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CLOSE-TO-CONVEX FUNCTIONS
AND LINEAR-INVARIANT FAMILIES

WOLFRAM KOEPF

1. Introduction. Landau showed in 1925 [6] that in the class S of norma-
lized schlicht functions on the unit disk we can get a distortion theorem for the
n-th derivative if we have ensured the first n Bieberbach coefficient estimates to be
correct.

We shall modify this result for linear-invariant families. Families of close-
to-convex functions and of functions of bounded boundary rotation will be showed
to be linear-invariant.

Because of the coefficient estimate for close-to-convex functions and functions
of bounded boundary rotation derived by Aharonov and Friedland [1], it is pos-
sible to get the distortion theorem for the n-th derivative for all », but here we
obtain the same conclusion more elementarily (and without using the linear-in-
variance), just because the coefficient estimate is given for all n.

All functions f considered here are analytic functions on the unit disk with
normalization f(0)=0, f’(0)=1, and they are locally schlicht, i.e., {z|f"(z)=0}=0.
Let N be the class of such functions.

Pommerenke defined a linear-invariant family in [9] and showed some pro-
perties of such families. A subset F of N is called linear-invariant if it is closed
under the re-normalized composition with a schlicht automorphism of the unit
disk. If the modulus of the second Taylor coefficient is bounded in F, we define
the order « of the linear-invariant family to be

@ o = < sup | f"(O0)].
SfeF

An example of a linear-invariant family of order 2 is the class S of normalized
schlicht functions on the unit disk.

Pommerenke [9] (pp. 115—116) generalized the well-known Bieberbach distor-
tion theorems [2] (see [12] p. 178) for S to the concept of linear-invariant families
and showed for a linear-invariant family F of order « the relations

@) = o [(}—i‘l—',)—l]
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We want to give further examples of linear-invariant families. Let ¥, be the
class of functions of bounded boundary rotation kn (see Lehto [7])

Re (I—I—z—fi]

V= {fezv] vrelo, 1[[ f &

dy = kn], z= re"‘g}

for k€[2, «o[. Let further C, be the class of close-to-convex functions of order
p defined by Reade [11] and Pommerenke [10],

weL|212])

Cp = { JSEN| J¢ schlicht with convex range [

for B€[0, o.

Properties of these classes are given in the book of Schober [12] (Chapter 2).

As special cases we have ¥;=C,, the well-known class of normalized convex
functions, and C,, the class of close-to-convex functions defined by Kaplan [3].
The classes V; and Cj are increasing in k and f, respectively, and until k=4
and f=1 they contain only schlicht functions.

Aharonov and Friedland [1] showed that the Taylor coefficients of functions
in Cy aswell asin ¥, are dominated in modulus by the corresponding coefficients
of the function h, defined by

e L)
ha(2) = 20 [[1—2 1]

with a:=k/2 resp. a:=f+1. That means: For f¢V;, or fc¢C,_, we have
3 f™ )] = h{” (0).

In the proof of this inequality they used the inclusion

(4) 1/21 c Ca—l'

As closed normal families all classes ¥; and C, are compact with respect to the
topology of locally uniform convergence.
Now we prove the linear-invariance of these classes.

2. Lemma. For every B¢[0, o[ the family C, is linear-invariant of order
B+1. For every Kk€[2, o[ the family V, is linear-invariant of order kj2.

Proof. Reade [11] and Pommerenke [10] showed the desired property for
C, if B[O, 1]. In this case the functions are all schlicht and so this property follows
from a geometrical description of the classes.

We now take an arbitrary B€[0, «o[. Let f€C, with convex ¢ such that

fl_,m
arg7 :[32.
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Our first step will be to show that C, has the rotation-invariance property, which
means

JeCp= f,£Cy
=1 and

whenever |x

fi@) =182

The function ¢, defined by ¢y(z):=¢(xz)/x has convex range and obeys the

inequality

arg'fﬁ/‘
?1

T
=B

So Cj; inherits this property from C,. We show now that Cj inherits the
linear-invariance property, too. Therefore it is enough to show that for

I(z) = 1”"_ refo, 1
and for fe€C, also the function
fol—fol(O)
S (fol(0)
isin C;. Now we have to find a convex ¢, with
g'(2) n
ar =f—=.
e -3
We get
| _ fwwall VKO AUE)
ar arg-———-+arg— o
i) T M) FRURRETABYEG]
Since f is in Cj,, this expression will be less than or equal to fr/2 if we take
__ @ol
q)2 . f/(r) .

One sees from the geometric definition that the convexity of ¢ implies the convexity
of @,.

The order is given by the coefficient domination theorem (3).

In the case of the families ¥, the same argumentation gives the order. The
linear-invariance property is a consequence of the geometrical interpretation of the
definition. Because the ranges of fand g are similar, the limit boundary rotation
of the two functions coincide,

ylnf Re[1—|— f] 9_nmf ‘Re[ g,”]‘dS,

since the integrals are monotone in r (see [8], p. 12) and the suprema are equal.
Lehto [7] (p. 12) already used the linear-invariance of V. [
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Now we come to our main result.

3. Theorem. Let «€[l, [, let F be a linear-invariant family of order
a and n=2. If for all f¢F and all m, 2=m=n,

LF™ O] = hi™ (0),
then the corresponding distortion theorems
F® e = b ()

hold for all r¢[0, 1] and all 3€R.
In particular we get for all linear-invariant families of order «

(1+r)y—2

(l—r)‘"? = hy ().

[f(re®)] = 2(a+7)

Proof. We generalize a result due to Landau [6] (see [12], p. 179).

We want to transform the information about |f“(0)| from the origin to an
arbitrary point. Every linear-invariant family is of course rotation-invariant, and
so we only need to consider a positive real point .

Let be f€F and [ the Mobius-transform with

_z+r
12) = 147z
and let g be the composition
g =fol.

If g has the expansion
g(2) = ZO Cn 2™
we get for f

e )

1—rz

Because of the generalized product rule

f=uw=fm= 2"’ (Z) 2 pn=1)

and the formula
[(Z_ r)m](n)[z=r =n! 5nm
we get

FO ) = Zc [ )m![(l—rz)'"‘](""")lz

and further
© o =n 3 curm (7 a-e
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Because of the linear-invariance property it follows from f€F that

g—g(0)
g'(0)

and so the given coefficient estimate shows

€F

(m)
lew] = E“T‘(O—) lg’(0)] for all m = n.

If we take (5) with n:=1 we get
lea] = [g"(0)] = (A=rD)|f" ().

At that stage we utilize the linear-invariance property for the second time, using the
distortion theorem (2) for the first derivative. Sc we get

(m) *
FJEM(®P+Q forall m=n
m! 1—r

and

© ooy =n 3BT () (2 o

r

(as all terms here are positive). We shall show that the right-hand term equals
h&(r). With f:=h, we get

o= (1241 - 22 (29

and we write
h,ol(z) = Ah,(z)+B

B l—l—r]“
A= (l—r ’

B = h,®).

with

So we have

h, o™ (0) = (14"] hom (0),

and the right-hand side of (6) gets the form

h, l('”)O -1 :
[¢] () n m(:/l_l)(l_rz)—n‘

Looking back to formula (5) we see that this is an expression for h%(r). So we
get our conclusion for the index m:=n. For m<n the proof coincides with the
given one and our result follows.



354 WoLFRAM KOEPF

In the special case n:=2 we get the distortion theorem because of the defini-
tion of the order. (Bieberbach was the first who proved this distortion theorem
in the class S [3]) O

4. Corollary. Let a€[l, [ and neN,. Then the following equality holds:

m | £(n) i3} — max max (n) ei& — hm .
fegglrglgg.f (re'®)] Jmax max Lf® (re®)| = hy» (r)

Proof. Because of the compactness of the classes the maximum exists. For-
mulae (2) for n€{0,1} and our theorem for n=2 show what maximum we can
hope to get.

The well-known results

haEVZa and hae Coz—l
make the results sharp. [

5. Remark. The theorem we proved shows that the linear-invariance property
helps us to obtain successive distortion theorems for the n-th derivative in an
arbitrary linear-invariant family from the corresponding coefficient estimates.

But if we have — as in the cases C; and ¥, — the coefficient estimates for
all n, we can get the distortion theorems more elementarily and without using the
linear-invariance property from the following Lemma.

The Lemma arises from a note of Doppel and Volkmann [4], who used it solving
a similar problem for another class.

6. Lemma. Let in the unit disk
f(Z) = A_Z;anzn
and
g(z) = ZO b,z"

with b,€[0, [ for all n. If
la,| = b,
holds for all n, we get
/" (2] = g™ (Iz)

[EJ a Zk— n
(o

= n!kg [5) bklz(k-n =g"(lz]). O

for all z in the unit disk.

Proof. The identity

M

F™(2) = n!

k

ane the corresponding one for g imply

= nt 3 (1) lagl =t

k=n

lf"(2)] = n!

5o

=n! S
k= k=n
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