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l. fntroduction

1.1. In a recent paper [2] E. B. Dynkin solved a Dirichlet problem for a non-

hypoelliptic differential operator L(D) with methods of probability theory by

extending some results of the theory of Markov processes'

This operato r L(D) is defined in the following way: Let k be a positive integer.

For each j(l=j=k) take rn;€N and set n:ft\*...*mr,. with the notation

Ir:0, l,:i§*, @=i=k)- i:l
we set

(1.1) Å,,: § D7,*, with D,,*,: -t-*

Thus, /; denotes the Laplace operator which acts on functions defined on subsets

of R';c R'. We define the differential operator L(D) by

(1.2) L(D\:: /r.../*.

The operator L(D) is not hypoelliptic for k=1. This fact can be seen already

in the simplest case where k:2 and m1:m2:1. Then

L(D): D?De: #-
and the polynomial associated with Z(D) is given by P(O:€?(!' Since for (.:g
and (r-n (n (N) we have

L r«l:2n2,
oEi
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it follows by a result of L. Hörmander (see [6], p. 99) that L(D) is not hypoelliptic.
The usual Sobolev space methods are not applicabie to a study of Dirichlet problems
for the operator Z(D).

1.2. ln this paper we present a method which can be understood as a generaliza-
tion of the Hilbert space methods used in the elliptic theory. Here we use "an-
isotropic" sobolev spaces which correspond in a natural way to the operator z(D).
It turns out that in these anisotropic spaces the behaviour of the non-hypoelliptic
operator Z(D) is quite similar to that of an elliptic operator in the usual Sobolev
spaces.

For a domain G which is the Cartesian product of bounded open sets GicR*i
(n:m1l ...tmt) with sufficiently smooth boundaries EGi we show that a genera-
lized Dirichlet problem, for which the solution is searched in such an anisotropic
space, has a unique solution. Further one gets for a class of data a regularity result
for this solution.

We will mention that Rolf Nevanlinna expressed a similar idea in unpublished
lectures given in Ann Arbor, Helsinki and Zirich. IIe indicated the possibility
to construct for a differential operator a suitable bilinear form such that solving
Dirichlet problems for this operator can be reduced to the problem of orthogonal
projection in the sense of this bilinear form (cf. [8] and also [1]).

1.3. We give a slightly modified representation of I(D). We denote by Nä
the set of all ordered systems of z nonnegative integers (multlindices). For
d:(dr,...,d,)€IVä we define its length as usual by loi:flr*...f e,,. For o,t(N[,
o:(6r,..,,or),r:(:,1,...,xr), we set o=r if or=ti for l=i=1. It is clear that
with this definition l{ff is a partially ordered set.

Let m, and liG=j<k) be defined as in 1.1. For each .i (l=j<k) .we define
rr, multi-indices e,-(Nff of length l, le,_l:.l, havir:g its only nonr.anishing co-
ordinate in the t -th position, lj+l<t.=<"1.*m,. Furthermore we set

(1 .3)

and

Note that both f
expression for the

rve oirtain the very usefutr

(1.4) L (D)

where we used the abbreviation
Dq: D?...D1".

The authors want to thank E. B. Dynkin for leading their interest to these
problems and L S. Louhivaara for his suggestions while writing this paper.

r - {-l n€I{ä , a: 
år,,}

2f : {§l fe ru6 , § :2x, tr€l-}.

and 2f have v?'4...1'nk elements. Now
differential operator L(D):

d(r
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2. The Hilbert spaces H'(G), H[(G) 
"nU 

,«t)1G)

2.1. Let G be a bounded open set in R'. As usual, let Ck(G), k€No, be the

linear space of all complex valued functions n which are k times continuously

differentiablein G. By C[(G) wedenotethespaceof allfunctions u€Ck(G) each

having a compact support in G. We write also Cf(O:Or6aCf(C1. Further

we define for k(No

c*(e):: {ul u€Co(G), Du€Lz(G), a€N6, lal = k}.

In C|(G) we associate with the operator L(D) thesesquilinear form

B(u,u):- Z f@D"u(x)dx.
a€r {

(u, u), :: B(r, ,)*(u, u)0,

the scalar product in L'(G),

(u, u)o: [mu@) dx.

(2.1)

We define

(2.2)

where (.,.)o denotes

(2.3)

= 2d llD'n', Ello llD' All o.

llD'Ello = 2d llD'* " 
qllo.

Thus, we have a scalar product (. , .)r on ClG) with the corresponding norm

ll .11.. The completion of c!(G) with respect to the scalar product (2.2) will be

denoted by Hr(G). One obtains H"(G) analogously. For the closure of Cf(G)
in Hr(G) we write HI(G). The elements of fff(G) are interpreted as functions

with generalized homogenous boundary data (cf. Theorem 4).

In contrast to the usual Sobolev space theory we cannot conclude that the

strong l2-derivative D"u exists for u€Ht(G) and for each multi-index t€Nf;

with r=o for some o(l- . But one can prove (cf. also [7])

Lemma l. Let u$[(G) be giam. Then the strong Lz-deriaatioe D'u exists

for all multi-indices r with r<o for some o€f .

Proof. For r€i- the assertion is obvious. Let now z(.1- such that x=o(f .

Since GcR' is a bounded set, we can find a constant d=0 such that for each

x:(xr,...,xr)(G 
,2?!,1*l= d

holds. For E<C|G) we get by partial integration (l=i=k)

llD' Ellfr: { lD'E(x)12 dx -

Hence one has
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Since r<o, there exists a multi-index B with r{o:B and the result follows by
iteration.

As an immediate consequence of the Poincard inequality we have

Lemma 2. On H[(G) the sesquilinear form (2.1) de.fines a scalar product
equiaalent to Q.2).

Proof. It is sufficient to prove all estimates for elements of Cf,(G). By (2.2)
we have for all E|C;(G)

B((p, q) = (E, E)r.

Now by the Poincard inequality (cf. [5], p. 33) we get for each multi-index e;€N[,
ler.l:1 (l =i=n)

llEllS = crllD'tEllfi,

where the constant c1 depends only on G. Repeating this argument we get finally
for each a€l-

llEllS = c"llD'Elli
and by (2.1)

llEllS = cB(8, E),
which proves Lemma 2.

Thus we have on H[(G) a norm lll . lll. defined by

(2.4) lllElll. :: (B(8, E))'t', q(Cf (G),

equivalent to ll .11". This norm can be interpreted as the energetic norm associated
with the differential operator Z(D).

2.2. Now let us suppose that the set Gc R' has

Property P. The open bounded set G is the Cartesian product

(2,5)

(2.6)

G - G, X... XGk

of bounded open sets GicR t(l=j=k), mrl ...|m*:n, with sfficiently smooth
boundariesr \Gi.

We will generalize a well-known theorem from the theory of Sobolev spaces.

Let GlcR'i (l =j=k) be a bounded open set. If @; is a diffeomorphism
of class C1 from Gl onto G-7 th"n the tensor product @,

is a diffeomorphism of class Cl from G':Gix...XGi onto G:Grx...XG-*.

lAllourconsiderationsarevalidiftheboundaries lGrareofclass C-(cf.e,g.[3],pp.9-10).



By definition the Jacobi matrix is the direct sum of the linear mappings At: Rnt* Rnr

(l=j=k) defined by

I 0*r,*, ... \x,,*-rl
I oY',*' oY',*' l(2.7) Ai:l : : l,
I 0*r,*, Dx4*-,1

tTy,n* 
'W;l

where x; denotes the i-th component of @. We remark that the elements of A,
are continuous functions on Gi.

Lemma 3. Let G be a bounded open set with Property P and let iD be defined

by (2.6). Then for ail u(H[(G) the function

(2.8) u'(y) : u(o(Y))
is in H[(G') and

Q.9) crllu'llr,o, = llullr,o = crllu'llr,e,

holds, where the constants c1, c2 depend only on the diffeomorphism iD.

Proof. By Lemma 2 inequality (2.9) is equivalent to

(2.10) drlllu'lllr,o' = lllzlll.,o =-örlllu'lllr,e,.

Now by definition we get for each function (2.8)

tllr,lll?,o, : 
å, ! lDiu'(y)12 dy.

For a fixed a€l- we have by (1.3)
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fl : trr* ..,*Et*,

where er, (l=i=k) has its only non-vanishing coordinate in the lr-th position,

4+l=tj=lj*nr7. Furthermore we get

Thus, using the fact that the Jacobian of A is continuous on G', we get

Diu'(y)-(-/=)rm

ir:1 ir:L flxh* ir. ..lxru*iu \yrr, ' ' ' 0!ru

(2.rL)

tDid(y)t se, i il-ar"@@-|.ir:1 iulr lår*; ...fixh,+,u I 
'
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where the constant d, depends only on iD and a. Now one has with another
constant d,

tDi,, 0)t, = ff (,ä,,ä,1#S*-:,1'

= ei 2 yl-Y!g!P-.f
and further 

- \:-L i§tlox,,*r,"'o',u*rul

e.tz) ilUu,ll|,n, =ur,ä,.,ä, Il#f**l' r,

We substitute y- @-{r).As the Jacobian of @-1 is continuous on G we find

Q.t3) llDiu'll|,o,=,2 2 ... yil=-!-ll'
ir:1 ru:, /låx,r*,r'..år,u*,u llo,o

with a suitable constant cn. ln the summation on the right side of (2.13) only multi-
indices which belong to -l' appear, wherefore we get

Q.14) llDiu'll3,e,= c,"lllullli.6.

Because (2.14) holds for all multi-indices a(f , we can finally show that there exists
a constant är 1 depending only on @ such that

lll"' lllr,o, = dl 1 lllrl J Ir,c

holds for all functions (2.8). By interchanging the roles of x and y we get the
second inequality of (2.10).

To prove a theorem for functions in ät(G) which is quite similar to a theorem
on the behaviour of the elements of Hå(G) (cf. e.g. [5], p. 28), we define for each

i Q=i=1t1

(2.ts) ., ': {r[ y(Nä, ,: å*,]
(for y(ri one has lyl:k-l) and 

i+j

|iG :: GX... Y.Gj_tX}GjXG;+rX ...XGx.

Theorem 4. Let G be a bounded open set with Property P. Then for each
ueH[G) 

^Cb-L(G) 
the relation

Q.l6) DFul2,6: O

holdsfor all multi-indices B with B=y for some y€ti (l=j=k).
Proof. It is obviously enough to prove the result for 7:1. For a point

((,deAGrXG-, G-:GzX...XGo, we can assume by Lemma 3 that the point
( (<\Gr) and for a neighbourhood Uc R', of ( the set U n0G1 lie in the hyper-
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surface xr:0 and that U oG, lies in the halfspace xr=0 2. In the Cartesian pro-
duct (Un }G')XG- we can find an n-dimensional cylinder 

^S1 
with height h,

the base of which is an (n - l)-dimensional ball

(l mL , , "lB,n(l4): 
{xl 

x(rt', *, :0,ål*,-(,1't,:],*rlx,-nl'= r?,J

in U a}G, in the hypersurface xt:O, where the radius ro is chosen such that the
volume of ,So is equal to å2. With sufficiently small values of ft we have §oc
GrxG-.

For each Eq(G) one has

(2.17) Df E(x) : g

for all x(8,^((,4) and all B6lV6. From (2.17) one has

(2.18) DIE@) : j' *of *(t, x,, ..., xn) dt.

By the Cauchy-Schwarz inequality we get

lD*E@)1, = h il*ofut,, x2, ..., *sl'a,.
dlot I

lntegration with respect to x gives

{ to!,t{*)1, dx = hz 

!l*rr-r*>l'a*.
Since vol Sn:hz, we get

(2.ts) -+- [ lo!,tt*lldx = IID!+,,E(x)l2dxvol §'1 5i si

for er:(1,0, ...,OXNä.
Now take a multi-index B with §=y for some 7(-l-1. Then one has

lJ+er=y+er€i-. By Lemma 1 it follows that the right-hand integral tends to zero
also for all elements u<H[(G) if å*0, whence we have

l,S ;A§ [ Pa,t*)l' d.x : 0.

If in addition ueCk-L(G), we conclude by using the mean value theorem

DP ,(t,4) : o

for all rl(G- and for all §=y(.fl. This proves Theorem 4.

'T" ..*h this situation by a local Cldiffeomorphism (cf. Lemma 3) we must have some
regularity of the boundaries; in the special caso mr:...:mk:7 the following proof is always
applicable without any transformation by a Cr-diffeomorphism.
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2.3. ln this connection we remark that partial integration is possible for func.
tions of t}te set

(2.20) X:: H{(AnC-(G),

provided that the set G has Property P.

Lemma 5. Let G be abounded open set with Property P. Then

I ui@o,o(x) dx : 
!ffi-"1*lo(x) 

dx

holdsfor all u,aeX and a(f .

2.4. ln the case where the bounded open set G has Property P we introduce
another Hilbert space denoted by Htt)1@. On X a scalar product is defined by

Q.2t) (u, u)<o = (L1o)u, L(D)u)o+@, v)o.

The Hilbert space Ilte)16) is defined as the completion of X with respect to the
scalar product (2.21). It is clear that Q.2l) gives the graph norm ll . ll1*y,

Q.22) llullfu,t: llt(o)ull|+llull|
on X.

We consider the densely defined linear operator L in the Hilbert space Z2(G)
given by

I D(L):: X(c L'(q),(2'23) I i:: L@)u for all uQx.

By partial integration one gets

(2.24) (Lu, t»s: ITW6»@) dx : I "@)r«D)u(x) 
dx: (u, g)o

for u,aQX, with L(D)a:: g:: L*a. Thus, we have D(L*)=X, and the adjoint
operator Z* is densely defined on Iz(G). Hence the operator I is closable with
the closure (smallest closed extension) L- :7**.

Theorem 6. Let G be a bounded open set with Property P. Then the
relation

D(L-): H@(G)
holds.

Proof. We denote the graphs of I and L- by

G(L\ :: {(u, Lu)l u€X}
and

G(L-):: {(f, L-fl\ fQ(L-)},
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re:pectively. On the other hand, it is well-known (cf. [10], p. 89) that G(L-) co-

incides with the completion of G(L) with respect to the graph norm Q.22),

(2.2s) G(L-): G(Drl'll(k)'

For an arbitrary ueH@(G) there exists by definition a sequence {u^)^rncX
such that
(2.26) llu*- ullo * Q for m +@

and {Lu*\^rN is a Cauchy sequence in LL(G), which implies the existence of
a unique element wCL!(G) such that

(2.27) llLu--wllotQ for m*@-

Because of (2.25) it follows that (u,w.)(G(L-), i.e., u(D(L') (and w:L-u).
on the other hand, let u(D(L' ) be given. By the definition of a closed ope-

rator there exists a sequence {u*)*r*cD(L):X such that (2.26) and (2.27) hold
with w::L-a. By definition we have u€HG)(G).

Remark. 1. From Theorem 6 we obtain for the scalar product of II(&)(G)

the expression
(u, u)o - (L- u, L- u)o*(u, u)0.

2. Let B be the sesquilinear from (2.1). By partial integration one has

(2.28) B(r, E) : (Lu, E)o for all u€X and A€C;19

and by continuous extension

B(u, u) : (Lu, u)s for all u, u(X.

By the Cauchy-schwarz inequality we get

lB(u, o)l = llz llllyll ullo for all u, ue X
and especially

(2.2e) lllrllll = llall6llallo for all u€x.

2.5. Now we will show that the elements of II(k)(G) have the same boundary

behaviour as the elements of H[(G):

(2.30) 11tr't(G)ng{ (G) : ä(k)(G).

Take an element l)<H@(G). By the definition of II(")(G) there exists a sequence

{u,\c X : u[(G)nC-(G) with

llui-rlllo: llLu,-L- ullS+llaj-ollå * 0.

Especially {r.r7} is a Cauchy sequence 'n H(k)(G) and by Q.29) also in H[(G):

lllz;-a;ll11 * 0.
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Thus {zr} has a limit element a* in n{(G):

llla.;-u*lll. * g.

By Lemma 2 it follows lla;-a*llo*9. Hence we get a:u*CH{(G), which means
g<t't(G)cH[,(G). This proves the assertion (2.30).

3. A generalized Dirichlet problem

3.1. Let G be a bounded open set with Property P. We have defined the
sesquilinear form .B on C!1C; by Q.\. Since C[(G) is dense in Hr(G) and
since the obvious estimate

lB(u, u)l = cllullrllull,

holds for all u,o(c\(G), this sesquilinear form can be extended continuously
onto Er(G).

Using this sesquilinear form we can now formulate (analogously to the theory
of strongly elliptic boundary value problems) a generalized Dirichlet problem.
Starting from the Dirichlet problem of classical type

(3.1a) L(D)u:f in G,

(3.1b) Ddu: gq, j on |iG,
for all a€N[,a=y with some 7€i-i (l=j=k) we pose the generalized problem
as follows (cf. also [4]):

Problem l. For fCLr(G) and geHr(G) .find ail u€Hr(G) such that

Q.2) B(u, E): U, E)o

holds for all E{|(G) and the generalized boundary condition

u :: u- g(H{ (e
is fulfilled.

From Lemma 2 it follows that the linear functional lr,n defined by

(3.3) lr,n(E) :: (f, E)o- B(g, E) for all E<Cf (G)

is bounded on ät(G). Thus, Problem I is equivalent to

Problem 2. For f€Lr(G) and g€.Hr(G) find all elements u<H{(G) such that

lr,n(E) : BQt, e)
holds for all E<Cf (G).

3.2. Now, we have

Theorem 7. Problem 2 has a unique solution 1)q[G).
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proof. By Lemma 2 the sesquilinear form B is equivalent to the scalar product

e.2) on H[(G). By the Fr6chet-Riesz representation theorem the result follows

immediately.

Remark. If (in the case f<Co(G) and gcHr(G)^Ck-r(G)) ,h" function

u:a*g(Hr(G) has more regularity, uQX, and if G has Property P, the function

z is also a classical solution of the differential equation (3.1a) in G and fulfils

the boundary condition (3.1b) in the usual sense (cf. Theorem 4).

4. On the regularity of the solutions of the generalized

4.1. Let G be a bounded open set with Property P. Furthermore, let f(Lz(G)
and an "admissible" boundary data g€Ht(G) be given. We call the boundary

data g€Hr(G) admissible if the linear functional lr,n is also bounded on Lz(G),

and therefore by the Fr{chet-Riesz theorem there exists an element h(Lz(G)

such that the relation

(4.1) tt,rki - (h, E)o

holds for all E(Cf,(G).
First we prove, in the case where the function h(Lz(G) has the form

h - hr...ho

with hr(Lz(Gj) (l=j<-k), a regularity result which is similar to that of [3] (pp.

46-65). At the second stage we will drop assumption (4.2) and take an arbitrary

heL2(G).
We denote by HtG) O=j=k) the usual Sobolev space of functions with

generalized homogeneous boundary values and by ll 'llr,o, the norm in Hä(Gi).

For L=j=k let B, be the sesquilinear form

(4.2)

(4.3)
ffit 

-

ai(qi, t i) :- J ZD,,*iQi(xQ))D,,+i{ i(xtrl; dx$)
Gi L:L

defined for E j,V jeC;(G) with vQ)1:(x1sr, ..., xt,+*.,) and 4*Q)'*
dxrr*r...dxrr*.r. This form gives a norm lll'lllr,ur,

(4.4) lllEil lli,", : Bi(Ei, e),
equivalent to ll . llr,cr.

By the theory of elliptic differential operators there exists for each i (l=i=k)
a unique t:iCH[(G) such that

(4.5)

holds for all e i€CT (G ).
(hi, Qi)o,Gj: Bi@i, Qi)
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Theorem 8. Let G be a bounded open set with property p. Let f<Lr(G)
and an admissible boundary data gcHt(G) be gioen. Furthermore assume that the
element bCLZ(G) representing the functional ly,o of Problem 2 has the form (4.2).
Then the unique solution oJ' Problent 2 is the product of the unique solutions of the
equations (4.5).

Proof. A. First we prove by induction that the product D:al...r)k of the
solutions ot of the equations (4.5) belongs to äI(G). For k:l this is trivial
because then the equality H|G):H[(G) holds. For /€N, l=l=k, we define

f r: {.1 
a€Iv'ä, a - år,,1

(cf. (1.3)). Note that with this definition we have f r,:f .

Now let G^::GrX...XGr_r, l=k, and assume ö:,*r...u'r(HL-rG^)
with ore,H[(G), l=.i<l-1. Thus, there exists a sequence {Q^}_e*, Q*€C;(G^)
such ftat
(4.6) lllö-Q^lllr,-,.c^ * 0

holds for nt+@. On the other hand, since Cfl(G,) is dense in Hl(G,), we can
find a sequence {tp,,-}^rN, et,*(Ci(G,), such that

(4.7) iiir, -et,*lltrr,*, --* Q

holds for trr--+a. Now, if we put G':G^xG1 (t+k),

lllö - ö *lll r, -,, e ^ lllu, - E r,. I I l r, o, : lll@ - @ 
^) 

(u r <p r, )l!1 r,, e,

= lllöo,-Q-,p,,^lllr,,o,- Ill@.lllr,-,, ,-lllu,-E,,*lllr,o,- lllE,,,lllr,o,lllö-Q*lllr,_,,o^ .

Since lllQ^lilr,_,,o- and lllV,,^lllr,o, are bounded it fotlows by @.6) and (4.7)
that

lllöu,- @,,et,n,l I 1.,, o, -- o

'D :u1...'up solves the equation

B(u, E) : (hr...h1,, e)o,c

for m* @.

B. Next we prove that

for all ECC;(G).
and (4.5)

(4.8)

For the functions e iQCT (G i) ( I =.i = k') we have by (4.3)

B (rr.. .uk, (pt. . .e) : Bt(rr, e) . . . Bk(u,,, E*)

: (ht, Qr),,G1". .(ho, ex)0,G7,: (hr,...h0, er...e*)0,c.
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By [9] (Corollary I and 2 of The orem 39.2, p. a09) the equation (4.8) can be extended

"å.rtinrootty 
to all elements E€Cr(G) instead of Er...Er. Thus o is the unique

solution of Problem 2.

C. Assuming the boundaries åG; (l=i=k) to be smooth enough we can apply

the regularity theory for solutions of elliptic equations (cf. [3], pp. a6-68) to the

functions Dj(Ht(Gj) (l=i=1r7 solving (4.5). Hence for smooth boundaries åG;

and h,€Lz(G;) we find a,(Hz(G)nIrl(G;) (l=i=k) and therefore

t)1...1)k : D (H" (G) nH/- (O.

If in addition hfC*(G1) O=i=k), we have (again under the assumption

of smooth boundaries) ufH[(G)nC-(G) and therefore

(4.10)

(see [3], p. 68).

D1...t)k : u €H{ (G) 
^C"" 

(G)

4.2. We will now examine the regularity of the solution of Problem 2 for

arbitrary admissible data.

Theorem 9. Let G be a bounded open set with Property P. Furthermore let

feLr(G) and an admissible CeHr(G) be giaen. Then the unique solution o of
Problem 2 belongs tu H(k)(G).

Proof. Since g is admissible there exists an element heL'z(G) such that the

functional lr,n of Problem 2 has the representation ly,nkil:(h, E)o' BY [9] (Corol-

lary 1 of Thä oiem39.2, p. a}\there exists for h andfor each e€ R, e>0 a function

h"(C;(G) such that
(4.11)

holds, where hu has the form
llh-h"llr,o < t

(4.12) h, :: Z hrr,r...hiu,,
(ir,..., ik) €O

with a suitable finite subset o of Nk and h,.."(Ci(G.i) (l =i=k\
For the functions hi.," (l=j=ft) we 

"ontidtt 
the unique solutions ur.,,QH[(G )

of the generalized stron§ly elliptic Dirichlet problems

(4.9)

(4.13) (hrr,u, Q)o,Gt : Bi(uii,r, Qi) for all Q i€Co- (G;).

p. 68). The functionFrom the elliptic theory we get ,r,,,(C*(Gi) (cf. [3],

uri: 2 uir,u...t)ix,r[F/f,(G)nC""(G) - X - D(L)
(ir,...,ik)€Q



388 Kanr Doppnr and Nrnrs Jacos

is the unique solution of the equaticn

(h", E)o,e : B(o", E) for all EeCf G).

we denote the unique solution of problem 2 again by acH[(G). we have

B(o-u", E) : (h-h", E)o,o for all Ee Ctr G).

The continuity of the sesquilinear form -B in H{(G) implies (with u-uu instead
of E)

I I l, - r" 
I I l? < llh - h,llollu- u,ll o = c llh _ h,llolllu_ r, 

I I l.

with a positive constant c. We apply (4.11) and get

lllu-a"lll. - a6.

Thus, because of the equivalence of the norms Il .il. and lll. lil. on H[(G)
we have

for r -- 0, and by ( .l l )
llu-u,llo -- Q

llh - Lu,llo : llh - h|lo -- 0.

Since L- is the closure of L we get finally

u €D(L- ) - H$) (O.
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