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ON ROTATION AUTOMORPHIC F'UNCTIONS
WITI{ DISCRE,TE, ROTATION GROUPS

RAUNO AULASKART

In the paper [4] we defined a rotation automorphic function f with respect to

some Fuchsian group f. In []-[a] we supposed the rotation automorphic function

/ to satisfy in a fundamental domain F of f the condition

where f*(z) is the spherical derivative of f and do" is the euclidean area element.

Further, in [1], [2] and [4], we showed that, by suitable restrictions related to f ,f
is a normal function in D, that is, suPzeo Q-lzl2)f*(z;=- (cf. [6]). In the

meanwhile, in [3], we constructed a non-normal rotation automorphic function

/ satisfying the condition (1).

1. In this paper we shall take another point of view, that is, we let -f be

arbitrary but restrict the rotation group 2: {Srl I€l-} acting on the Riemann

sphere 0.B""urr"of thecompactness of 0 we shallseethatthecondition "^E is
discrete" alone or the equivalent assumption ".8 is finite" will imply the normality
of f. Iwant to thank prof. T. Erkama for our discussions on this subject'

Let D and 0D be the unit disk and the unit circle, respectively. We shall

denote the hyperbolic distance by d(z1,zr) (21,22€D) and the hyperbolic disk

{zl d(2, z)=r} by U(zr, r). Suppose that f is a Fuchsian group acting on D and

let f be a meromorphic function in D. Then / is called rotation automorphic

with respect to I if
f(r@): s,(f(z)), z(D, r(r,

where ^S7 is a rotation of 0.
The points z, z'€D:Dv0D are called l--equivalent if there exists a mapping

I€-t- such that z':T(z). A domain f'cD is called a fundamental domain of
f if it does not contain two l-equivalent points and if every point in D is i--equi-

valent to some point in the closure F of F. We fix the fundamental domain F
of .l- to be a normal polygon in D.

If we suppose the rotation group .E to have a representation by matrices,

then .E is said to be discrete provided the identity is an isolated element.

$ .f*(,)'do, {-,
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we shall need the following lemma (cf .14, Lemmal) in the proof of our theorem :

Lemma. Let (2,)cF be a sequence of points such that lz*ltl as n+@.
If r>0,0<R<l and D^:{zl lrl=R}, then T(U(2,,r))aDp*iD .for finitely
many T(f and n(N only.

Theorem. Letf be a rotation automorphic Junction with respect to I for
which

(1.1) II J.@, do" =*
holds. IJ'the rotation group z ,)rr"rpondrng to r is discrete, then .f is a normal
function in D.

Proof. suppose, on the contrary, that /' is not a normal function in D. Then
there is a sequence of points (2,)cF such that

(1.2) (t-lr"l\.f*(zn) **
as n+ -. We choose the hyperbolic disks (J(zn,r), r=0, for which

(1.3) (J(zn, r) : 3 Ue,, r)aT^(F),

where T^Qf. By (1.1) we have 
m:o

II f.e)'do" *s
aQ^'r)f'tF

as n+ -. By [5, 5.1 rheorem] the group .f, is finite. suppose that z contains
io rotations. We may choose R>0 such that

(1.4) II "f.e), do, < nf io.
FND\DR

Let

f"(o:f(#--.,-)'

By Lemma we may assume that in (1.3), for all n-no, T;t(U(z,, r)) n FcF n D\D^
for each T^1, m:0,...,kn. Further,

(1.5) 
,U,,f,(u(o,»: *l),J'(a(2,,r)) 

c U /(r,(FnD\DJ)

: Ö 
"r,(.F(FnD\D^)),i:1

where Ti, i:1,2,..., runs through all transformations of f . Since

I loo.,» f*(z)z do,: t Ioa,of|G)'dor:the spherical area of f,(U(O,r)), we have
by (1.a) and (1.5) that fif*\i,- omirs at least three values in t/(0, r). Thus {f,}L,,
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forms a normal family in t/(0, r) and Marty's criterion implies

(l - lr,,t\.f*(2,) : ff(O) < M < -
for each n>tto. This contradicts (1.2) and thus the theorem is proved.

Remark l. If we reject the finiteness condition of ^X, we shall find a Fuchsian

group l-, a rotation group X and a rotation automorphic function / correspond-

ing to ,l- and .I such that ) is generated by infinitely many rotations with one

rotation axis only (0--axis) and f satisfies (1.1) but is not a normal function
in D (cf. [3]).

Remark 2. The assertion of the above theorem can be proved also if / is

considered to be an automorphic function with respect to a certain subgroup of
l- and after that a theorem of Pommerenke is used (cf. [7, Corollary 1]).
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