Omega)$. This gives us the desired result (8), after summation over j. \Box

We need one more concept.

8. Definition. A closed set $E \subset \mathbb{R}^d$ is a null set for Γ_p , abbreviated an $N\Gamma_p$ -set, if $\Gamma_p = \Gamma_p^{CE}$.

Note that m(E)=0 is necessary in order that E be an $N\Gamma_p$ -set. It is well known that $N\Gamma_p$ -sets are precisely the null sets for p-extremal distance. See Hesse [2, Theorem 5.5], and also the early article [7] by Väisälä. We will not use this connection here.

- We can now prove

9. Theorem. A set E is removable for $L^{1,p}$ if and only if it is an $N\Gamma_p$ -set. More generally, if for each $x \in E$ there is a neighbourhood U_x of x and a constant K_x such that

(9)
$$\Gamma_p^{U_x} \leq K_x \cdot \Gamma_p^{U_x \setminus E},$$

then E is removable for $L^{1, p}$.

Proof. It is enough to prove that E is removable if (9) holds. The rest is obvious. We first prove that if for an open set U,

(10)
$$\Gamma_p^U \leq K \cdot \Gamma_p^{U \setminus E}$$
 (K = constant)

then $L^{1, p}(U) = L^{1, p}(U \setminus E)$.

Choose $u \in L^{1, p}(U \setminus E)$. We may assume that $0 \le u \le 1$. Let V_k^n be the (unique) Γ_p^U -extremal of $(\Lambda_{0,k}^n, M_{0,k}^n)$:

$$\Gamma_p^U(\Lambda_{0,k}^n, M_{0,k}^n) = \int_U |\nabla V_k^n|^p \, dx.$$

Define $u_n = 2^{-n} \cdot \sum_k V_k^n \in L^{1, p}(U)$. Then u_n tends to u pointwise a.e. as n approaches infinity. Further,

$$\int_{U} |\nabla u_n|^p dx \leq \text{const. } 2^{-np} \sum_k \int_{U} |\nabla V_k^n|^p dx$$
$$= \text{const. } 2^{-np} \sum_k \Gamma_p^U(\Lambda_{0,k}^n, M_{0,k}^n)$$
$$\leq \text{const. } 2^{-np} \sum_k \Gamma_p^{U \setminus E}(\Lambda_{0,k}^n, M_{0,k}^n)$$
$$\leq \text{const. } \int_{U \setminus E} |\nabla u|^p dx,$$

where the first inequality follows from the fact that $\sum_{k} l_{\supp(|\nabla V_{k}^{n}|)} \leq 3$, the equality from the choice of V_{k}^{n} , the second inequality from (10), and the third inequality from Theorem 7.

A weak compactness argument gives us a sequence (u'_n) in the convex hull of $(u_1, ..., u_n)$, which is strongly convergent in the semi-norm (1). It follows that $u \in L^{1,p}(U)$.

The general case now follows easily. Let $u \in L^{1,p}(CE)$. Multiplying u with a cut-off function if necessary, we may assume that u is compactly supported. Suppose supp $(u) \cap E \subset \bigcup_{1}^{N} U_{i}$, where $U_{i} \in \{U_{x}, x \in E\}$. Then, from what we just proved, $u|U_{1} \setminus E$ has a continuation to U_{1} , and it follows that $u \in L^{1,p}(CE \cup U_{1})$. Starting anew with u, now considered as an element of $L^{1,p}(CE \cup U_{1})$, we get $u \in L^{1,p}(CE \cup U_{1} \cup U_{2})$, and eventually $u \in L^{1,p}(CE \cup (\bigcup_{1}^{N} U_{i}))$, which proves that $u \in L^{1,p}(CE)$. \Box

10. Remarks. 1. The proof follows the idea of Vodop'janov and Gol'dshtein [7]; what is needed in order to justify their argument is the estimate (6) of Theorem 7.

2. In [1], Hedberg uses condenser capacities as a means of characterizing removability in other function spaces than those considered here.

3. One can prove that $L^{1,p}$ -removability implies $L^{1,p+\delta}$ -removability for all $\delta > 0$. Also, defining $W^{m,p}$ -removability in the natural way, $L^{1,p}$ -(or perhaps better $W^{1,p}$ -) removability implies $W^{m,p}$ -removability. (Here $W^{m,p}(\Omega)$ is the

completion of $C^{\infty}(\Omega)$ w.r.t. the norm

$$\|u\| = \left\{\sum_{|\alpha| \leq m} \int_{\Omega} |D^{\alpha}u|^p\right\}^{1/p},$$

for $m \in \mathbb{Z}^+$.) This follows from an argument similar to that of [3, Theorem 1, second part].

4. We note that if one had a strong-type capacitary estimate w.r.t. condenser capacities in $W^{m, p}(\Omega)$, then Theorem 9 could be carried over also to this situation. The problem is the absence of a continuous truncation operation.

5. It would be nice to find a situation in which a Dirichlet space (see [4]) version of Theorem 9 could be carried out. One has to find a proper way of defining a space $W(\Omega)$ ($\Omega \subset X$ open) corresponding to $W^{1,2}(\Omega)$ (in the case of $W^{1,2}$ -removability), though.

6. Removability in $L^{1,p}$ can be formulated as a problem on removable singularities for certain PDEs. Consider the case p=2 and localize, i.e. consider $L^{1,2}(M)$ for $M=\Omega$ and $M=\Omega \setminus E$, where Ω is bounded. In analogy with [4, §6], we write

$$L^{1,2}(\Omega \setminus E) = H(\Omega \setminus E) \oplus L^{1,2}_0(\Omega \setminus E),$$

where $L_0^{1,2}(\Omega \setminus E)$ is the closure of $C_0^{\infty}(\Omega \setminus E)$ in the $L^{1,2}(\Omega \setminus E)$ -semi-norm. Then $H(\Omega \setminus E) = L_0^{1,2}(\Omega \setminus E)^{\perp} = \{ u \in L^{1,2}(\Omega \setminus E) : \Delta u = 0 \text{ in } \Omega \setminus E \}$, by Weyl's lemma.

Thus E is removable for $L^{1,2}$ if and only if it is a removable singularity for harmonic functions of class $L^{1,2}(\Omega \setminus E)$. When $p \neq 2$ one gets a similar result about the equation

$$\operatorname{div}\left(\nabla u \left|\nabla u\right|^{p-2}\right) = 0.$$

7. We note that Theorem 9 gives an easy proof for the in a way obvious (and well-known, see [7]) fact that a removable set E does not separate, i.e. dim $E \leq d-2$ where dim refers to the topological dimension.

8. It is easily seen that E is removable if E is of zero (d-1)-dimensional Hausdorff measure: $\Lambda_{d-1}(E)=0$. (One can argue as in [3, Theorem 1].) Forming the Cartesian product of suitable sets, this observation can be used to obtain removable sets of any Hausdorff-dimension strictly less than d.

We mention also that it follows from the theory of quasi-conformal mappings that in the case d=2, there is a linear set E of positive linear measure, which is an $N\Gamma_2$ -set, (Olli Martio, personal communication).

9. We refer to [6] for applications to quasi-conformal mappings (the case p=d).

Added in proof: In addition to the references already mentioned, we have become aware of the work of H. Yamamoto. In [8, Theorem 2], Yamamoto gives yet another proof of Vodop'janov and Gol'dštein's result.

References

- HEDBERG, L. I.: Removable singularities and condenser capacities. Ark. Mat. 12:2, 1974, 181-201.
- [2] HESSE, J.: A *p*-extremal length and *p*-capacity equality. Ark. Mat. 13, 1975, 131–144.
- [3] KOLSRUD, T.: A uniqueness theorem for higher order elliptic partial differential equations. -Math. Scand. 51, 1983, 323-332.
- [4] KOLSRUD, T.: Capacitary integrals and fine potential theory in certain function spaces. University of Stockholm, 1983, preprint.
- [5] MAZ'JA, V. G.: Einbettungssätze für Sobolewsche Räume. Teil 1. Teubner-Texte zur Mathematik 21, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979, 1–204.
- [6] VODOP'JANOV, S. K., and V. M. GOL'DŠTEĬN: A criterion for the removability of sets for W¹_p spaces of quasiconformal and quasi-isometric mappings. - Dokl. Akad. Nauk SSSR 220, 1975, 769-771 (Russian).
- [7] VÄISÄLÄ, J.: On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. A I Math. 322, 1962, 1–12.
- [8] YAMAMOTO, H.: On null sets for extremal distances of order p. Mem. Fac. Sci. Kochi. Univ. Ser. A Math. 3, 1982, 37-49.

University of Stockholm Department of Mathematics Box 6701 S-113 85 Stockholm Sweden

Received 12 April 1983