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SOLUTIONS OF PROBLEMS OF MILLER AND RUBEL

SAKARI TOPPILA

1. Introduction and results. Let w be analytic in |z|]<1 with w(0)=0. In
Problem 5.61 of [2] S. Miller states that if n=1 or n=2 and

(1.1) w(2)+zw'(2)+...+2"w(2)] <1 for |z <1,

then |w(z)|<1 for |z|<1, and he asks whether the same holds for all n=1, 2,3, ...
We shall give an affirmative answer to this question.

Theorem 1. Let w be as above, satisfying (1.1) for some n=3. Then |w(z)|<
71/80 in |z|<l.
The following problem [1, Problem 2.54] is proposed by L. A. Rubel.

Problem A. Let E be a closed set in C with the following properties:
(1) there exists a transcendental entire function f(z) that is bounded on E; and
(2) there exists a transcendental entire function g(z) that is bounded away from
0 on the complement of E. For each such E, must there exist one transcendental
entire function that is simultaneously bounded on E and bounded away from 0 on
the complement of E?

We shall give the following answer to this question.

Theorem 2. Let E be the union of the positive real axis and the closed discs
lz—e™|=1, k=1,2,.... Then there exist transcendental entire functions f; and
f» such that f, isboundedon E and that f; is bounded away from O on the complement
of E. However, if f is any entire function which is bounded on E and bounded away
from O on the complement of E, then f is constant.

2. Proof of Theorem 1. Let »n and
w(z) = X a,zf
p=1
be as in Theorem 1, and let

g() = W@+ W@+ AW (@) = I bz

Since

WOE@) = 3 ap(p—1)..(p—k+1z2
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and n=3, we get by=2a,, by=>5a,, b;=16a,, and

byl =] a,(1+p+ (=) p+(P—D(P—1p)| = la,|(p—1)?
for p=4. From (1.1) we deduce that |b,|=1 for any p, and we get

> la,l = Y241/5+1/16+ 3 p=> < 61/80+ [ x2dx = 71/80,
p=1 p=3 PY

which implies that |w(z)|<71/80 in |z|]<1. Theorem 1 is proved.
3. Proof of Theorem 2. The function fi(z)=e~* is bounded on E and

f(@) = ,!2 (1—ze=%)

is bounded away from 0 on the complement of E.

Let us suppose that f is an entire function which satisfies |f(z)]=M on
E and |f(z)]=m (m>0) on the complement of E. From the continuity of f it
follows that |f(z)|=m on the ring domain

e4k+1 4k+3

< |zl <e

for any k. Since e***+*¢E, we deduce that |f(e**2)|=M, and applying Schottky’s
theorem repeatedly in the discs

|z—e+2ei| < e+,

we deduce that there exists K>0 depending only on M and m such that |f(z)|=K
forall z lying on the circle |z|=e%*+% k=1,2, ... . Thisimplies that f is a bounded
function and we deduce that f is constant. Theorem 2 is proved.
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