A NON-HYPOELLIPTIC DIRICHLET PROBLEM FROM STOCHASTICS

KARL DOPPEL and NIELS JACOB

To the memory of Rolf Nevanlinna

1. Introduction

1.1. In a recent paper [2] E. B. Dynkin solved a Dirichlet problem for a non-hypoelliptic differential operator L(D) with methods of probability theory by extending some results of the theory of Markov processes.

This operator L(D) is defined in the following way: Let k be a positive integer. For each $j(1 \le j \le k)$ take $m_j \in N$ and set $n = m_1 + ... + m_k$. With the notation

$$l_1 = 0, \qquad l_j = \sum_{i=1}^{j-1} m_i \quad (2 \le j \le k)$$

we set

(1.1)
$$\Delta_j := \sum_{i=1}^{m_j} D_{l_j+i}^2 \quad \text{with} \quad D_{l_j+i} = -\sqrt{-1} \frac{\partial}{\partial x_{l_j+i}}.$$

Thus, Δ_j denotes the Laplace operator which acts on functions defined on subsets of $\mathbf{R}^{m_j} \subset \mathbf{R}^n$. We define the differential operator L(D) by

$$(1.2) L(D) := \Delta_1 \dots \Delta_k.$$

The operator L(D) is not hypoelliptic for k>1. This fact can be seen already in the simplest case where k=2 and $m_1=m_2=1$. Then

$$L(D) = D_1^2 D_2^2 = \frac{\partial^4}{\partial x_1^2 \partial x_2^2}$$

and the polynomial associated with L(D) is given by $P(\xi) = \xi_1^2 \xi_2^2$. Since for $\xi_1 = 0$ and $\xi_2 = n$ $(n \in \mathbb{N})$ we have

$$\frac{\partial^2}{\partial \xi_1^2} P(\xi) = 2n^2,$$

doi:10.5186/aasfm.1983.0809

it follows by a result of L. Hörmander (see [6], p. 99) that L(D) is not hypoelliptic. The usual Sobolev space methods are not applicable to a study of Dirichlet problems for the operator L(D).

1.2. In this paper we present a method which can be understood as a generalization of the Hilbert space methods used in the elliptic theory. Here we use "anisotropic" Sobolev spaces which correspond in a natural way to the operator L(D). It turns out that in these anisotropic spaces the behaviour of the non-hypoelliptic operator L(D) is quite similar to that of an elliptic operator in the usual Sobolev spaces.

For a domain G which is the Cartesian product of bounded open sets $G_j \subset \mathbb{R}^{m_j}$ $(n=m_1+\ldots+m_k)$ with sufficiently smooth boundaries ∂G_j we show that a generalized Dirichlet problem, for which the solution is searched in such an anisotropic space, has a unique solution. Further one gets for a class of data a regularity result for this solution.

We will mention that Rolf Nevanlinna expressed a similar idea in unpublished lectures given in Ann Arbor, Helsinki and Zürich. He indicated the possibility to construct for a differential operator a suitable bilinear form such that solving Dirichlet problems for this operator can be reduced to the problem of orthogonal projection in the sense of this bilinear form (cf. [8] and also [1]).

1.3. We give a slightly modified representation of L(D). We denote by N_0^n the set of all ordered systems of n nonnegative integers (multi-indices). For $\alpha = (\alpha_1, ..., \alpha_n) \in N_0^n$ we define its length as usual by $|\alpha| = \alpha_1 + ... + \alpha_n$. For $\sigma, \tau \in N_0^n$, $\sigma = (\sigma_1, ..., \sigma_n), \tau = (\tau_1, ..., \tau_n)$, we set $\sigma \leq \tau$ if $\sigma_i \leq \tau_i$ for $1 \leq i \leq n$. It is clear that with this definition N_0^n is a partially ordered set.

Let m_j and l_j $(1 \le j \le k)$ be defined as in 1.1. For each j $(1 \le j \le k)$ we define m_j multi-indices $\varepsilon_{t_j} \in \mathbb{N}_0^n$ of length 1, $|\varepsilon_{t_j}| = 1$, having its only nonvanishing coordinate in the t_j -th position, $l_j + 1 \le t_j \le l_j + m_j$. Furthermore we set

(1.3)
$$\Gamma = \left\{ \alpha \middle| \alpha \in \mathbb{N}_0^n, \ \alpha = \sum_{j=1}^k \varepsilon_{ij} \right\}$$

and

$$2\Gamma = \{eta \mid eta \in N_0^n, \ eta = 2lpha, \ lpha \in \Gamma\}.$$

Note that both Γ and 2Γ have $m_1...m_k$ elements. Now we obtain the very useful expression for the differential operator L(D):

$$L(D) = \sum_{\alpha \in \Gamma} D^{2\alpha},$$

where we used the abbreviation

$$D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}.$$

The authors want to thank E. B. Dynkin for leading their interest to these problems and I. S. Louhivaara for his suggestions while writing this paper.

2. The Hilbert spaces $H^{\Gamma}(G)$, $H^{\Gamma}_{0}(G)$ and $H^{(k)}(G)$

2.1. Let G be a bounded open set in \mathbb{R}^n . As usual, let $C^k(G)$, $k \in \mathbb{N}_0$, be the linear space of all complex valued functions u which are k times continuously differentiable in G. By $C_0^k(G)$ we denote the space of all functions $u \in C^k(G)$ each having a compact support in G. We write also $C_0^{\infty}(G) = \bigcap_{k \in \mathbb{N}_0} C_0^k(G)$. Further we define for $k \in \mathbb{N}_0$

 $C^k_*(G) := \{ u | u \in C^k(G), D^{\alpha} u \in L^2(G), \alpha \in N_0^n, |\alpha| \leq k \}.$

In $C_*^k(G)$ we associate with the operator L(D) the sesquilinear form

(2.1)
$$B(u, v) := \sum_{\alpha \in \Gamma} \int_{G} \overline{D^{\alpha} u(x)} D^{\alpha} v(x) dx.$$

We define

(2.2)
$$(u, v)_{\Gamma} := B(u, v) + (u, v)_0,$$

where $(\cdot, \cdot)_0$ denotes the scalar product in $L^2(G)$,

(2.3)
$$(u, v)_0 = \int_G \overline{u(x)} v(x) \, dx.$$

Thus, we have a scalar product $(\cdot, \cdot)_{\Gamma}$ on $C_*^k(G)$ with the corresponding norm $\|\cdot\|_{\Gamma}$. The completion of $C_*^k(G)$ with respect to the scalar product (2.2) will be denoted by $H^{\Gamma}(G)$. One obtains $H^{2\Gamma}(G)$ analogously. For the closure of $C_0^{\infty}(G)$ in $H^{\Gamma}(G)$ we write $H_0^{\Gamma}(G)$. The elements of $H_0^{\Gamma}(G)$ are interpreted as functions with generalized homogenous boundary data (cf. Theorem 4).

In contrast to the usual Sobolev space theory we cannot conclude that the strong L^2 -derivative $D^{\tau}u$ exists for $u \in H^{\Gamma}(G)$ and for each multi-index $\tau \in N_0^n$ with $\tau \leq \sigma$ for some $\sigma \in \Gamma$. But one can prove (cf. also [7])

Lemma 1. Let $u \in H_0^{\Gamma}(G)$ be given. Then the strong L²-derivative $D^{\tau}u$ exists for all multi-indices τ with $\tau \leq \sigma$ for some $\sigma \in \Gamma$.

Proof. For $\tau \in \Gamma$ the assertion is obvious. Let now $\tau \notin \Gamma$ such that $\tau \leq \sigma \in \Gamma$. Since $G \subset \mathbb{R}^n$ is a bounded set, we can find a constant d > 0 such that for each $x = (x_1, ..., x_n) \in G$

$$\max_{1 \le j \le n} |x_j| \le d$$

holds. For $\varphi \in C_0^{\infty}(G)$ we get by partial integration $(1 \le j \le k)$

$$\begin{split} \|D^{\mathsf{r}}\varphi\|_{0}^{2} &= \int_{G} |D^{\mathsf{r}}\varphi(x)|^{2} \, dx = -\int_{G} x_{j} \frac{\partial}{\partial x_{j}} \left(\overline{D^{\mathsf{r}}\varphi(x)} D^{\mathsf{r}}\varphi(x) \right) dx \\ &\leq 2d \, \|D^{\mathsf{r}+\varepsilon_{j}}\varphi\|_{0} \|D^{\mathsf{r}}\varphi\|_{0}. \end{split}$$

Hence one has

$$\|D^{\tau}\varphi\|_{0} \leq 2d \|D^{\tau+\varepsilon_{j}}\varphi\|_{0}.$$

Since $\tau \leq \sigma$, there exists a multi-index β with $\tau + \sigma = \beta$ and the result follows by iteration.

As an immediate consequence of the Poincaré inequality we have

Lemma 2. On $H_0^{\Gamma}(G)$ the sesquilinear form (2.1) defines a scalar product equivalent to (2.2).

Proof. It is sufficient to prove all estimates for elements of $C_0^{\infty}(G)$. By (2.2) we have for all $\varphi \in C_0^{\infty}(G)$

$$B(\varphi, \varphi) \leq (\varphi, \varphi)_{\Gamma}$$

Now by the Poincaré inequality (cf. [5], p. 33) we get for each multi-index $\varepsilon_j \in N_0^n$, $|\varepsilon_j| = 1$ $(1 \le j \le n)$

$$\| \varphi \|_0^2 \leq c_1 \| D^{\varepsilon_j} \varphi \|_0^2,$$

where the constant c_1 depends only on *G*. Repeating this argument we get finally for each $\alpha \in \Gamma$ $\|\varphi\|_0^2 \leq c_{\alpha} \|D^{\alpha} \varphi\|_0^2$

and by (2.1)

 $\|\varphi\|_0^2 \leq cB(\varphi, \varphi),$

which proves Lemma 2.

Thus we have on $H_0^{\Gamma}(G)$ a norm $||| \cdot |||_{\Gamma}$ defined by

(2.4) $|||\varphi|||_{\Gamma} := (B(\varphi, \varphi))^{1/2}, \quad \varphi \in C_0^{\infty}(G),$

equivalent to $\|\cdot\|_{\Gamma}$. This norm can be interpreted as the energetic norm associated with the differential operator L(D).

2.2. Now let us suppose that the set $G \subset \mathbb{R}^n$ has

Property P. The open bounded set G is the Cartesian product

$$(2.5) G = G_1 \times \dots \times G_k$$

of bounded open sets $G_j \subset \mathbf{R}^{m_j} (1 \leq j \leq k), m_1 + \ldots + m_k = n$, with sufficiently smooth boundaries¹ ∂G_j .

We will generalize a well-known theorem from the theory of Sobolev spaces. Let $G'_{j} \subset \mathbf{R}^{m_{j}} \ (1 \leq j \leq k)$ be a bounded open set. If Φ_{j} is a diffeomorphism of class C^{1} from \overline{G}'_{j} onto \overline{G}_{j} then the tensor product Φ ,

$$(2.6) \qquad \qquad \Phi := \Phi_1 \otimes \ldots \otimes \Phi_k,$$

is a diffeomorphism of class C^1 from $\overline{G}' = \overline{G}'_1 \times \ldots \times \overline{G}'_k$ onto $\overline{G} = \overline{G}_1 \times \ldots \times \overline{G}_k$.

¹ All our considerations are valid if the boundaries ∂G_j are of class C^{∞} (cf. e.g. [3], pp. 9–10).

By definition the Jacobi matrix is the direct sum of the linear mappings $A_j: \mathbb{R}^{m_j} \to \mathbb{R}^{m_j}$ $(1 \le j \le k)$ defined by

(2.7)
$$A_{j} = \begin{pmatrix} \frac{\partial x_{l_{j}+1}}{\partial y_{l_{j}+1}} \cdots \frac{\partial x_{l_{j}+m_{j}}}{\partial y_{l_{j}+1}} \\ \vdots & \vdots \\ \frac{\partial x_{l_{j}+1}}{\partial y_{l_{j}+m_{j}}} \cdots \frac{\partial x_{l_{j}+m_{j}}}{\partial y_{l_{j}+m_{j}}} \end{pmatrix},$$

where x_i denotes the *i*-th component of Φ . We remark that the elements of A_j are continuous functions on \overline{G}'_i .

Lemma 3. Let G be a bounded open set with Property P and let Φ be defined by (2.6). Then for all $u \in H_0^{\Gamma}(G)$ the function

(2.8) $u'(y) = u(\Phi(y))$ is in $H_0^{\Gamma}(G')$ and (2.9) $c_1 \|u'\|_{\Gamma,G'} \le \|u\|_{\Gamma,G} \le c_2 \|u'\|_{\Gamma,G'}$

holds, where the constants c_1, c_2 depend only on the diffeomorphism Φ .

Proof. By Lemma 2 inequality (2.9) is equivalent to

(2.10)
$$\tilde{c}_1 |||u'|||_{\Gamma, G'} \leq |||u|||_{\Gamma, G} \leq \tilde{c}_2 |||u'|||_{\Gamma, G'}.$$

Now by definition we get for each function (2.8)

$$|||u'|||_{\Gamma,G'}^2 = \sum_{\alpha \in \Gamma} \int_{G'} |D_y^{\alpha} u'(y)|^2 dy$$

For a fixed $\alpha \in \Gamma$ we have by (1.3)

$$\alpha = \varepsilon_{t_1} + \ldots + \varepsilon_{t_k},$$

where ε_{t_j} $(1 \le j \le k)$ has its only non-vanishing coordinate in the t_j -th position, $l_j+1 \le t_j \le l_j+m_j$. Furthermore we get

(2.11)
$$D_y^{\alpha} u'(y) = \left(-\sqrt{-1}\right)^k \frac{\partial^k u'(y)}{\partial y_{t_1} \dots \partial y_{t_k}}$$

$$= (-\sqrt{-1})^k \sum_{i_1=1}^{m_1} \cdots \sum_{i_k=1}^{m_k} \frac{\partial^k u(\Phi(y))}{\partial x_{l_1+i_1} \cdots \partial x_{l_k+i_k}} \frac{\partial x_{l_1+i_1}}{\partial y_{t_1}} \cdots \frac{\partial x_{l_k+i_k}}{\partial y_{t_k}}$$

Thus, using the fact that the Jacobian of Φ is continuous on \overline{G}' , we get

$$|D_{\mathbf{y}}^{\alpha}u'(\mathbf{y})| \leq \hat{c}_{\alpha}\sum_{i_{1}=1}^{m_{1}}\cdots\sum_{i_{k}=1}^{m_{k}}\left|\frac{\partial^{k}u(\Phi(\mathbf{y}))}{\partial x_{l_{1}+i_{1}}\cdots\partial x_{l_{k}+i_{k}}}\right|,$$

where the constant \hat{c}_{α} depends only on Φ and α . Now one has with another constant \hat{c}_{α}

$$|D_{y}^{\alpha}u'(y)|^{2} \leq \hat{c}_{\alpha}^{2} \left(\sum_{i_{1}=1}^{m_{1}} \dots \sum_{i_{k}=1}^{m_{k}} \left| \frac{\partial^{k}u(\Phi(y))}{\partial x_{l_{1}+i_{1}} \dots \partial x_{l_{k}+i_{k}}} \right| \right)^{2}$$
$$\leq \tilde{c}_{\alpha}^{2} \sum_{i_{1}=1}^{m_{1}} \dots \sum_{i_{k}=1}^{m_{k}} \left| \frac{\partial^{k}u(\Phi(y))}{\partial x_{l_{1}+i_{1}} \dots \partial x_{l_{k}+i_{k}}} \right|^{2}$$

and further

(2.12)
$$\|D_{y}^{\alpha}u'\|_{0,G'}^{2} \leq \tilde{c}_{\alpha}^{2} \sum_{i_{1}=1}^{m_{1}} \cdots \sum_{i_{k}=1}^{m_{k}} \int_{G'} \left|\frac{\partial^{k}u(\Phi(y))}{\partial x_{l_{1}+i_{1}}\cdots\partial x_{l_{k}+i_{k}}}\right|^{2} dy.$$

We substitute $y = \Phi^{-1}(x)$. As the Jacobian of Φ^{-1} is continuous on \overline{G} we find

(2.13)
$$\|D_{y}^{\alpha}u'\|_{0,G'}^{2} \leq c_{\alpha}^{2} \sum_{i_{1}=1}^{m_{1}} \dots \sum_{i_{k}=1}^{m_{k}} \left\|\frac{\partial^{k}u}{\partial x_{l_{1}+i_{1}} \dots \partial x_{l_{k}+i_{k}}}\right\|_{0,G}^{2}$$

with a suitable constant c_{α} . In the summation on the right side of (2.13) only multiindices which belong to Γ appear, wherefore we get

(2.14)
$$\|D_{y}^{\alpha}u'\|_{0,G'}^{2} \leq c_{\alpha}^{2}|||u|||_{\Gamma,G}^{2}.$$

Because (2.14) holds for all multi-indices $\alpha \in \Gamma$, we can finally show that there exists a constant \tilde{c}_1^{-1} depending only on Φ such that

$$|||u'|||_{\Gamma,G'} \leq \tilde{c}_1^{-1}|||u|||_{\Gamma,G}$$

holds for all functions (2.8). By interchanging the roles of x and y we get the second inequality of (2.10).

To prove a theorem for functions in $H_0^r(G)$ which is quite similar to a theorem on the behaviour of the elements of $H_0^l(G)$ (cf. e.g. [5], p. 28), we define for each $j(1 \le j \le k)$

(2.15)
$$\Gamma^{j} := \left\{ \gamma \middle| \begin{array}{l} \gamma \in N_{0}^{n}, \gamma = \sum_{\substack{i=1\\ i \neq j}}^{k} \varepsilon_{i_{i}} \right\} \right.$$

(for $\gamma \in \Gamma^j$ one has $|\gamma| = k-1$) and

$$\partial_j G \coloneqq G_1 \times \ldots \times G_{j-1} \times \partial G_j \times G_{j+1} \times \ldots \times G_k.$$

Theorem 4. Let G be a bounded open set with Property P. Then for each $u \in H_0^{\Gamma}(G) \cap C^{k-1}(\overline{G})$ the relation

$$(2.16) D^{\beta}u|_{\partial,G} = 0$$

holds for all multi-indices β with $\beta \leq \gamma$ for some $\gamma \in \Gamma^j$ $(1 \leq j \leq k)$.

Proof. It is obviously enough to prove the result for j=1. For a point $(\xi, \eta) \in \partial G_1 \times G^{\tilde{}}$, $G^{\tilde{}} = G_2 \times \ldots \times G_k$, we can assume by Lemma 3 that the point $\xi \ (\in \partial G_1)$ and for a neighbourhood $U \subset \mathbb{R}^{m_1}$ of ξ the set $U \cap \partial G_1$ lie in the hyper-

surface $x_1=0$ and that $U \cap G_1$ lies in the halfspace $x_1 \le 0^2$. In the Cartesian product $(U \cap \partial G_1) \times G^{\sim}$ we can find an *n*-dimensional cylinder S_h with height *h*, the base of which is an (n-1)-dimensional ball

$$B_{r_h}(\xi,\eta) = \left\{ x \middle| x \in \mathbb{R}^n, x_1 = 0, \sum_{i=2}^{m_1} |x_i - \xi_i|^2 + \sum_{i=m_1+1}^n |x_i - \eta_i|^2 < r_h^2 \right\}$$

in $U \cap \partial G_1$ in the hypersurface $x_1 = 0$, where the radius r_h is chosen such that the volume of S_h is equal to h^2 . With sufficiently small values of h we have $S_h \subset G_1 \times G^{\sim}$.

For each $\varphi \in C_0^{\infty}(G)$ one has

$$(2.17) D^{\beta}\varphi(x) = 0$$

for all $x \in B_{r_n}(\xi, \eta)$ and all $\beta \in N_0^n$. From (2.17) one has

(2.18)
$$D_x^{\beta}\varphi(x) = \int_0^{x_1} \frac{\partial}{\partial t} D_x^{\beta}\varphi(t, x_2, ..., x_n) dt.$$

By the Cauchy-Schwarz inequality we get

$$|D_x^{\beta}\varphi(x)|^2 \leq h \int_0^h \left|\frac{\partial}{\partial t} D_x^{\beta}\varphi(t, x_2, ..., x_n)\right|^2 dt.$$

Integration with respect to x gives

$$\int_{S_h} |D_x^{\beta} \varphi(x)|^2 dx \leq h^2 \int_{S_h} \left| \frac{\partial}{\partial x_1} D_x^{\beta} \varphi(x) \right|^2 dx.$$

Since vol $S_h = h^2$, we get

(2.19)
$$\frac{1}{\operatorname{vol} S_h} \int_{S_h} |D_x^{\beta} \varphi(x)| \, dx \leq \int_{S_h} |D_x^{\beta+\varepsilon_1} \varphi(x)|^2 \, dx$$

for $\varepsilon_1 = (1, 0, ..., 0) \in N_0^n$.

Now take a multi-index β with $\beta \leq \gamma$ for some $\gamma \in \Gamma^1$. Then one has $\beta + \varepsilon_1 \leq \gamma + \varepsilon_1 \in \Gamma$. By Lemma 1 it follows that the right-hand integral tends to zero also for all elements $u \in H^r_0(G)$ if $h \to 0$, whence we have

$$\lim_{h\to 0} \frac{1}{\operatorname{vol} S_h} \int_{S_h} |D^{\beta} u(x)|^2 dx = 0.$$

If in addition $u \in C^{k-1}(\overline{G})$, we conclude by using the mean value theorem

$$D^{\beta}u(\xi,\eta)=0$$

for all $\eta \in G^{\sim}$ and for all $\beta \leq \gamma \in \Gamma^1$. This proves Theorem 4.

² To reach this situation by a local C^1 -diffeomorphism (cf. Lemma 3) we must have some regularity of the boundaries; in the special case $m_1 = \ldots = m_k = 1$ the following proof is always applicable without any transformation by a C^1 -diffeomorphism.

2.3. In this connection we remark that partial integration is possible for functions of the set

(2.20)
$$X := H_0^{\Gamma}(G) \cap C^{\infty}(\overline{G}),$$

provided that the set G has Property P.

Lemma 5. Let G be a bounded open set with Property P. Then

$$\int_{G} \overline{D^{\alpha} u(x)} D^{\alpha} v(x) \, dx = \int_{G} \overline{D^{2\alpha} u(x)} v(x) \, dx$$

holds for all $u, v \in X$ and $\alpha \in \Gamma$.

2.4. In the case where the bounded open set G has Property P we introduce another Hilbert space denoted by $H^{(k)}(G)$. On X a scalar product is defined by

(2.21)
$$(u, v)_{(k)} := (L(D)u, L(D)v)_0 + (u, v)_0.$$

The Hilbert space $H^{(k)}(G)$ is defined as the completion of X with respect to the scalar product (2.21). It is clear that (2.21) gives the graph norm $\|\cdot\|_{(k)}$,

$$\|u\|_{(k)}^2 = \|L(D)u\|_0^2 + \|u\|_0^2$$

on X.

We consider the densely defined linear operator L in the Hilbert space $L^2(G)$ given by

(2.23)
$$\begin{cases} D(L) := X(\subset L^2(G)), \\ Lu := L(D)u \text{ for all } u \in X. \end{cases}$$

By partial integration one gets

(2.24)
$$(Lu, v)_0 = \int_G \overline{L(D)u(x)}v(x) \, dx = \int_G \overline{u(x)}L(D)v(x) \, dx = (u, g)_0$$

for $u, v \in X$, with $L(D)v =: g =: L^*v$. Thus, we have $D(L^*) \supset X$, and the adjoint operator L^* is densely defined on $L^2(G)$. Hence the operator L is closable with the closure (smallest closed extension) $L^- = L^{**}$.

Theorem 6. Let G be a bounded open set with Property P. Then the relation

$$D(\tilde{L}) = H^{(k)}(G)$$

holds.

Proof. We denote the graphs of L and L^{\sim} by

$$G(L) := \{(u, Lu) \mid u \in X\}$$

and

$$G(L^{\sim}) := \{(f, L^{\sim}f) | f \in D(L^{\sim})\},\$$

respectively. On the other hand, it is well-known (cf. [10], p. 89) that $G(L^{\sim})$ coincides with the completion of G(L) with respect to the graph norm (2.22),

(2.25)
$$G(\tilde{L}) = \overline{G(L)}^{\|\cdot\|_{(k)}}.$$

For an arbitrary $u \in H^{(k)}(G)$ there exists by definition a sequence $\{u_m\}_{m \in N} \subset X$ such that

$$(2.26) ||u_m - u||_0 \to 0 \quad \text{for} \quad m \to \infty$$

and $\{Lu_m\}_{m\in N}$ is a Cauchy sequence in $L^2(G)$, which implies the existence of a unique element $w\in L^2(G)$ such that

$$(2.27) ||Lu_m - w||_0 \to 0 \quad \text{for} \quad m \to \infty.$$

Because of (2.25) it follows that $(u, w) \in G(L^{\sim})$, i.e., $u \in D(L^{\sim})$ (and $w = L^{\sim}u$).

On the other hand, let $u \in D(L^{\sim})$ be given. By the definition of a closed operator there exists a sequence $\{u_m\}_{m \in N} \subset D(L) = X$ such that (2.26) and (2.27) hold with $w := L^{\sim}u$. By definition we have $u \in H^{(k)}(G)$.

Remark. 1. From Theorem 6 we obtain for the scalar product of $H^{(k)}(G)$ the expression

$$(u, v)_{(k)} = (L^{\tilde{}} u, L^{\tilde{}} v)_0 + (u, v)_0.$$

2. Let B be the sesquilinear from (2.1). By partial integration one has

(2.28) $B(u, \varphi) = (Lu, \varphi)_0$ for all $u \in X$ and $\varphi \in C_0^{\infty}(G)$

and by continuous extension

$$B(u, v) = (Lu, v)_0$$
 for all $u, v \in X$.

By the Cauchy-Schwarz inequality we get

 $|B(u, v)| \le ||u||_{(k)} ||v||_0$ for all $u, v \in X$

and especially

(2.29)
$$|||u|||_{\Gamma}^{2} \leq ||u||_{(k)} ||u||_{0} \text{ for all } u \in X.$$

2.5. Now we will show that the elements of $H^{(k)}(G)$ have the same boundary behaviour as the elements of $H_0^{\Gamma}(G)$:

(2.30)
$$H^{(k)}(G) \cap H_0^{\Gamma}(G) = H^{(k)}(G).$$

Take an element $v \in H^{(k)}(G)$. By the definition of $H^{(k)}(G)$ there exists a sequence $\{u_i\} \subset X = H_0^{\Gamma}(G) \cap C^{\infty}(\overline{G})$ with

$$||u_j - v||_{(k)}^2 = ||Lu_j - L^{\tilde{v}}v||_0^2 + ||u_j - v||_0^2 \to 0.$$

Especially $\{u_i\}$ is a Cauchy sequence in $H^{(k)}(G)$ and by (2.29) also in $H_0^{\Gamma}(G)$:

$$|||u_i - u_l|||_{\Gamma} \rightarrow 0.$$

Thus $\{u_i\}$ has a limit element v^* in $H_0^{\Gamma}(G)$:

$$|||u_j - v^*|||_{\Gamma} \to 0.$$

By Lemma 2 it follows $||u_j - v^*||_0 \to 0$. Hence we get $v = v^* \in H_0^{\Gamma}(G)$, which means $H^{(k)}(G) \subset H_0^{\Gamma}(G)$. This proves the assertion (2.30).

3. A generalized Dirichlet problem

3.1. Let G be a bounded open set with Property P. We have defined the sesquilinear form B on $C_*^k(G)$ by (2.1). Since $C_*^k(G)$ is dense in $H^{\Gamma}(G)$ and since the obvious estimate

$$|B(u,v)| \leq c \|u\|_{\Gamma} \|v\|_{I}$$

holds for all $u, v \in C^k_*(G)$, this sesquilinear form can be extended continuously onto $H^{\Gamma}(G)$.

Using this sesquilinear form we can now formulate (analogously to the theory of strongly elliptic boundary value problems) a generalized Dirichlet problem. Starting from the Dirichlet problem of classical type

$$L(D)u = f \text{ in } G,$$

$$D^{\alpha} u = g_{\alpha,j} \quad \text{on} \quad \partial_j G,$$

for all $\alpha \in N_0^n$, $\alpha \leq \gamma$ with some $\gamma \in \Gamma^j$ $(1 \leq j \leq k)$ we pose the generalized problem as follows (cf. also [4]):

Problem 1. For $f \in L^2(G)$ and $g \in H^{\Gamma}(G)$ find all $u \in H^{\Gamma}(G)$ such that

$$(3.2) B(u, \varphi) = (f, \varphi)_0$$

holds for all $\varphi \in C_0^{\infty}(G)$ and the generalized boundary condition

$$v := u - g \in H_0^{\Gamma}(G)$$

is fulfilled.

From Lemma 2 it follows that the linear functional $l_{f,g}$ defined by

$$(3.3) l_{f,g}(\varphi) := (f,\varphi)_0 - B(g,\varphi) \text{ for all } \varphi \in C_0^{\infty}(G)$$

is bounded on $H_0^{\Gamma}(G)$. Thus, Problem 1 is equivalent to

Problem 2. For $f \in L^2(G)$ and $g \in H^{\Gamma}(G)$ find all elements $v \in H_0^{\Gamma}(G)$ such that

$$l_{f,g}(\varphi) = B(v,\varphi)$$

holds for all $\varphi \in C_0^{\infty}(G)$.

3.2. Now, we have

Theorem 7. Problem 2 has a unique solution $v \in H_0^{\Gamma}(G)$.

Proof. By Lemma 2 the sesquilinear form B is equivalent to the scalar product (2.2) on $H_0^{\Gamma}(G)$. By the Fréchet—Riesz representation theorem the result follows immediately.

Remark. If (in the case $f \in C^0(G)$ and $g \in H^r(G) \cap C^{k-1}(\overline{G})$) the function $u = v + g \in H^r(G)$ has more regularity, $u \in X$, and if G has Property P, the function u is also a classical solution of the differential equation (3.1a) in G and fulfils the boundary condition (3.1b) in the usual sense (cf. Theorem 4).

4. On the regularity of the solutions of the generalized

4.1. Let G be a bounded open set with Property P. Furthermore, let $f \in L^2(G)$ and an "admissible" boundary data $g \in H^{\Gamma}(G)$ be given. We call the boundary data $g \in H^{\Gamma}(G)$ admissible if the linear functional $l_{f,g}$ is also bounded on $L^2(G)$, and therefore by the Fréchet—Riesz theorem there exists an element $h \in L^2(G)$ such that the relation

 $(4.1) l_{f,g}(\varphi) = (h,\varphi)_0$

holds for all $\varphi \in C_0^{\infty}(G)$.

First we prove, in the case where the function $h \in L^2(G)$ has the form

$$(4.2) h = h_1 \dots h_k$$

with $h_j \in L^2(G_j)$ $(1 \le j \le k)$, a regularity result which is similar to that of [3] (pp. 46-68). At the second stage we will drop assumption (4.2) and take an arbitrary $h \in L^2(G)$.

We denote by $H_0^1(G_j)$ $(1 \le j \le k)$ the usual Sobolev space of functions with generalized homogeneous boundary values and by $\|\cdot\|_{1,G_j}$ the norm in $H_0^1(G_j)$. For $1 \le j \le k$ let B_j be the sequilinear form

(4.3)
$$B_{j}(\varphi_{j},\psi_{j}) := \int_{G_{j}} \sum_{i=1}^{m_{j}} \overline{D_{l_{j}+i}\varphi_{j}(x^{(j)})} D_{l_{j}+i}\psi_{j}(x^{(j)}) dx^{(j)}$$

defined for $\varphi_j, \psi_j \in C_0^{\infty}(G_j)$ with $x^{(j)} := (x_{l_j+1}, \dots, x_{l_j+m_j})$ and $dx^{(j)} := dx_{l_j+1} \dots dx_{l_j+m_j}$. This form gives a norm $||| \cdot |||_{1,G_j}$,

(4.4)
$$|||\varphi_j|||_{1,G_j}^2 = B_j(\varphi_j,\varphi_j),$$

equivalent to $\|\cdot\|_{1,G_1}$.

By the theory of elliptic differential operators there exists for each $j (1 \le j \le k)$ a unique $v_i \in H_0^1(G_j)$ such that

(4.5)
$$(h_j, \varphi_j)_{0, G_j} = B_j(v_j, \varphi_j)$$
holds for all $\varphi_j \in C_0^{\infty}(G_j)$.

Theorem 8. Let G be a bounded open set with Property P. Let $f \in L^2(G)$ and an admissible boundary data $g \in H^{\Gamma}(G)$ be given. Furthermore assume that the element $h \in L^2(G)$ representing the functional $l_{f,g}$ of Problem 2 has the form (4.2). Then the unique solution of Problem 2 is the product of the unique solutions of the equations (4.5).

Proof. A. First we prove by induction that the product $v=v_1...v_k$ of the solutions v_j of the equations (4.5) belongs to $H_0^{\Gamma}(G)$. For k=1 this is trivial because then the equality $H_0^{\Gamma}(G)=H_0^{\Gamma}(G)$ holds. For $l\in N$, $1\leq l\leq k$, we define

$$\Gamma_l = \left\{ lpha \middle| lpha \in N_0^n, \ lpha = \sum_{j=1}^l \varepsilon_{t_j}
ight\}$$

(cf. (1.3)). Note that with this definition we have $\Gamma_k = \Gamma$.

Now let $G^{:=}G_1 \times \ldots \times G_{l-1}$, $l \leq k$, and assume $\tilde{v} = v_1 \ldots v_{l-1} \in H_0^{l-1}(G^{\circ})$ with $v_j \in H_0^1(G_j)$, $1 \leq j \leq l-1$. Thus, there exists a sequence $\{\tilde{\varphi}_m\}_{m \in N}$, $\tilde{\varphi}_m \in C_0^{\infty}(G^{\circ})$ such that

$$(4.6) \qquad \qquad |||\tilde{v} - \tilde{\varphi}_m|||_{\Gamma_{l-1}, G^*} \to 0$$

holds for $m \to \infty$. On the other hand, since $C_0^{\infty}(G_l)$ is dense in $H_0^1(G_l)$, we can find a sequence $\{\varphi_{l,m}\}_{m \in N}, \varphi_{l,m} \in C_0^{\infty}(G_l)$, such that

$$(4.7) |||v_l - \varphi_{l,m}|||_{1,G_l} \to 0$$

holds for $m \rightarrow \infty$. Now, if we put $G' = G^{\wedge} \times G_l$ $(l \leq k)$,

$$|||\tilde{v} - \tilde{\varphi}_{m}|||_{\Gamma_{l-1}, G^{*}}|||v_{l} - \varphi_{l,m}|||_{1, G_{l}} = |||(\tilde{v} - \tilde{\varphi}_{m})(v_{l} - \varphi_{l,m})|||_{\Gamma_{l}, G^{*}}$$

$$\geq |||\tilde{v}v_l - \tilde{\varphi}_m \varphi_{l,m}|||_{\Gamma_l, G'} - |||\tilde{\varphi}_m|||_{\Gamma_{l-1}, G^{\wedge}}|||v_l - \varphi_{l,m}|||_{1, G_l} - |||\varphi_{l,m}|||_{1, G_l}|||\tilde{v} - \tilde{\varphi}_m|||_{\Gamma_{l-1}, G^{\wedge}}.$$

Since $|||\tilde{\varphi}_m|||_{\Gamma_{l-1},G^{\wedge}}$ and $|||\varphi_{l,m}|||_{1,G_l}$ are bounded it follows by (4.6) and (4.7) that

$$|||\tilde{v}v_l - \tilde{\varphi}_m \varphi_{l,m}|||_{\Gamma_l,G'} \to 0$$

for $m \rightarrow \infty$.

B. Next we prove that $v = v_1 \dots v_k$ solves the equation

$$B(v, \varphi) = (h_1 \dots h_k, \varphi)_{0, G}$$

for all $\varphi \in C_0^{\infty}(G)$. For the functions $\varphi_j \in C_0^{\infty}(G_j)$ $(1 \le j \le k)$ we have by (4.3) and (4.5)

(4.8)
$$B(v_1...v_k, \varphi_1...\varphi_k) = B_1(v_1, \varphi_1)...B_k(v_k, \varphi_k)$$
$$= (h_1, \varphi_1)_{0, G_1}...(h_k, \varphi_k)_{0, G_k} = (h_1...h_k, \varphi_1...\varphi_k)_{0, G}.$$

By [9] (Corollary 1 and 2 of Theorem 39.2, p. 409) the equation (4.8) can be extended continuously to all elements $\varphi \in C_0^{\infty}(G)$ instead of $\varphi_1 \dots \varphi_k$. Thus v is the unique solution of Problem 2.

C. Assuming the boundaries ∂G_j $(1 \le j \le k)$ to be smooth enough we can apply the regularity theory for solutions of elliptic equations (cf. [3], pp. 46-68) to the functions $v_j \in H_0^1(G_j)$ $(1 \le j \le k)$ solving (4.5). Hence for smooth boundaries ∂G_j and $h_j \in L^2(G_j)$ we find $v_j \in H^2(G_j) \cap H_0^1(G_j)$ $(1 \le j \le k)$ and therefore

(4.9)
$$v_1 \dots v_k = v \in H^{2\Gamma}(G) \cap H_0^{\Gamma}(G).$$

If in addition $h_j \in C^{\infty}(\overline{G}_j)$ $(1 \le j \le k)$, we have (again under the assumption of smooth boundaries) $v_j \in H_0^1(G_j) \cap C^{\infty}(\overline{G}_j)$ and therefore

(4.10) $v_1 \dots v_k = v \in H_0^{\Gamma}(G) \cap C^{\infty}(\overline{G})$

(see [3], p. 68).

4.2. We will now examine the regularity of the solution of Problem 2 for arbitrary admissible data.

Theorem 9. Let G be a bounded open set with Property P. Furthermore let $f \in L^2(G)$ and an admissible $g \in H^{\Gamma}(G)$ be given. Then the unique solution v of Problem 2 belongs to $H^{(k)}(G)$.

Proof. Since g is admissible there exists an element $h \in L^2(G)$ such that the functional $l_{f,g}$ of Problem 2 has the representation $l_{f,g}(\varphi) = (h, \varphi)_0$. By [9] (Corollary 1 of Theorem 39.2, p. 409) there exists for h and for each $\varepsilon \in \mathbf{R}, \varepsilon > 0$ a function $h_{\varepsilon} \in C_0^{\infty}(G)$ such that

 $\|h-h_{\varepsilon}\|_{0,G} < \varepsilon$

holds, where h_{ε} has the form

$$(4.12) h_{\varepsilon} := \sum_{(i_1,\ldots,i_k)\in\Omega} h_{i_1,\varepsilon}\ldots h_{i_k,\varepsilon}$$

with a suitable finite subset Ω of N^k and $h_{i_j,\varepsilon} \in C_0^{\infty}(G_j)$ $(1 \le j \le k)$.

For the functions $h_{i_j,\varepsilon}$ $(1 \le j \le k)$ we consider the unique solutions $v_{i_j,\varepsilon} \in H_0^1(G_j)$ of the generalized strongly elliptic Dirichlet problems

(4.13)
$$(h_{i_1,\varepsilon},\varphi)_{0,G_j} = B_j(v_{i_j,\varepsilon},\varphi_j) \text{ for all } \varphi_j \in C_0^{\infty}(G_j).$$

From the elliptic theory we get $v_{i_j,\varepsilon} \in C^{\infty}(\overline{G}_j)$ (cf. [3], p. 68). The function

$$v_{\varepsilon} := \sum_{(i_1, \dots, i_k) \in \Omega} v_{i_1, \varepsilon} \dots v_{i_k, \varepsilon} \in H_0^{\Gamma}(G) \cap C^{\infty}(\overline{G}) = X = D(L)$$

is the unique solution of the equation

$$(h_{\varepsilon}, \varphi)_{0,G} = B(v_{\varepsilon}, \varphi)$$
 for all $\varphi \in C_0^{\infty}(G)$.

We denote the unique solution of Problem 2 again by $v \in H_0^{\Gamma}(G)$. We have

$$B(v-v_{\varepsilon}, \varphi) = (h-h_{\varepsilon}, \varphi)_{0,G}$$
 for all $\varphi \in C_0^{\infty}(G)$.

The continuity of the sesquilinear form B in $H_0^r(G)$ implies (with $v - v_{\varepsilon}$ instead of φ)

$$|||v - v_{\varepsilon}|||_{\Gamma}^2 \leq \|h - h_{\varepsilon}\|_0 \|v - v_{\varepsilon}\|_0 \leq c \|h - h_{\varepsilon}\|_0 |||v - v_{\varepsilon}||_{\Gamma}$$

with a positive constant c. We apply (4.11) and get

$$|||v-v_{\varepsilon}|||_{\Gamma} \leq c \varepsilon.$$

Thus, because of the equivalence of the norms $\|\cdot\|_{\Gamma}$ and $\||\cdot\||_{\Gamma}$ on $H_0^{\Gamma}(G)$ we have

 $\|v-v_{\varepsilon}\|_{0} \to 0$

for $\varepsilon \rightarrow 0$, and by (4.11)

$$\|h - Lv_{\varepsilon}\|_{0} = \|h - h_{\varepsilon}\|_{0} \to 0.$$

Since L^{\sim} is the closure of L we get finally

$$v \in D(L^{\sim}) = H^{(k)}(G).$$

References

- DOLPH, C. L.: The mathematician grapples with linear problems associated with the radiation condition. - Proceedings of the Symposium on electromagnetic wave theory, The University of Michigan 1955. IRE Trans. Antennas and Propagation 4, 1956, 302-311.
- [2] DYNKIN, E. B.: Harmonic functions associated with several Markov processes. Adv. in Appl. Math. 2, 1981, 260-283.
- [3] FRIEDMAN, A.: Partial differential equations. Holt, Rinehart and Winston, Inc., New York-Chicago-etc., 1969. Reprint: Robert E. Krieger Publishing Company, Huntington (New York), 1976.
- [4] HESS, P.: Über das verallgemeinerte Dirichletproblem f
 ür lineare partielle Differentialgleichungen. - Ann. Acad. Sci. Fenn. Ser. A. I. Math. 434, 1969, 1–28.
- [5] HILDEBRANDT, S.: Lineare elliptische Differentialgleichungen. [Vorlesung, Mainz 1966, als Manuskript vervielfältigt.] Johannes Gutenberg-Universität, Mathematisches Institut, Mainz, 1966.
- [6] HÖRMANDER, L.: Linear partial differential operators. Die Grundlehren der mathematischen Wissenschaften 116. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [7] JACOB, N.: On generalized Dirichlet problems. Math. Scand. [To appear.]

- [8] NEVANLINNA, R.: Erweiterung der Theorie des Hilbertschen Raumes. Medd. Lunds Univ. Mat. Sem. Supplementband tillägnat Marcel Riesz, Tome supplémentaire dédié à Marcel Riesz, 1952, 160–168.
- [9] TRÈVES, F.: Topological vector spaces, distributions and kernels. Pure and Applied Mathematics 25. Academic Press, New York—London, 1967.
- [10] WEIDMANN, J.: Lineare Operatoren in Hilberträumen. Mathematische Leitfäden. B. G. Teubner, Stuttgart, 1976.

Freie Universität Berlin Fachbereich Mathematik Arnimallee 2–6 D 1000 Berlin 33 Bundesrepublik Deutschland New addres of N. J.: Hochschule der Bundeswehr Müncheu Fachbereich Informatik Institut für Mathematik Werner—Heisenberg—Weg 39 D 8014 Neubiberg Bundesrepublik Deutschland

Received 12 August 1983