ON THE INTEGRAL REPRESENTATION OF BISUBHARMONIC FUNCTIONS IN Rⁿ

VICTOR ANANDAM

1. Introduction

A summable function ω in \mathbb{R}^n , $n \ge 2$, satisfying the condition $\Delta^2 \omega \ge 0$ (Δ is the Laplacian in the sense of distribution) can be identified with the pair (ω , h) satisfying the conditions $\Delta \omega = h$ and $\Delta h \ge 0$. Then h is an almost subharmonic function; and moreover, remembering the fact that, given any Radon measure $\mu \ge 0$ in \mathbb{R}^n , one can construct a subharmonic function u with associated measure μ in the local Riesz representation, ω can be seen to be an almost δ -subharmonic function.

The purpose of this article is to study the properties of such functions (ω, h) with a view to represent them in \mathbb{R}^n as integrals.

A subharmonic function of finite order in \mathbb{R}^n is the unique sum of a canonical potential and a harmonic function [4]. To begin, we give some properties of subharmonic functions for which the potential part is dominant in determining the growth at infinity. In particular, such functions form a sup-stable convex cone.

Then it is shown that with every δ -subharmonic function ω , one can associate a subharmonic function ω^* and define the order of ω as that of ω^* . This value, of course, is the same as the order of the function $T(r, \omega)$ defined (Privalov) by analogy with meromorphic functions in C; that is, if ω is a δ -subharmonic function in \mathbb{R}^n (harmonic in a neighbourhood of 0) with associated measure $\mu = \mu^+ - \mu^-$, then

$$T(r, \omega) = M(r, \omega^{+}) + \alpha_n \int_0^r \frac{\mu^{-}(B_0^t)}{t^{n-1}} dt,$$

where $M(r, \omega^+)$ is the mean of ω^+ on |x|=r and $\alpha_n = \max(1, n-2)$. Then, using the subharmonic function ω^* , we give some integral representation theorems for ω and explain their relation with the Hadamard representation theorem of M. Arsove [2] for δ -subharmonic functions in \mathbb{R}^2 .

Making use of these results, one finally arrives at the integral representation of a bisubharmonic pair (ω, h) .

The details are given only in R^3 .

2. Preliminaries

Let S(r) be an increasing function in \mathbb{R}^3 . If S(r) is not upper bounded, we define the order of S(r) as

ord
$$S(r) = \limsup_{r \to \infty} \frac{\log S(r)}{\log r};$$

otherwise we take that ord S(r) is 0.

For a positive measure μ in \mathbb{R}^3 , ord $\mu(B_0^r)$ is called the order of μ and the smallest integer *n* (if it exists) such that $\int_1^\infty |y|^{-n-1} d\mu(y)$ is finite is called the genus of μ .

For a signed measure $\mu = \mu^+ - \mu^-$, we shall define ord μ and gen μ as the order and the genus of $|\mu|$. It is then simple to remark that ord $\mu = \max (\text{ord } \mu^+, \text{ ord } \mu^-)$ and gen $\mu = \max (\text{gen } \mu^+, \text{gen } \mu^-)$.

Define as in [3]

$$B'_{n}(x, y) = \begin{cases} -|x-y|^{-1} & \text{if } |y| < 1\\ -|x-y|^{-1} + |y|^{-1} + \sum_{m=1}^{n-1} H_{m}|x|^{m}|y|^{-m-1} & \text{if } |y| \ge 1, \end{cases}$$

where $H_m = P_m(\cos \theta)$, P_m being the Legendre polynomial of degree *m* and θ the angle between 0x and 0y.

We recall that, given any positive Radon measure μ in \mathbb{R}^3 , we can construct subharmonic functions u in \mathbb{R}^3 with associated measure μ in a local Riesz representation. If $\mu \ge 0$ is of genus n, one such function is $\int B'_n(x, y)d\mu(y)$, called the *canonical potential* associated with μ [4].

3. Measure-dominant subharmonic functions

Let *u* be a subharmonic function in \mathbb{R}^3 with associated measure μ . We say that *u* is a *normal subharmonic function* if ord μ is finite or equivalently if ord M(r, u) is finite, where M(r, u) is the mean of u(x) on |x|=r.

A normal subharmonic function u in \mathbb{R}^3 has a unique decomposition in the form u=p+H, where p is the canonical potential associated with μ and H is a harmonic function in \mathbb{R}^3 .

Theorem 1. Let u be a subharmonic function in \mathbb{R}^3 with associated measure μ . If u is normal, ord $u = \max (\operatorname{ord} H, -1 + \operatorname{ord} \mu)$; and if u is not normal, ord u is ∞ .

Proof. If u is not normal, ord M(r, u) is not finite and hence ord u =ord $M(r, u^+) = \infty$.

If u is normal, let u=p+H be the canonical decomposition of u. Then,

by Corollary 3.6 [4], ord $u = \max$ (ord H, ord p). But, by Theorem 2.4 [4], ord $p = \max(0, -1 + \operatorname{ord} \mu)$.

Hence the theorem is proved.

Note. The condition ord $\mu < 1$ means that u is a (Newtonian) potential up to an additive harmonic function.

Definition 2. We say that a subharmonic function u in \mathbb{R}^3 with associated measure μ is measure-dominant if ord $u = \max(0, -1 + \operatorname{ord} \mu)$; this class of functions is denoted by \mathcal{D} .

Remarks. (1) In view of Theorem 2.1 [4], it can be seen that $u \in \mathcal{D}$ if and only if ord u = ord M(r, u).

(2) The class \mathscr{D} includes (a) all canonical potentials (Theorem 2.4 [4]), (b) all subharmonic functions whose order is not an integer (Corollary 2.2 [4]), (c) all positive subharmonic functions and (d) all subharmonic functions which are not normal. Moreover, the following results show in particular that \mathscr{D} is a sup-stable convex cone.

For any two subharmonic functions u and v, ord $(u+v) \leq \max (\text{ord } u, \text{ ord } v)$; but here, in general, we cannot replace the inequality sign by the equality sign. In this context we have the following theorem.

Theorem 3. Let u be a subharmonic function in \mathbb{R}^3 and $v \in \mathcal{D}$. Then ord $(u+v) = \max (\text{ord } u, \text{ ord } v) = \text{ord } (\sup (u, v))$.

Proof. First we note that for any two subharmonic functions u and v, max (ord u, ord v) = ord (sup (u, v)).

In the present case, let u be an arbitrary subharmonic function with associated measure μ and $v \in \mathcal{D}$ with associated measure v.

We know that $\operatorname{ord} (u+v) = \max (\operatorname{ord} u, \operatorname{ord} v)$ in the following two cases: (i) when $\operatorname{ord} u \neq \operatorname{ord} v$ (Theorem 3.1 [4]), and (ii) when $\operatorname{ord} u = \operatorname{ord} v = \lambda$, a non-integer (Theorem 3.4 [4]). Hence the only case that remains to be seen is when $\operatorname{ord} u = \operatorname{ord} v = n$, an integer.

Write v=p+H, where p is the canonical potential with associated measure v and H is harmonic. Then ord p= ord v=n (since $v\in \mathcal{D}$) and hence ord v is n+1 (Theorem 2.4 [4]).

Consequently ord $(u+H+p) \ge n$ (Theorem 2.1 [4]), which implies that ord (u+v) is n.

Corollary. Let $u, v \in \mathcal{D}$. Then $u+v \in \mathcal{D}$. For ord(u+v) = max(ord u, ord v) = max(ord M(r, u), ord M(r, v)) = ord(M(r, u)+M(r, v))= ord M(r, u+v). Hence $u + v \in \mathcal{D}$.

Proposition 4. Let u be a subharmonic function in \mathbb{R}^3 majorizing some $v \in \mathcal{D}$. Then $u \in \mathcal{D}$.

Proof. Let us suppose that u is a normal subharmonic function with associated measure μ .

Write u=p+H, where H is harmonic, and note that ord $p \ge \text{ord}(v-H) = \max (\text{ord } v, \text{ ord } H)$.

Hence ord u = ord p; that is, $u \in \mathcal{D}$.

Corollary. Let u be a subharmonic function in \mathbb{R}^3 and $v \in \mathcal{D}$. Then ord $(u+v) = \operatorname{ord} M(r, \sup (u, v))$.

For, since $\sup(u, v) \in \mathcal{D}$,

ord $M(r, \sup(u, v)) = \operatorname{ord}(\sup(u, v))$ = ord (u+v) (Theorem 3).

4. Normal δ -subharmonic functions

A function ω that is the difference of two subharmonic functions in \mathbb{R}^3 is called a δ -subharmonic function. We say that ω is a normal δ -subharmonic function in \mathbb{R}^3 if ord μ is finite where μ is the measure associated with ω in the local Riesz representation.

4.1. The order of a δ -subharmonic function. Let ω be a normal δ -subharmonic function with associated measure μ . Let u and v be the canonical potentials associated with μ^+ and μ^- . Then ω has a unique decomposition of the form $\omega = H + u - v$, where H is harmonic in \mathbb{R}^3 . With this decomposition, we define the order of ω as follows:

Definition 5. Let ω be a δ -subharmonic function in \mathbb{R}^3 . When ω is normal we define ord $\omega = \max (\operatorname{ord} H, -1 + \operatorname{ord} \mu)$; if ω is not normal, we take ord ω as ∞ .

With a normal δ -subharmonic function $\omega = H + u - v$ in \mathbb{R}^3 , we consider the subharmonic function $\omega^* = H + u + v$ in \mathbb{R}^3 , called the *subharmonic function* associated with ω .

Theorem 6. Let ω be a normal δ -subharmonic function in \mathbb{R}^3 with ω^* as its associated subharmonic function. Then ord ω =ord ω^* .

Proof. By Theorem 3 we have

ord $\omega^* = \operatorname{ord} (H+u+v)$ = max (ord H, ord u, ord v) = max (ord H, -1+ord μ^+ , -1+ord μ^-) = max (ord H, -1+ord μ) = ord ω . 4.2. Relation with other definitions of order.

i) The definition due to Arsove. Let ω be a δ -subharmonic function with associated measure μ . Write $\omega = u - v$, where u and v are two subharmonic functions with associated measures μ^+ and μ^- . Let $s = \sup(u, v)$.

The function s is unique up to the addition of a harmonic function and hence M(r, s) is determined by ω to within an additive constant. M. Arsove then defines ord $\omega = \operatorname{ord} M(r, s)$.

Using Corollary to Proposition 4, one shows that this manner of defining the order of ω gives the same value for ord ω as in Definition 5 above.

ii) The relation with meromorphic functions in C. Let ω be a δ -subharmonic function with associated measure μ . We shall take $\omega(0)=0$. Then by analogy with the characteristic function of a meromorphic function in C, define (Privalov)

$$T(r, \omega) = M(r, \omega^+) + \int_0^r \frac{\mu^-(B_0^t)}{t^2} dt.$$

Now it is immediate that

$$T(r, \omega) = T(r, -\omega) = M(r, \omega^{-}) + \int_{0}^{r} \frac{\mu^{+}(B_{0}^{t})}{t^{2}} dt$$

and that ord $\omega = \text{ord } T(r, \omega)$. For, if $\omega = u - v$ is a decomposition as above and if $s = \sup(u, v)$, then

$$T(r, \omega) = M(r, s) - M(r, v) + \int_{0}^{r} \frac{\mu^{-}(B_{0}^{t})}{t^{2}} dt = M(r, s) - v(0).$$

iii) The natural decomposition of ω . Let ω be a δ -subharmonic function with associated measure μ . Write $\omega = u - v$, where v is taken as the canonical potential if ord μ^- is finite; or if ord μ^- is not finite and ord μ^+ is finite, then u is taken as the canonical potential; or if ord μ^- and ord μ^+ are both infinite, then u and v are taken as subharmonic functions with associated measures μ^+ and μ^- .

Such a decomposition of ω shall be referred to as a *natural decomposition* of ω . Note that when ord μ is finite, u+v is the subharmonic function associated with ω .

Let ω be a δ -subharmonic function with a natural decomposition $\omega = u - v$. Then it is easy to prove that ord $\omega =$ ord (u+v).

4.3. Measure-dominant δ -subharmonic functions. Let h be a subharmonic function in \mathbb{R}^3 . Then ord $h = \text{ord } h^+$ and the δ -subharmonic function h^- satisfies the condition ord $h^- \leq \text{ord } h^+$; when h is harmonic, ord $h^- = \text{ord } h^+$ of course. Now under what general condition can we say that ord $h^- = \text{ord } h^+$ and, further, what are the analogous results in the case of a δ -subharmonic function ω ?

Theorem 7. Let ω be a δ -subharmonic function in \mathbb{R}^3 . Then

ord $\omega = \max(\operatorname{ord} \omega^+, \operatorname{ord} \omega^-)$.

Proof. Since ord $\omega \leq \max$ (ord ω^+ , ord ω^-), we shall now consider only the case when ω is normal.

Let $\omega = u - v$ be the natural decomposition of ω . Then $\omega^+ = \sup(u, v) - v$ and $\operatorname{ord} \omega^+ \leq \operatorname{ord} \sup(u, v) = \operatorname{ord} (u+v) = \operatorname{ord} \omega$.

Dealing similarly with ω^- , we obtain ord $\omega \ge \max$ (ord ω^+ , ord ω^-). Hence the theorem is proved.

A similar argument proves the following proposition.

Proposition 8. Let ω be a δ -subharmonic function with a natural decomposition $\omega = u - v$. Then ord $\omega = \max (\operatorname{ord} \omega^+, \operatorname{ord} v)$.

Corollary. Let ω be a δ -subharmonic function with associated measure μ . If ord $\mu^- < 1 + \text{ord } \omega$, then ord $\omega = \text{ord } \omega^+$.

Let us say that a δ -subharmonic function ω with associated measure μ is *measure-dominant* if ord $\omega = (-1 + \operatorname{ord} \mu)^+$. We shall denote this class of δ -subharmonic functions by $\overline{\mathscr{D}}$. Thus when a measure-dominant subharmonic function ω is of finite order, its associated subharmonic function $\omega^* \in \mathscr{D}$. The following lemma, in particular, shows that if a δ -subharmonic function ω majorizes a subharmonic function $s \in \mathscr{D}$, then $\omega \in \overline{\mathscr{D}}$.

Lemma 9. Let ω be a δ -subharmonic function with associated measure μ . If ω majorizes a measure-dominant subharmonic function (in particular if $\omega \ge 0$), then ord $\omega = (-1 + \operatorname{ord} \mu^+)^+$.

Proof. If ord $\mu^+ = \infty$, ord $\omega = \infty$. Let us suppose then ord μ^+ is finite.

Note that ord $\mu^- \leq$ ord μ^+ since $\omega \geq s \in \mathcal{D}$. Hence, in the natural decomposition $\omega = u - v$, v is a canonical potential and hence $v + s \in \mathcal{D}$.

Since $u \ge v+s$, $u \in \mathcal{D}$ and ord $u = \text{ord } M(r, u) = (-1 + \text{ord } \mu^+)^+$. Moreover, ord $\omega = \text{ord } (u+v) = \text{ord } u$. Hence the lemma is proved.

Remark. In the above lemma, if $\omega = u - v$ is a natural decomposition of ω , ord $\omega =$ ord u = ord M(r, u).

Theorem 10. Let ω be a δ -subharmonic function not in $\overline{\mathcal{D}}$. Then ord $\omega^- =$ ord $\omega^+ =$ ord ω .

Proof. On account of Theorem 7, we shall take for example ord $\omega = \text{ord } \omega^+$. Since $\omega \notin \overline{\mathcal{D}}$, it is a normal δ -subharmonic function. Let $\omega = u - v$ be the natural decomposition of ω . Then

(i) ord $\omega = \text{ord } u > \max (\text{ord } M(r, u), \text{ ord } M(r, v)).$

Let $\omega^+ = u_1 - v_1$ and $\omega^- = u_2 - v_2$ be the natural decompositions of ω^+ and ω^- . Then

(ii) ord $\omega = \text{ord } \omega^+ = \text{ord } M(r, u_1)$.

Note also that ord $M(r, v_1) \leq \text{ord } M(r, v)$ since $u_1 - v_1 = \omega^+ = \sup(u, v) - v$; and since $\omega^- = \omega^+ - \omega$, by the property of natural decompositions, there exists a subharmonic function s in \mathbb{R}^3 such that

$$u_2 + s = u_1 + v$$

and

 $v_2 + s = u + v_1.$

From (iv) we obtain by using (i)

ord $M(r, s) \leq \max (\text{ord } M(r, u), \text{ ord } M(r, v_1))$ $\leq \max (\text{ord } M(r, u), \text{ ord } M(r, v))$ < ord u.

From (iii) it follows by using (ii)

 $\max \left(\operatorname{ord} M(r, u_2), \operatorname{ord} M(r, s) \right) = \max \left(\operatorname{ord} M(r, u_1), \operatorname{ord} M(r, v) \right)$ $= \operatorname{ord} u.$

Consequently, ord $M(r, u_2) = \text{ord } u$; but ord $\omega^- = \text{ord } M(r, u_2)$ by Remark above and hence ord $\omega^- = \text{ord } \omega^+ = \text{ord } \omega$.

4.4. Integral representation. Let ω be a normal δ -subharmonic function with associated measure μ . Let ω^* be the subharmonic function associated with ω . Then we can prove the following two theorems, similar to Theorem 3.2 and Theorem 3.3 in [3].

Theorem 11. Let ω be a normal δ -subharmonic function in \mathbb{R}^3 , with ω^* as its associated subharmonic function. Then the following statements are equivalent:

i)
$$\int_{R}^{\infty} r^{-n-1} d |\mu| (B_0^r) \quad is \ finite.$$

ii)
$$\int_{R}^{\infty} r^{-n-2} |\mu| (B_0^r) dr \quad is finite$$

iii)
$$\int_{R}^{\infty} r^{-n-1} M(r, \omega^*) dr \quad is finite.$$

iv)
$$\omega(x) = \int B'_n(x, y) d\mu(y) + a$$
 harmonic function.

Remark. The implication i) \Rightarrow iv) in essentially the Hadamard representation theorem for δ -subharmonic functions proved by M. Arsove in [2]. The converse as in the proof of Theorem 3.1 in [3], is a little more involved.

Theorem 12. Let ω be a normal δ -subharmonic function in \mathbb{R}^3 , with ω^*

as its associated subharmonic function. If $\int_{R}^{\infty} r^{-n-1}M(r, \omega^{*+})dr$ is finite, then $\omega(x)$ is of the form

$$\omega(x) = \int B'_n(x, y) \, d\mu(y) + h(x),$$

where h(x) is a harmonic polynomial of degree < n.

5. Canonical bipotentials

We shall consider in this section a δ -subharmonic function ω in \mathbb{R}^3 as a pair (ω, μ) , where μ is the measure associated with ω in a local Riesz representation; that is, $d\mu(x) = (1/4\pi) \Delta \omega dx$. Of particular interest is the case when μ is given by a density function which is subharmonic in \mathbb{R}^3 .

5.1. Bisubharmonic pair.

Definition 13. Let (ω, h) be a pair of functions defined in \mathbb{R}^3 , where ω is a δ -subharmonic function satisfying the condition $\Delta \omega = h$. Then we say that

i) (ω, h) is a bisubharmonic pair if h is subharmonic; and

ii) (ω, h) is a biharmonic pair if h is harmonic.

Remark. If (ω, h) is a bisubharmonic pair, then $\Delta^2 \omega \ge 0$. On the other hand, if ω is a locally summable function such that $\Delta^2 \omega \ge 0$, let h be the subharmonic function such that $h = \Delta \omega$ a.e. and let ω_0 be a δ -subharmonic function such that $\Delta \omega_0 = h$. Then we can write $\omega = \omega_0 + H$ a.e., where H is a harmonic function in \mathbb{R}^3 . Consequently, when $\Delta^2 \omega \ge 0$, $(\omega, \Delta \omega)$ coincides a.e. with the bisubharmonic pair $(\omega_0 + H, h)$.

Definition 14. Let (ω, h) be a bisubharmonic pair in \mathbb{R}^3 . Then ord ω is taken as the order of the bisubharmonic pair (ω, h) .

Theorem 15. Let (ω, h) be a bisubharmonic pair in \mathbb{R}^3 . If μ is the measure associated with ω , then ord $\mu^+ = \operatorname{ord} \mu = 3 + \operatorname{ord} h$.

Proof. Since h is subharmonic, $M(r, h^+) - M(r, h^-) = M(r, h)$ is an increasing function of r, and hence

 $M(r, h^+) \leq M(r, |h|) \leq 2M(r, h^+) + a$ constant, which implies that

(i) ord
$$h = \limsup \frac{\log M(r, h^+)}{\log r} = \limsup \frac{\log M(r, |h|)}{\log r}$$

Now

(ii)
$$|\mu|(B_0^r) = \frac{1}{4\pi} \int_{B_0^r} |h(x)| \, dx = \frac{1}{4\pi} \int_0^\pi \int_0^{2\pi} \int_0^r |h(t, \theta, \varphi)| \, t^2 \sin \theta \, dt \, d\theta \, d\varphi$$

$$= \int_0^r M(t, |h|) \, t^2 \, dt.$$

Suppose $M(R, h^+) \ge R^{\alpha}$ for some R; then from (ii)

$$|\mu|(B_0^{2R}) \ge \int_0^{2R} M(t,h^+) t^2 dt \ge \int_R^{2R} M(t,h^+) t^2 dt$$
$$\ge \frac{7}{3} M(R,h^+) R^3 \ge \frac{7}{3} R^{3+\alpha},$$

This implies that

ord
$$\mu = \text{ord } |\mu|(B_0^r) \ge 3 + \text{ord } h$$

In particular, if ord $h = \infty$, then ord $\mu = \infty$.

Let us suppose that ord $h = \lambda < \infty$.

Then from (i), $M(t, |h|) \leq t^{\lambda+\varepsilon}$ if $t \geq R$ and hence, using (ii),

$$|\mu|(B_0^r) \leq \int_0^R M(t,|h|) t^2 dt + \int_R^r t^{\lambda+\varepsilon} t^2 dt \leq Ar^{\lambda+3+\varepsilon} + a \text{ constant},$$

which implies that

(iv)

(iii)

ord
$$\mu \leq \lambda + 3 = 3 + \text{ord } h$$
.

From (iii) and (iv) we get ord $\mu = 3 + \text{ord } h$.

A similar argument dealing only with h^+ instead of |h| shows that ord $\mu^+ = 3 + \text{ord } h$.

Hence the theorem is proved.

Corollary. Let (ω, h) be a biharmonic pair in \mathbb{R}^3 . If ord (ω, h) is finite, then it is an integer.

For, by hypothesis, the order of the δ -subharmonic function ω is finite. Then if $\omega = H + u - v$ is the natural decomposition of ω , ord $\omega = \max (\operatorname{ord} H, -1 + \operatorname{ord} \mu)$.

Now the fact that ord H is finite implies that it is an integer; and the fact that ord μ is finite implies that ord h is finite, and hence an integer. So is ord $\mu = 3 + \text{ord } h$.

Consequently, ord ω is an integer.

5.2. Decomposition of a bisubharmonic pair.

Definition 16. If μ is a signed measure of genus $n, \int B'_n(x, y)d\mu(y)$ is called the canonical δ -potential associated with μ . A bisubharmonic pair (ω, h) is called a canonical bipotential pair if h is a canonical potential and ω is a canonical δ -potential.

Theorem 17. Every bisubharmonic pair of finite order is the unique sum of a canonical bipotential pair and a biharmonic pair.

Proof. Let (ω, h) be a bisubharmonic pair of finite order. This implies (Theorem 15) that h is of finite order. Write h = p + H, where p is a canonical potential and H is a harmonic function.

Let ω_0 be the unique canonical δ -potential such that $\Delta \omega_0 = p$. Then $(\omega, h) = (\omega_0, p) + (\omega - \omega_0, H)$, where (ω_0, p) is a canonical bipotential pair and $(\omega - \omega_0, H)$ is a biharmonic pair.

5.3. Integral representation. In view of Theorem 11, we have the following integral representation theorem for a bisubharmonic pair (ω, h) . Note that here ω is a normal δ -subharmonic function if and only if ord h is finite.

Theorem 18. Let (ω, h) be a bisubharmonic pair, $h^+ \neq 0$. Then the following statements are equivalent:

(i)
$$\int_{|y| \ge R} \frac{|h(y)|}{|y|^{n+1}} dy \quad is finite.$$

(ii)
$$\int_{R}^{\infty} \frac{M(r, |h|)}{r^{n-1}} dr \quad finite.$$

(iii)
$$\int_{R}^{\infty} \frac{M(r, h^{+})}{r^{n-1}} dr \quad is \ finite.$$

(iv) $\omega(x) = (1/4\pi) \int B'_n(x, y)h(y) dy + a$ harmonic function.

Corollary. Let (ω, h) be a bisubharmonic pair. If ord h is a non-integer λ and if n is the greatest integer $<\lambda$, then

$$\omega(x) = (1/4\pi) \int B'_{n+3}(x, y) h(y) \, dy + H(x),$$

where H(x) is a harmonic function. Moreover, if $\omega(x)$ majorizes a measuredominant subharmonic function (in particular if $\omega(x) \ge 0$), then H(x) is a harmonic polynomial of degree $\le n+2$.

5.4. Some extensions. The results in this section can be easily modified for the class (ω, h) where ω and h are locally summable functions such that $\Delta \omega = h$ and $\Delta h \ge 0$.

These in turn can be generalized to the class (ω, h) of locally summable functions where $\Delta \omega = h$ and $\Delta h = \varphi$, φ being a locally summable function (or, more generally, $\Delta \omega \ge h$ and $\Delta h \ge \mu$, where μ is a signed measure).

Of special interest is the case where φ satisfies the condition $\int_{B_0^r} |\varphi(x)| dx \leq r^{\lambda}$ for some λ and $r \geq R$. In this case we can find a pair (ω, h) that is the difference of two canonical bipotentials satisfying the equation $\Delta^2 \omega = \varphi$ a.e.

References

- ARSOVE, M.: Functions representable as difference of subharmonic functions. Trans. Amer. Math. Soc. 75, 1953, 327-365.
- [2] ARSOVE, M.: Functions of potential type. Trans. Amer. Math. Soc. 75, 1953, 526-551.
- [3] PREMALATHA, and V. ANANDAM: On the integral representation of superharmonic functions in Rⁿ. - Acad. Roy. Belg. Bull. Cl. Sci. (5) LXVI, 1980, 307-318.
- [4] PREMALATHA, and V. ANANDAM: The canonical potentials in Rⁿ. Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 189–196.

Université Mohammed V Département de Mathématiques Faculté des Sciences Rabat

Morocco

Received 27 April 1983