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1. Introduction

1.1. In a recent paper [2] E. B. Dynkin solved a Dirichlet problem for a non-
hypoelliptic differential operator L(D) with methods of probability theory by
extending some results of the theory of Markov processes.

This operator L(D) is defined in the following way: Let k be a positive integer.
For each j(l1=j=k) take m;€N and set n=my+...+m. With the notation

j—1
I, =0, L=2>m Q=j= k)
i=1
we set

(1.0 4; = ZJ7D12~+i with Dy 4 =—V-1- 4 .
i=1 d axlj+i

Thus, 4; denotes the Laplace operator which acts on functions defined on subsets
of R™c R". We define the differential operator L(D) by

(1.2) L(D):= 4,... 4.

The operator L(D) is not hypoelliptic for k=>1. This fact can be seen already
in the simplest case where k=2 and my=m,=1. Then

e 0
and the polynomial associated with L(D) is given by P&)=¢2E2. Since for &=0
and &=n (n€N) we have

32
—- P(&) = 2n?,
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it follows by a result of L. Hérmander (see [6], p. 99) that Z(D) is not hypoelliptic.
The usual Sobolev space methods are not applicable to a study of Dirichlet problems
for the operator L(D).

1.2. In this paper we present a method which can be understood as a generaliza-
tion of the Hilbert space methods used in the elliptic theory. Here we use “an-
isotropic” Sobolev spaces which correspond in a natural way to the operator L(D).
It turns out that in these anisotropic spaces the behaviour of the non-hypoelliptic
operator L(D) is quite similar to that of an elliptic operator in the usual Sobolev
spaces.

Fora domain G which is the Cartesian product of bounded open sets G, R™
(n=m;+...+m) with sufficiently smooth boundaries dG; we show that a genera-
lized Dirichlet problem, for which the sclution is searched in such an anisotropic
space, has a unique solution. Further one gets for a class of data a regularity result
for this solution.

We will mention that Rolf Nevanlinna expressed a similar idea in unpublished
lectures given in Ann Arbor, Helsinki and Ziirich. He indicated the possibility
to construct for a differential operator a suitable bilinear form such that solving
Dirichlet problems for this operator can be reduced to the problem of orthogonal
projection in the sense of this bilinear form (cf. [8] and also [1]).

1.3. We give a slightly modified representation of L(D). We denote by NI
the set of all ordered systems of n nonnegative integers (multi-indices). For
a=(o1,..., 2,)ENG we define its length as usual by |o|=o;+...4+2,. For o, t€N!,
0=(01, ..., 6,), T=(Tq, ..., 7,), we set o=t if o,=71; for 1=i=n. It is clear that
with this definition Nj§ is a partially ordered set.

Let m; and /; (1=j=k) be defined asin 1.1. Foreach j (1=/=k) we define
m; multi-indices & NG of length 1, ]s,j{zl, having its only nonvanishing co-
ordinate in the #;-th position, /;4+1=1;=/,+m;. Furthermore we set

k
(1.3) I = {x aENG, o= Zs,},}
=

and
2I' = {p| BeNy, p =20, acl}.

Note that both I' and 2I' have m;...m, elements. Now we obtain the very useful
expression for the differential operator L(D):

(1.4) L(D)= 3 D*,

where we used the abbreviation
D* = D*... Din.

The authors want to thank E. B. Dynkin for leading their interest to these
problems and I. S. Louhivaara for his suggestions while writing this paper.



A non-hypoelliptic Dirichlet problem from stochastics 377

2. The Hilbert spaces H'(G), HY(G) and H®(G)

2.1. Let G be a bounded open set in R". As usual, let C¥G), k€N,, be the
linear space of all complex valued functions # which are k times continuously
differentiable in G. By C%(G) we denote the space of all functions u€C4G) each
having a compact support in G. We write also Cg(G)=( NOC’g(G). Further
we define for k€N,

CE(G) := {u| ucC*(G), D*uc L*(G), «€Ng, || = k}.

In C%(G) we associate with the operator L(D) the sesquilinear form

(2.1) B(u,v):= 3 [D*u(x)D*v(x)dx.
acl g
We define
(22) (u,vh~x=‘B(u,d}+(u,v%,
where (-, -), denotes the scalar product in L*(G),
(2.3) (,0)y = [u(®)v(x)dx.
G

Thus, we have a scalar product (-, -)r on C%(G) with the corresponding norm
I -llr. The completion of C%(G) with respect to the scalar product (2.2) will be
denoted by H'(G). One obtains H*(G) analogously. For the closure of Cg(G)
in H'(G) we write H}(G). The elements of H{(G) are interpreted as functions
with generalized homogenous boundary data (cf. Theorem 4).

In contrast to the usual Sobolev space theory we cannot conclude that the
strong L*-derivative D% exists for u€ H'(G) and for each multi-index t€Ng
with t=¢ for some €I . But one can prove (cf. also [7])

Lemma 1. Let u¢ HY(G) be given. Then the strong L*-derivative D'u exists
for all multi-indices t© with 1=c for some o€l

Proof. For t€I' the assertion is obvious. Let now 7¢I such that t=g€l.
Since G R" is a bounded set, we can find a constant d=>0 such that for each

X=(X1, -..» Xp)EG

max |x;| =d
1=j=n

holds. For ¢€Cg(G) we get by partial integration (1=;=k)
0
T 2 — T 2 = — y— T °
D" olis Gle @ (x)[*dx é/'x, %, (D7 (x) D" ¢ (x)) dx

=2d || D+ o[ D7 llo-
Hence one has
[D*olly = 2d [|D* 2 ¢lq.
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Since =0, there exists a multi-index f with t+o=f and the result follows by
iteration.
As an immediate consequence of the Poincaré inequality we have

Lemma 2. On H{(G) the sesquilinear form (2.1) defines a scalar product
equivalent to (2.2).

Proof. It is sufficient to prove all estimates for elements of Cy(G). By (2.2)
we have for all ¢@€CJ(G)
B(9, ) = (o, ¢)r.

Now by the Poincaré inequality (cf. [5], p. 33) we get for each multi-index &;ENj,
le;|=1(1=j=n)
el = e lD% o],

where the constant ¢; depends only on G. Repeating this argument we get finally
for each acll

lol§ = c.|D*ol
and by (2.1)

lell§ = cB(o, ¢),
which proves Lemma 2.

Thus we have on H{(G) anorm ||| ||| defined by
(2.4 elllr := (Blg, @))% 0€C5(G),
equivalent to | -|r. This norm can be interpreted as the energetic norm associated

with the differential operator L(D).
2.2. Now let us suppose that the set G R" has

Property P. The open bounded set G is the Cartesian product
(2.5) G = G,X...XG,
of bounded open sets G;CR"™ (1=j=k), m+...4+m,=n, with sufficiently smooth
boundaries* 0G;.
We will generalize a well-known theorem from the theory of Sobolev spaces.
Let G;CR™ (1=j=k) be a bounded open set. If @; is a diffeomorphism
of class C* from Gj onto G; then the tensor product @,

(2.6) P=d®..00,

is a diffeomorphism of class C! from G'=G;X...XG, onto G=G;X...XG,.

* All our considerations are valid if the boundaries dG; are of class C* (cf. e.g. [3], pp. 9—10).
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By definition the Jacobi matrix is the direct sum of the linear mappings 4;: R™ —~R™
(1=j=k) defined by
' 3xl,~+1 axl,~+mj
3J’t,+1 3yt,+1
2.7 A4; =1 N
3x1,+1 3xt,~+m,
3J’z,~+m, 3)’1,~+mj

where x; denotes the i-th component of @. We remark that the elements of 4;
are continuous functions on Gj.

Lemma 3. Let G be a bounded open set with Property P and let @ be defined
by (2.6). Then for all u€ HY(G) the function

(2.8) v (p) = u((y))
isin HY(G") and
2.9 el e = lullr,¢ = collWlir, 6

holds, where the constants ¢y, ¢, depend only on the diffeomorphism ®.

Proof. By Lemma 2 inequality (2.9) is equivalent to

(2.10) allllllr,e = lllulllr.¢ = &l lircr-

Now by definition we get for each function (2.8)

e = 3 [1D5 0P dy.
o4 G
For a fixed a€I' we have by (1.3)
o =&, +...1T&,,

where g, (1=j=k) has its only non-vanishing coordinate in the z;-th position,
l;+1=t;=1;+m;. Furthermore we get

% ., k au(y)
(2.11) i (y) = (—V=1)— W

me Fu(D(Y)  OXywy  OXp i

S

i=1 zk-—laxll+i1"'axlk+ik 0¥y, 0V,

Thus, using the fact that the Jacobian of @ is continuous on G, we get

e

Dyu' (V)| = &, 2 2

=1

_du(e(»)

axll +ip* axlk +ix
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A

where the constant ¢, depends only on @ and «. Now one has with another
constant ¢,

m, my 3"1«[(@(}/)) ]2

DiwP=e| 3. > |

po=a| 3. 3|00 o

_ 52 my my 3ku(@(y)) 2

- ai1=1 'ik=1 OXty iy 0%y 44,

and further

my my 8ku(45(y)) 2
2.12 Dz =¢2 —| dy.
@.12) 1580 = 82 50 2 ) |G| dy

We substitute y=®~1(x). As the Jacobian of ®~! is continuous on G we find

o*u

3x,1+i1...3x,k+,-k

m 2

(2.13) 1D e =2 3

ij=1 =1

0,G

with a suitable constant ¢,. In the summation on the right side of (2.13) only multi-
indices which belong to I' appear, wherefore we get

(2.19) 1D5u113, 6. = czlllulll}, G-
Because (2.14) holds for all multi-indices a€I', we can finally show that there exists
a constant ¢, ' depending only on @ such that

el 6 = e llulllr, 6

holds for all functions (2.8). By interchanging the roles of x and y we get the
second inequality of (2.10).

To prove a theorem for functions in H{(G) which is quite similar to a theorem
on the behaviour of the elements of H{(G) (cf. e.g. [5], p. 28), we define for each
J(A=j=k)

k
(2.15) = {vl YENG, y = _21 st,.}
izj

(for yeI’ one has |y]=k—1) and
31G = Glx...XGj_]_XanXGj.(.lX-..XGk.

Theorem 4. Let G be a bounded open set with Property P. Then for each
u€ Hy(G) nC*-XG) the relation

(2.16) DPuly =0
holds for all multi-indices B with B=y for some yeI'' (1=j=k).

Proof. It is obviously enough to prove the result for j=1. For a point
(&, mEIGIXG™, G"=G,X...XGy, we can assume by Lemma 3 that the point
¢ (€0Gy) and for a neighbourhood Uc R™ of ¢ the set Un dG, lie in the hyper-
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surface x;=0 and that UG, lies in the halfspace x;=0 2. In the Cartesian pro-
duct (Un@0G;)XG~ we can find an n-dimensional cylinder S, with height A,
the base of which is an (n— 1)-dimensional ball

Brn(é’ 11) = {x| xeRn’ Xy = Oa 2 txi_éilz-l_ 2 Ixi_ni|2 = ri}
i=2 i

i=m;+1
in UN0G; in the hypersurface x;=0, where the radius r, is chosen such that the
volume of S, is equal to A% With sufficiently small values of h we have S,C
G XG".
For each ¢€Cy(G) one has
2.17) Dfp(x)=0
for all x€B, (¢, 1) and all BENG. From (2.17) one has

Xy

(2.18) Dlp(x) = [ %D,’ﬁ(p(t, Xy oney X,) dl.
0

By the Cauchy—Schwarz inequality we get

h 2
DEQOE = h [ |5-DEo( e s )] .
0
Integration with respect to x gives
2
JIDLp (R dx = ke f‘aibgw(x) x.
Sh Sh XI
Since vol S,=h2, we get
(2.19) e [IPloldx = [IDLrageordx
h Sy Sy

for ¢=(1,0,...,0)ENG.

Now take a multi-index B with f=y for some y€I'*. Then one has
f+e=y+e€l. By Lemma 1 it follows that the right-hand integral tends to zero
also for all elements u€ H{(G) if h—0, whence we have

1
J; 2 dy —
VoIS, [1DPu(x)P dx = 0.

lim
h—0
h
If in addition u€C*~%G), we conclude by using the mean value theorem
DPu(g,n) =0
for all #€G™ and for all p=yerlt. This proves Theorem 4.
2 To reach this situation by a local C*-difftomorphism (cf. Lemma 3) we must have some

regularity of the boundaries; in the special case m,=...=m,=1 the following proof is always
applicable without any transformation by a C-diffeomorphism.
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2.3. In this connection we remark that partial integration is possible for func:
tions of the set
(2.20) X = H{ (G)nC=(G),
provided that the set G has Property P.

Lemma 5. Let G be a bounded open set with Property P. Then

' fD“u(x)D“v(x) dx = sz"‘u(x)v(x) dx
¢ ¢

holds for all u,veX and o€r.

2.4. In the case where the bounded open set G has Property P we introduce
another Hilbert space denoted by H®(G). On X a scalar product is defined by

(2.21) (4, V) := (L(D)u, L(D)v)o+ (i, v)p.

The Hilbert space H®(G) is defined as the completion of X with respect to the
scalar product (2.21). It is clear that (2.21) gives the graph norm | - |,

(2.22) lulltey = IL(D)ull§+ulf
on X.

We consider the densely defined linear operator L in the Hilbert space L2(G)
given by

.23 { D(L) := X(C L*(G)),

Lu:= L(D)u for all ucX.

By partial integration one gets

224  Luov)= [LDu®v)dx= [u@E)LD)o(x)dx=(u,g),
G G

for u,v€X, with L(Dyw=:g=:L*. Thus, we have D(L*)DX, and the adjoint
operator L* is densely defined on L2?(G). Hence the operator L is closable with
the closure (smallest closed extension) L~ =L**,

Theorem 6. Let G be a bounded open set with Property P. Then the

relation
D(L") = H®(G)
holds.

Proof. We denote the graphs of L and L~ by

G(L) == {(u, Lu)| uc X'}

G(L™) :={(, L) feD(L)},

and
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recpectively. On the other hand, it is well-known (cf. [10], p. 89) that G(L") co-
incides with the completion of G(L) with respect to the graph norm (2.22),

(2.25) G(L)=G@)""®.

For an arbitrary u€ H®(G) there exists by definition a sequence {t},,c y& X
such that
(2.26) Nt —ullp =0 for m —eo

and {Lu,},.y 1s a Cauchy sequence in L*(G), which implies the existence of
a unique element wé€ L*(G) such that

(2.27) |Lu,—wllo =0 for m —eco.

Because of (2.25) it follows that (u, w)€G(L"), ie., u€D(L™) (and w=L"u).

On the other hand, let u€D(L™) be given. By the definition of a closed ope-
rator there exists a sequence {u,},.yCD(L)=X such that (2.26) and (2.27) hold
with w:=L " u. By definition we have u€ H®(G).

Remark. 1. From Theorem 6 we obtain for the scalar product of H®(G)

the expression
(u, U)(k) = (L~ u, L™ v)0+(u, )o-

2. Let B be the sesquilinear from (2.1). By partial integration one has
(2.28) B(u, ¢) = (Lu, ), for all ucX and ¢@€Cs(G)
and by continuous extension
B(u,v) = (Lu,v), for all u,v€X.
By the Cauchy—Schwarz inequality we get

1B(u, v)| = [lulglvlly for all u, veX
and especially
(2.29) ulllF = lullgyllull, for all ueX.

2.5. Now we will show that the elements of H®(G) have the same boundary
behaviour as the elements of H{(G):

(2.30) H®(G)nHE(G) = HO(G).

Take an element v€ H¥(G). By the definition of H®(G) there exists a sequence
{u;}c X =HY(G)nC=(G) with

llu;—vl}y = | Lu;— L™ v||§+]lu;—vf§ 0.
Especially {u;} is a Cauchy sequence in H®Y(G) and by (2.29) also in HI(G):

l”uj—uzlllr - 0.
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Thus {u;} has a limit element »* in H(G):
I[u; ="l - 0.

By Lemma 2 it follows |[lu;—v*,~0. Hence we get v=v*¢ HL(G), which means
H®(G)c HY(G). This proves the assertion (2.30).

3. A generalized Dirichlet problem

3.1. Let G be a bounded open set with Property P. We have defined the
sesquilinear form B on C%(G) by (2.1). Since C*(G) is dense in H'(G) and
since the obvious estimate

1B(u, v)| = cllulrllv]r

holds for all u, v€C%(G), this sesquilinear form can be extended continuously
onto H'(G).

Using this sesquilinear form we can now formulate (analogously to the theory
of strongly elliptic boundary value problems) a generalized Dirichlet problem.
Starting from the Dirichlet problem of classical type

(3.1a) L(D)u=f in G,
(3.1b) D'u=g,;. on 9;G,
sJ J

for all «€Njy, o=y with some yeI’/ (1=j=k) we pose the generalized problem
as follows (cf. also [4]):

Problem 1. For feL1*(G) and g€ H'(G) find all u€¢ H(G) such that
(3.2 B(u, ¢) = (f, )
holds for all ¢€Cy(G) and the generalized boundary condition

v:=u—gcH(G)
is fulfilled.
From Lemma 2 it follows that the linear functional /,, defined by

(33) lr,g(@) = (f, @)o—B(g, @) for all @cC(G)
is bounded on H{(G). Thus, Problem 1 is equivalent to

Problem 2. For f€L*(G) and gcH'(G) find all elements v€ HN(G) such that

lys(@) = B(v, @)
holds for all @€Cy(G).

3.2. Now, we have

Theorem 7. Problem 2 has a unique solution ve H(G).
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Proof. By Lemma 2 the sesquilinear form B is equivalent to the scalar product
(2.2) on HI(G). By the Fréchet—Riesz representation theorem the result follows
immediately.

Remark. If (in the case f€C°(G) and g€H'(G)nC* %(G)) the function
u=v+geH'(G) has more regularity, u€¢X, and if G has Property P, the function
u is also a classical solution of the differential equation (3.1a) in G and fulfils
the boundary condition (3.1b) in the usual sense (cf. Theorem 4).

4. On the regularity of the solutions of the generalized

4.1. Let G be a bounded open set with Property P. Furthermore, let f€ L*(G)
and an “admissible” boundary data g€ H'(G) be given. We call the boundary
data g€ H'(G) admissible if the linear functional I, , is also bounded on L*(G),
and therefore by the Fréchet—Riesz theorem there exists an element h€L*(G)
such that the relation
“4.1) lr,g(@) = (h, @)
holds for all p€C;(G).

First we prove, in the case where the function h€L?*(G) has the form

(4.2) h = hl"'hk

with h;€ L*(G;) (1=j=k), a regularity result which is similar to that of [3] (pp.
46—68). At the second stage we will drop assumption (4.2) and take an arbitrary
he L*(G).

We denote by Hy(G;) (1=j=k) the usual Sobolev space of functions with
generalized homogeneous boundary values and by | '“1,Gj the norm in Hy(G)).
For 1=j=k let B; be the sesquilinear form

mny - —— . .
4.3) Bi(@j )= [ 2 Diysi@;GP)Dyy s (x0) dxP
Gj =

defined for  ¢;, Y;€C5(G) with  xVi=(x; 4,00y Xy 1) and dx\V):=
dxlj+1...dx,j+mj. This form gives a norm ||| - Hll,Gj’

4.4) Hl%l”%G, = B;(¢;, <Pj),
equivalent to | -l ¢. -

By the theory of elliptic differential operators there exists for each j (1=j=k)
a unique v;€ Hy(G;) such that

4.5 (hja (Pj)o,Gj = Bj(Uj, (Pj)
holds for all ¢;€C5(G)).
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Theorem 8. Let G be a bounded open set with Property P. Let f€L*(G)
and an admissible boundary data g€ H'(G) be given. Furthermore assume that the
element h€L*(G) representing the functional I, , of Problem 2 has the form (4.2).
Then the unique solution of Problem 2 is the product of the unique solutions of the
equations (4.5).

Proof. A. First we prove by induction that the product v=wv,...», of the
solutions v; of the equations (4.5) belongs to HI(G). For k=1 this is trivial
because then the equality Hy(G)=H{(G) holds. For [EN, 1=/=k, we define

I, = {a 0ENY, o = .Zl'lstj}
=
(cf. (1.3)). Note that with this definition we have I,=T.

Now let G":=G,X...XG\;, [=k, and assume B=v,..v,_€H(G")
with v;€ Hy(G,), 1 =j=/—1. Thus, there exists a sequence {Prtmen> Pu€CT(GT)
such that
(4.6) o =@nlllr, .6~ —0

holds for m-e-. On the other hand, since C{(G,) is dense in HG(G)), we can
find a sequence {@; .} cns @1mE€Cy(G)), such that

(47) H[vl'—(pl,mHil,Gt -0

holds for m-—<. Now, if we put G'=G"XG, (I=k),

H’ﬁ_ﬁbmlHr,_l,G* ‘Hvl_(pl,mml,G, = I|I(i}_(.Bm)(vl_(Pl,m)“‘l"z,G’
= |[[50,= @ Pr.mlllr 6= 1 Bmlllr, 6~ Nor= 01, mlll1, 6= @n,m! 1, 6, 11— Bualllry_ 6~ -

Since |||@yllr, , ¢~ and [|@1,mlll1,6, are bounded it follows by (4.6) and (4.7)
that

IHﬁvl_(ﬁm@l,mlHﬁ,G’ -0
for m— .

B. Next we prove that v=v,...v, solves the equation

B, ) = (hy...hy, QD)O,G

for all @€Cy(G). For the functions 9;€Cy(G;) (I1=j=k) we have by (4.3)
and (4.5)
(4.8) B(;...00, ¢1...01) = By (01, 01)... By (v, ®r)

= (hy, (pl)O,Gl'“(hk’ on)o,ck = (hy...h, 901---<Pk)0,G-
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By [9] (Corollary 1 and 2 of Theorem 39.2, p. 409) the equation (4.8) can be extended
continuously to all elements ¢€Cy(G) instead of @5...¢. Thus v is the unique
solution of Problem 2.

C. Assuming the boundaries dG; (1=j=k) to be smooth enough we can apply
the regularity theory for solutions of elliptic equations (cf. [3], pp. 46—68) to the
functions v;€ Hy(G;) (1=j=k) solving (4.5). Hence for smooth boundaries 0G;
and h;c L*(G;) we find vjEHz(Gj)an(Gj) (1=j=k) and therefore

4.9) 0.0, = v EHT(G)NH{ (G).

If in addition h;€C=(G;) (1=j=k), we have (again under the assumption
of smooth boundaries) »;€ Hy(G;)nC=(G;) and therefore

4.10) by...0p = v EHL(G)NC=(G)
(see [3], p. 68).

4.2. We will now examine the regularity of the solution of Problem 2 for
arbitrary admissible data.

Theorem 9. Let G be a bounded open set with Property P. Furthermore let
f€L%(G) and an admissible g€ H'(G) be given. Then the unique solution v of
Problem 2 belongs to H®(G).

Proof. Since g is admissible there exists an element h€ L?(G) such that the
functional I, , of Problem 2 has the representation [, ,(¢)=(h, ¢),. By [9] (Corol-
lary 1 of Theorem 39.2, p. 409) there exists for h and for each e€ R, e=0 a function
h,£Cy(G) such that
(4.11) Ih—helloc <&
holds, where h, has the form

(4.12) hs = 2 hil,e“'hik,e

AT
with a suitable finite subset Q of N* and h; €C5(G)) (1=]=k).

For the functions hij's (1=j=k) we consider the unique solutions LIS HY(G))
of the generalized strongly elliptic Dirichlet problems

(4.13) (hiyyer P06, = Bi(vy,e5 @) for all ;€5 (G)).
From the elliptic theory we get v,.j,EEC“’(C_%j) (cf. [3], p. 68). The function

v, == Z vil,e”'vik,eEH{(G)nCm(G) =X= .D(L)

(), 0i)€ER
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is the unique solution of the equation
(hes ©)o,6 = B(v,, @) for all @cCg (G).
We denote the unique solution of Problem 2 again by v€HI(G). We have
B(v—v,, @) = (h—h,, @)y ¢ for all @eCy (G).

The continuity of the sesquilinear form B in H{(G) implies (with v—v, instead
of )

o= [ll} = Ih=helollo—vllo = cllh—h,]lo|llv—v,]||r
with a positive constant ¢. We apply (4.11) and get
o=l = ce.

Thus, because of the equivalence of the norms | .|, and -1llr on H({(G)
we have

[o—"2ello - 0
for -0, and by (4.11)

Ih—Lv,]lg = [|h—h,]ly ~O.
Since L~ is the closure of L we get finally

v €D(L7) = H®(G).
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