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ON THE INTEGRAL REPRESENTATION OF
BISUBHARMONIC FUNCTIONS IN R"

VICTOR ANANDAM

1. Introduction

A summable function @ in R", n=2, satisfying the condition A4%20=0
(4 is the Laplacian in the sense of distribution) can be identified with the pair (w, k)
satisfying the conditions Aw=h and 4h=0. Then h is an almost subharmonic
function; and moreover, remembering the fact that, given any Radon measure
1#=0 in R", one can construct a subharmonic function u with associated measure
u in the local Riesz representation, @ can be seen to be an almost J-subharmonic
function.

The purpose of this article is to study the properties of such functions (w, h)
with a view to represent them in R" as integrals.

A subharmonic function of finite order in R”" is the unique sum of a canonical
potential and a harmonic function [4]. To begin, we give some properties of sub-
harmonic functions for which the potential part is dominant in determining the
growth at infinity. In particular, such functions form a sup-stable convex cone.

Then it is shown that with every d-subharmonic function ®, one can associate
a subharmonic function w* and define the order of w as that of w*. This value,
of course, is the same as the order of the function 7T(r, w) defined (Privalov) by
analogy with meromorphic functions in C; that is, if @ is a §-subharmonic func-
tion in R" (harmonic in a neighbourhood of 0) with associated measure
u=ut—p=, then
1 (BY)

ln—l

T(r 0) = M(r,0%)+1, [ d.
0

where M(r, ™) is the mean of w* on |x|=r and o,=max (1, n—2). Then,
using the subharmonic function w*, we give some integral representation theorems
for w and explain their relation with the Hadamard representation theorem of
M. Arsove [2] for §-subharmonic functions in RZ.

Making use of these results, one finally arrives at the integral representation
of a bisubharmonic pair (w, h).

The details are given only in R®.
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2. Preliminaries

Let S(r) be an increasing function in R3. If S(r) is not upper bounded, we
define the order of S(r) as

log S(r) .

ord S(r) = lim sup Togr

otherwise we take that ord S(r) is 0.

For a positive measure u in R3, ord u(Bp) is called the order of u and the
smallest integer n (if it exists) such that f 7 |yI7""'du(y) is finite is called the
genus of u.

For a signed measure u=p*—u~, we shall define ord 4 and gen u as the
order and the genus of |u|. It is then simple to remark that ord yu=max (ord u*,
ord #~) and gen u=max (gen pu*, gen u”).

Define as in [3]

—x=y|7t if yl<1

B/ X —_ n—1 .
N e L AN S

where H,,=P,(cos ), P, being the Legendre polynomial of degree m and 6 the
angle between Ox and Oy.

We recall that, given any positive Radon measure y in R®, we can construct
subharmonic functions # in R® with associated measure p in a local Riesz repre-
sentation. If u=0 is of genus », one such function is f B/ (x, y)du(y), called
the canonical potential associated with p [4].

3. Measure-dominant subharmonic functions

Let u be a subharmonic function in R® with associated measure p. We say
that u is a normal subharmonic function if ord u is finite or equivalently if ord M (r, u)
is finite, where M(r, u) is the mean of u(x) on |x|=r.

A normal subharmonic function # in R® has a unique decomposition in
the form w=p+H, where p is the canonical potential associated with u and
H is a harmonic function in R3.

Theorem 1. Let u be a subharmonic function in R® with associated measure u.
If u is normal, ordu=max(ord H, —1+4ord p); and if u is not normal,
ordu is eo.

Proof. If u is not normal, ord M(r,u) is not finite and hence ordu=
ord M(r, u™)=oo.
If u is normal, let u=p+H be the canonical decomposition of u. Then,
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by Corollary 3.6 [4], ord u=max (ord H, ord p). But, by Theorem 2.4 [4], ord p=
max (0, —1+ord p).
Hence the theorem is proved.

Note. The condition ord u<1 means that u is a (Newtonian) potential up
to an additive harmonic function.

Definition 2. We say that a subharmonic function u in R® with associated
measure p is measure-dominant if ordu=max (0, —1+ord u); this class
of functions is denoted by 9.

Remarks. (1) In view of Theorem 2.1 [4], it can be seen that u€% if and
only if ord u=ord M(r, u).

(2) The class 2 includes (a) all canonical potentials (Theorem 2.4 [4]),
(b) all subharmonic functions whose order is not an integer (Corollary 2.2 [4]),
(c) all positive subharmonic functions and (d) all subharmonic functions which are not
normal. Moreover, the following results show in particular that & is a sup-stable
convex cone.

For any two subharmonic functions # and v, ord (u+v)=max (ord u, ord v);
but here, in general, we cannot replace the inequality sign by the equality sign.
In this context we have the following theorem.

Theorem 3. Let u be a subharmonic function in R® and v€2D. Then
ord (u-+v)=max (ord u, ord v)=ord (sup (4, v)).

Proof. First we note that for any two subharmonic functions # and v,
max (ord u, ord »)=ord (sup (1, v)).

In the present case, let # be an arbitrary subharmonic function with associated
measure p and v€9 with associated measure v.

We know that ord (u+v)=max (ord 4, ordv) in the following two cases:
(i) when ordu#ordv (Theorem 3.1 [4]), and (ii) when ord u=ord v=4, a non-
integer (Theorem 3.4 [4]). Hence the only case that remains to be seen is when
ord u=ord v=n, an integer.

Write v=p+H, where p is the canonical potential with associated measure
v and H is harmonic. Then ordp=ordv=n (since v€2) and hence ordv
is n+1 (Theorem 2.4 [4]).

Consequently ord (u+H+p)=n (Theorem 2.1 [4]), which implies that
ord (u+v) is n.

Corollary. Let u,v€2. Then u+v€9.

For ord (u+v)=max (ord u, ord v)
=max (ord M(r, u), ord M (r, v))
=ord (M (r, u)+M(r, v))
=ord M(r, u+v).
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Hence u+v€9.

Proposition 4. Let u be a subharmonic function in R® majorizing some
v€YD. Then ucg.

Proof. Let us suppose that « is a normal subharmonic function with associated
measure /.
Write u=p+H, where H is harmonic, and note that ord p=ord (v—H)=
max (ord v, ord H).
Hence ord u=ord p; that is, u€ 9.

Corollary. Let u be a subharmonic function in R® and vED. Then
ord (u+v)=ord M(r, sup (u, v)).
For, since sup (u, v)€ 2,
ord M(r, sup (u, v))=ord (sup (u, v))
=ord (u+v) (Theorem 3).

4. Normal J-subharmonic functions

A function o that is the difference of two subharmonic functions in R® is
called a J-subharmonic function. We say that w is a normal S-subharmonic func-
tionin R3 if ord u is finite where u is the measure associated with @ in the local
Riesz representation.

4.1. The order of a §-subharmonic function. Let @ be a normal §-subharmonic
function with associated measure u. Let u and » be the canonical potentials
associated with u* and p~. Then ® has a unique decomposition of the form
o=H+u—v, where H is harmonic in R® With this decomposition, we define
the order of w as follows:

Definition 5. Let w be a §-subharmonic function in R3. When w is normal
we define ord o=max (ord H, —14ord p); if o is not normal, we take ord w
as .

With a normal d-subharmonic function w=H-+u—v in R3, we consider
the subharmonic function w*=H+u+v in R3, called the subharmonic function
associated with .

Theorem 6. Let o be a normal S-subharmonic function in R® with
w* as its associated subharmonic function. Then ord w=ord w*.

Proof. By Theorem 3 we have
ord w*=ord (H+u+v)
=max (ord H, ord u, ord v)
=max (ord H, —1+ord u*, —1+ord u™)
=max (ord H, —1+ord u)
=ord .
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4.2. Relation with other definitions of order.

i) The definition due to Arsove. Let w be a d-subharmonic function with as-
sociated measure u. Write w=u—v», where u and v are two subharmonic func-
tions with associated measurcs u* and u~. Let s=sup (u, v).

The function s is unique up to the addition of a harmonic function and hence
M(r, s) is determined by o to within an additive constant. M. Arsove then defines
ord w=ord M(r, s).

Using Corollary to Proposition 4, one shows that this manner of defining the
order of w gives the same value for ord w as in Definition 5 above.

ii) The relation with meromorphic functions in C. Let ® be a d-subharmonic
function with associated measure pu. We shall take @ (0)=0. Then by analogy
with the characteristic function of a meromorphic function in C, define (Privalov)

T(r,w) =M@, o")+ f@-dh
0

Now it is immediate that

Tr,o)=T, —w)= M(r, o~ )-[—f ﬂ+(B6)

and that ord w=ord T(r, w). For, if w=u—v is a decomposition as above and
if s=sup (u, v), then

T(r, w) = M(r, s)— M(r, )—l—f’u (BO)

= M(r, s)—v(0).

iii)y The natural decomposition of ®. Let o be a J-subharmonic function
with associated measure u. Write w=u—v, where v is taken as the canonical
potential if ord u~ is finite; or if ord u~ is not finite and ord u* is finite, then
u is taken as the canonical potential; or if ord u~ and ord 4% are both infinite,
then # and v are taken as subharmonic functions with associated measures
utand p-.

Such a decomposition of w shall be referred to as a natural decomposition
of . Note that when ord p is finite, u+wv is the subharmonic function associated
with o.

Let w be a é-subharmonic function with a natural decomposition w=u—wv.
Then it is easy to prove that ord w=ord (u+7v).

4.3. Measure-dominant S-subharmonic functions. Let h be a subharmonic
function in R3. Then ord h=ord h* and the §-subharmonic function A~ satisfies
the condition ord A~ =ord h™; when h is harmonic, ord h~=ord h* of course.
Now under what general condition can we say that ord h~=ord h* and, further,
what are the analogous results in the case of a §-subharmonic function w?
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Theorem 7. Let w be a S-subharmonic Sfunction in R®. Then
ord w = max (ordw™, ord ™).

Proof. Since ord w=max (ord w*, ord ™), we shall now consider only the
case when o is normal.

Let w=u—v be the natural decomposition of w. Then w*=sup (4, v)—v
and ord w*=ord sup (¥, v)=ord (u+v)=ord w.

Dealing similarly with w~, we obtain ord w=max (ord w*, ord w~). Hence
the theorem is proved.

A similar argument proves the following proposition.

Proposition 8. Let w be a d-subharmonic function with a natural decompo-
sition w=u—v. Then ord w=max (ord ™, ord v).

Corollary. Let w be a S-subharmonic Sfunction with associated measure .
If ord uy~<1+ord w, then ord w=ord w™.

Let us say that a d-subharmonic function w with associated measure u is
measure-dominant if ord w =(—1+ord p)*. We shall denote this class of §-sub-
harmonic functions by 2. Thus when a measure-dominant subharmonic function
o is of finite order, its associated subharmonic function w*€2. The following
lemma, in particular, shows that if a -subharmonic function @ majorizes a sub-
harmonic function s€2, then wcP.

Lemma 9. Let o be a é-subharmonic function with associated measure .
If o majorizes a measure-dominant subharmonic function (in particular if ©=0),
then ord w=(—1+4ord u*)*+.

Proof. If ord pt=oo, ord w=o-. Let us suppose then ord u* is finite.

Note that ord u~=ord u* since w=s€2P. Hence, in the natural decomposi-
tion w=u—wv, v is a canonical potential and hence v+s€2.

Since u=v+s, u€P and ord u=ord M(r,u) =(—1+ord p*)™.

Moreover, ord w=ord (u+v)=ord u.

Hence the lemma is proved.

Remark. In the above lemma, if w=wu—v is a natural decomposition of w,
ord w=ord u=ord M(r, u).

Theorem 10. Let w be a d-subharmonic function not in &. Then ord o~ =
ord w*t=ord .

Proof. On account of Theorem 7, we shall take for example ord w=ord w®.
Since w¢ 9, it is a normal §-subharmonic function. Let w=u—v be the natural
decomposition of w. Then

(i) ord w=ord u>max (ord M(r, u), ord M (r, v)).
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Let w*=u;—v, and @~ =u,—v, be the natural decompositions of ot
and w~. Then
(i) ord w=ord ot =ord M(r, uy).
Note also that ord M(r,v,)=ord M(r,v) since wu;—v;=w*=sup (4, v)—0;
and since w- =o*—w, by the property of natural decompositions, there exists
a subharmonic function s in R® such that

(iii) Up+8 = u+v
and
(iv) vots = u+uvg.

From (iv) we obtain by using (i)
ord M (r, s)=max (ord M (r, u), ord M(r, v,))
=max (ord M (r, u), ord M(r, v))
<ord u.
From (iii) it follows by using (ii)
max (ord M (r, up), ord M (r, s))=max (ord M (r, u;), ord M(r, v))
=ord u.

Consequently, ord M (r, u;)=ord u; but ord w~ =ord M (r, u,) by Remark above
and hence ord w~=ord o =ord w.

4.4. Integral representation. Let @ be a normal é-subharmonic function with
associated measure u. Let o* be the subharmonic function associated with o.
Then we can prove the following two theorems, similar to Theorem 3.2 and Theorem
3.3 in [3].

Theorem 11. Let @ be a normal S-subharmonic function in R®, with o*
as its associated subharmonic function. Then the following statements are equivalent:

i) f r"td|u|(BY) s finite.
R
ii) [ By dr s finite.
R
ii1) f P I M (r, ) dr o is finite.
R
iv) w(x) = f B.(x, y)du(y)+a harmonic function.

Remark. The implication i)=iv) in essentially the Hadamard representation
theorem for d-subharmonic functions proved by M. Arsove in [2]. The converse
as in the proof of Theorem 3.1 in [3], is a little more involved.

Theorem 12. Let w be a normal d-subharmonic function in R®, with o*
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as its associated subharmonic function. If f R FT"TIM(r, 0*)dr s finite, then
w(x) is of the form
o(x) = [ By(x, ) du(y)+h(x),

where h(x) is a harmonic polynomial of degree <n.

5. Canonical bipotentials

We shall consider in this section a §-subharmonic function @ in R® as a pair
(w, p), where p is the measure associated with  in a local Riesz representation;
that is, du(x)=(1/4n) Adwdx. Of particular interest is the case when U is given
by a density function which is subharmonic in R3.

5.1. Bisubharmonic pair.

Definition 13. Let (w, h) be a pair of functions defined in R3, where w is
a d-subharmonic function satisfying the condition Aw=h. Then we say that

1) (w,h) is a bisubharmonic pair if h is subharmonic; and

i) (w,h) is a biharmonic pair if h is harmonic.

Remark. If (w,h) is a bisubharmonic pair, then A2w=0. On the other
hand, if @ is a locally summable function such that A*w=0, let h be the sub-
harmonic function such that h=4w a.e. and let w, be a d-subharmonic function
such that Aw,=h. Then we can write w=w,+H a.e, where H is a harmonic func-
tion in R®. Consequently, when 42w=0, (w, 4w) coincides a.e. with the bisub-
harmonic pair (w,+H, k).

Definition 14. Let (w,h) be a bisubharmonic pair in R®. Then ord w is
taken as the order of the bisubharmonic pair (o, h).

Theorem 15. Let (w, h) be a bisubharmonic pair in R®. If p is the measure
associated with o, then ord u*=ord u=3+ord .

Proof. Since h is subharmonic, M(r,h*)—~M(r,h-)=M(r,h) is an in-
creasing function of r, and hence
M(r,h*)=M(r, |h])=2M(r, h*)+a constant, which implies that

log M(r, h))
logr °

log M(r, h*)

@) ord & = lim sup Toar

= limsup

Now

. § 1 _ 1 T 2m r )
G) |4 By _HBrf]h(x)|dx_4—n-0fof Of h(t, 8, @)|1sin 0 dt dO do
(]

= fM(t, A2 dt.
0
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Suppose M (R, h™)=R* for some R; then from (ii)

2R 2R
BN = [ M@ h)ede= [ M@, h*)Edr
0 R

I

w| <

3+
Rt

w| =

M(R,h")R® =
This implies that
(iii) ord p=ord |u|(B})=3+ord h.

In particular, if ord h=oo, then ord pu=-o.
Let us suppose that ord h=A<eoo.
Then from (i), M(¢, |h))=¢**¢ if =R and hence, using (ii),

R r
| (B = [ M, [R)edi+ [ f#+°2di = Ar*****1a coustant,
0 R

which implies that
(iv) ord u=i+3=3+ord h.

From (iii) and (iv) we get ord u=3+ord h.
A similar argument dealing only with A" instead of |h| shows that ord u*=
3+ord h.

Hence the theorem is proved.

Corollary. Let (w,h) be a biharmonic pair in R®. If ord (w, h) is finite,

then it is an integer.
For, by hypothesis, the order of the §-subharmonic function w is finite. Then

if w=H+u—wv isthe natural decomposition of w, ord w=max (ord H, —1+ord p).

Now the fact that ord H is finite implies that it is an integer; and the fact that
ord u is finite implies that ord A is finite, and hence an integer. So is ord u=
3+ord h.

Consequently, ord @ is an integer.

5.2. Decomposition of a bisubharmonic pair.

Definition 16. If u is a signed measure of genus n,fB,',(x, y)ydu(y) is
called the canonical é-potential associated with u. A bisubharmonic pair
(w, h) is called a canonical bipotential pair if h is a canonical potential
and  is a canonical d-potential.

Theorem 17. Ewvery bisubharmonic pair of finite order is the unigue sum of a
canonical bipotential pair and a biharmonic pair.
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Proof. Let (w, h) be a bisubharmonic pair of finite order. This implies (Theo-
rem 15) that & is of finite order. Write h=p+H, where p is a canonical potential
and H is a harmonic function.

Let @, be the unique canonical é-potential such that Aw,=p. Then (w, h)=
(w9, p)+(w—wy, H), where (wy, p) is a canonical bipotential pair and (w—w,,H)
is a biharmonic pair.

5.3. Integral representation. In view of Theorem 11, we have the following
integral representation theorem for a bisubharmonic pair (w,h). Note that here
® 1is a normal ¢-subharmonic function if and only if ord & is finite.

Theorem 18. Let (w, h) be a bisubharmonic pair, h* £0. Then the following
statements are equivalent:

() /1; |h is finite.
(ii) f —r!hi dr  finite.
R
(iii) f Mdr is fiinite.
R
(iv) w(x) = (1/4n) fB,’, (x, ¥)h(y)dy+a harmonic function.

Corollary. Let (w,h) be a bisubharmonic pair. If ord h is a non-integer
A and if n is the greatest integer <1, then

o(x) =(1/47) [ By 4a(x, »)h () dy+H(x).

where H(x) is a harmonic function. Moreover, if w(x) majorizes a measure-
dominant subharmonic function (in particular if w(x)=0), then H(X) is a harmonic
polynomial of degree =n+2.

5.4. Some extensions. The results in this section can be easily modified for
the class (w, h) where w and h are locally summable functions such that Aw=h
and 4h=0.

These in turn can be generalized to the class (w, k) of locally summable func-
tions where dw=h and Ah=¢, ¢ being a locally summable function (or, more
generally, Aw=h and Ah=p, where u is a signed measure).

Of special interest is the case where ¢ satisfies the condition [ [¢(x)|dx=r?
for some A and r=R. In this case we can find a pair (w, &) that is the difference
of two canonical bipotentials satisfying the equation A2w=¢ a.e.
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