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CONDENSER CAPACITIES AND REMOVABLE
SETS IN We?»

TORBJORN KOLSRUD

Introduction. The purpose of this paper is to characterize the sets E in RY,
d=2, closed and of Lebesgue measure zero, which are removable for the Sobolev
space Wh? 1< p=<eo, in the sense that

(%) WERRINE) = Wh? (RY).

In [7], Vodop’janov and Gol’dshtein stated that () holds if and only if E is a null
set for p-condenser capacities, or equivalently (see Hesse [2]) a null set for p-extremal
length. Here we present a short proof based on a so-called strong-type capacitary
estimate (well known in potential theory) but with respect to condenser capacities.
This is supplied in Theorem 7. In Theorem 9 we state and prove a somewhat more
general version of Vodop’janov and Gol’dstein’s result.

I want to thank Lars Inge Hedberg and Olli Martio for their help and valuable
comments.

1. Definition. In RY d=2, let Q be an arbitrary open set, and let 1 <p<ce.
We define LV“?(Q) as the class of (real-valued) distributions in € with partial
derivatives of order one in LP(Q):

L2 (Q)={ue D’ (Q): |Vu|e L7 (Q)).

We drop @ from the notation when Q= R*: L"?=L"?(R%).
Equipped with the functional

(D u— {f |VulP dx}l‘/”,
Q

L"?(Q) becomes a semi-normed space.

We remark that C=(Q)nL“?(Q) is dense in L"?(Q), and that the quotient
space L“?(Q)/{constants} is a Banach space when Q is connected. For these and
other properties of L"?-spaces, we refer to Maz’ja [5, Kapitel 1].

D QOriginally included as Chapter 9 in the author’s preprint [4].
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2. The Sobolev space W"?(Q) consists of all u€ L»?(Q) such that in addition,
u€ LP(Q). The functional

2 u - {f [Vul? dx}w+ {f [ul? dx}ljp
2 (2]

makes W"?(Q) a Banach space. In analogy with L“?(Q), the C>=(Q) members
of W'?(Q) form a dense subset (w.r.t. the norm 2).

3. Definition. Let EC R, d=2, be a closed set of zero Lebesgue measure.
We say that E is removable for L"? (or W"?) if L"P(CE)=L"" (or W“?(CE)=
whp).

One may check that removability in L“? and W"? are equivalent concepts,
and we will only treat the former case.

Since m(E)=0, removability of a set £ means the following: Given a func-
tion u€ L“P(CE), there is a function # in L“” such that u=# a.e.

We remark that there is nothing sacred with R? as the underlying set. One
could equally well treat the problem of when L“?(Q\E)=L"“?(Q) for some open
set 2, and the answer is completely analogous to our Theorem 9 below.

Before turning to the problem of removability, we need one more concept.

4. Definition. Let Q be an open subset of R? and let 4,, 4,CQ be
compact and disjoint sets. The (1, p)-condenser capacity of (4,, A,) with respect
to Q is defined as

3) l’p(Ao,'Al; Q) = inf{fqul"dx: u=1i on A;,i=0, 1}.
2

The functions u in question can be assumed continuous on Q and we may also
take the infimum over all 2’s such that ¥=0 on 4, and u=1 on A4,. (See§6 below.)
We will also write I' ;’ for the map (4, 4,)~>I,(A4y, A;; Q) and we will omit
mention of the set Q when it equals R?: I',=I'%",
5. If My, M;cQ are two disjoint, not necessarily compact, sets, we define

@  I,(My, My; Q) = sup {I',(4,, 415 Q): A; € M;, A;compact, i =0, 1}.
For a real-valued and continuous (say) function u€L“?(Q), we define
Q) nk={u<j+k-27"), and

M} = {u=j+k+1)-27"), jkn€Z, nz=1, 0=k=2"1
With this definition, I',(A},, M} ,; Q) makes sense.

J

6. It is well known that one can truncate functions in L%?(Q). Furthermore,
for any constant A

) Vmax (4, 1) = Vu 145 ae.,
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and similarly
@) Vmin(u, ) = Vu- 1., ae.

Hence in both cases the semi-norm of the contracted function is no greater than
that of wu.
The following result is analogous to Theorem 2.1 in [4].

7. Theorem. If A%, and Mj, are defined as in (5), then

©®) 27" 3T, (AL s Ml Q) = const. [ [Vul? dx.
Jrk Q

Proof. Assume first that u takes its values in [0, 1]. Let 7(1)=0 on (— e, 0),
n(t)=t on [0,1] and n(#)=1 on [I, ).

For k€Z we define n,(t)=n(t—k). Then |n =1 for all k. Also, define
Fy=nou-2"€L"?(Q). Then F;=0 on Aj, and F,=1 on Mg,, so

T,(M4, My @ = [IVEP.
Q

Now, supp (VF)CN={(k—y)-27"<u<(k+1+y)-27"} (with obvious modi-
fications when k=0 or 2"~!) where y€(0, 1), so that 21 Nk§2~ 1o. Furthermore,

IVE| = llmill - V] -2 = 27 [Vadl.
Hence we get

27 ST (Al My @ =273 [[VEPdx=2"".3 [|Vuldx
k [ kN,

=2- [|VuPdx=2. [ IVul? dx.
UNg 2
By (6) and (7) we may write u=_,.zu; where j=u;<j+1 and u;€L"*(Q).
This gives us the desired result (8), after summation over j. O
We need one more concept.

8. Definition. A closed set EcCR* is a null set for I,, abbreviated an
NI -set, if I',=T¢F.

Note that m(E)=0 is necessary in order that E be an NI -set. It is well
known that NI ,-sets are precisely the null sets for p-extremal distance. See Hesse
[2, Theorem 5.5], and also the early article [7] by Vaisdld. We will not use this
connection here.

— We can now prove

9. Theorem. A set E is removable for L“? if and only if it is an NI ,-set.
More generally, if for each x€E there is a neighbourhood U, of x and a constant
K, such that
©) I}* = K. T,

then E is removable for L“*.
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Proof. It is enough to prove that E is removable if (9) holds. The rest is
obvious. We first prove that if for an open set U,

(10) 1",(,] =K- FS\E (K = constant),

then L"P(U)=L"P(U\KE).
Choose u€ L¥*P(UN\E). We may assume that 0=u=1. Let Vi be the (unique)
I'J-extremal of (A, M2 ,):

Ty, M) = [ VPP dx.
U

Define  u,=2""-3, V;¢L""(U). Then u, tends to u pointwise a.e. as n
approaches infinity. Further,

_fqu,,]P dx = const. 27" > f|VVIZ'|p dx
kg

U

= const. 27" 3 TY(As ., M3 )
k

= const. 27" S TN (AB o ME L)
k

= const. f [VulP dx,
UNE
where the first inequality follows from the fact that Zilsupp(vryp =3, the equality
from the choice of ¥}, the second inequality from (10), and the third inequality
from Theorem 7.

A weak compactness argument gives us a sequence (1)) in the convex hull
of (uy,...,u,), which is strongly convergent in the semi-norm (1). It follows that
uc L?(U).

The general case now follows easily. Let u€L>?(CE). Multiplying u with
a cut-off function if necessary, we may assume that » is compactly supported.
Suppose supp (u) nECJY U;, where Uc{U,, x€E}. Then, from what we just
proved, u|U\E has a continuation to U,, and it follows that ¢ LYY(CELU,).
Starting anew with u, now considered as an element of LYP(CEuUU,), we get
u€ L""(CEVU, U U,), and eventually uc L*P(CEU(|JY U)), which proves that
uc L**(CE). O

10. Remarks. 1. The proof follows the idea of Vodop’janov and Gol’dshtein
[7]; what is needed in order to justify their argument is the estimate (6) of Theorem 7.

2. In [1], Hedberg uses condenser capacities as a means of characterizing
removability in other function spaces than those considered here.

3. One can prove that L%P-removability implies L%?*%removability for
all 6=0. Also, defining W™?-removability in the natural way, L“P-(or perhaps
better W™'P-) removability implies W™P-removability. (Here W™P(Q) is the
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completion of C=(Q) w.r.t. the norm
lull = {| z [ (D=l
al=m g

for mEZ‘*) This follows from an argument similar to that of [3, Theorem 1,
second part].

4. We note that if one had a strong-type capacitary estimate w.r.t. condenser
capacities in W™P?(Q), then Theorem 9 could be carried over also to this situation.
The problem is the absence of a continuous truncation operation.

5. It would be nice to find a situation in which a Dirichlet space (see [4]) version
of Theorem 9 could be carried out. One has to find a proper way of defining a space
W(Q) (QC X open) corresponding to W*(Q) (in the case of Wh%removability),
though.

6. Removability in L“? can be formulated as a problem on removable sin-
gularities for certain PDEs. Consider the case p= 2 and localize, i.e. consider
LY(M) for M=Q and M=Q\E, where Q is bounded. In analogy with
[4, §6], we write

LY (Q\E) = H(Q\E)® L§*(Q\E),

where LLA(QN\E) is the closure of Cy(Q\E) in the LY (Q\E)-semi-norm.
Then H(Q\E)=LL*(Q\E)*={ueL»(Q\E): u=0 in O\E}, by Weyl’s
lemma.

Thus E is removable for L%2 if and only if it is a removable singularity
for harmonic functions of class L*3*(Q\E). When p>2 one gets a similar result

about the equation
div (Vu|VulP~2) = 0.

7. We note that Theorem 9 gives an easy proof for the in a way obvious (and
well-known, see [7]) fact that a removable set E does not separate, ie. dim E=d—-2
where dim refers to the topological dimension.

8. It is easily seen that E is removable if E is of zero (d—1)-dimensional
Hausdorff measure: A;_,(E)=0. (One can argue as in [3, Theorem 1].) Forming
the Cartesian product of suitable sets, this observation can be used to obtain re-
movable sets of any Hausdorff-dimension strictly less than d.

We mention also that it follows from the theory of quasi-conformal mappings
that in the case d=2, there is a linear set E of positive linear measure, which is
an NIyset, (Olli Martio, personal communication).

9. We refer to [6] for applications to quasi-conformal mappings (the case
p=d).

Added in proof: In addition to the references already mentioned, we have
become aware of the work of H. Yamamoto. In [8, Theorem 2], Yamamoto
gives yet another proof of Vodop’janov and Gol’dStein’s result.



348 ToRrRBIORN KOLSRUD: Condenser capacities and removable sets in W1 »?

References

[1] HepBERG, L. I.: Removable singularities and condenser capacities. - Ark. Mat. 12:2, 1974,
181—201.

[2] HEssE, J.: A p-extremal length and p-capacity equality. - Ark. Mat. 13, 1975, 131—144.

[3] KoLsrup, T.: A uniqueness theorem for higher order elliptic partial differential equations. -
Math. Scand. 51, 1983, 323—332.

[4] KoLsruD, T.: Capacitary integrals and fine potential theory in certain function spaces. - Uni-
versity of Stockholm, 1983, preprint.

[5] Maz’1A, V. G.: Einbettungssitze fiir Sobolewsche Réume. Teil 1. - Teubner-Texte zur Mathe-
matik 21, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979, 1—204.

[6] Vopor’sanov, S. K., and V. M. GOL’DSTEIN: A criterion for the removability of sets for W;
spaces of quasiconformal and quasi-isometric mappings. - Dokl. Akad. Nauk SSSR
220, 1975, 769—771 (Russian).

[7] VAISALA, J.: On the null-sets for extremal distances. - Ann. Acad. Sci. Fenn. Ser. A I Math.
322, 1962, 1—12.

[8] Yamamoro, H.: On null sets for extremal distances of order p. - Mem. Fac. Sci. Kochi. Univ.
Ser. A Math. 3, 1982, 37—49.

University of Stockholm
Department of Mathematics
Box 6701

S-113 85 Stockholm

Sweden

Received 12 April 1983



