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HARMONIC UNIVALENT FUNCTIONS

J. CLUNIE and T. SHEIL-SMALL

1. Introduction

1.1. A continuous function f=u+iv defined in a domain DEC is harmonic
in D if u and v are real harmonic in D. In any simply connected subdomain of D we
can write f=g+h, where g, h are analytic and g denotes the function z—g(z).
The Jacobian of f is then given by

(1L.1.1) J(2) = W' (2)*—g' ()

The mapping z—f(z) is locally 1-1if J;(z)70 in D. A result of Lewy [6] shows that
the converse is true for harmonic mappings, and therefore z—f(z) is locally 1-1
and sense preserving if, and only if,

(1.1.2) lg'(2)| < W (2)].

We call such mappings locally univalent, and we say fis univalent in D if z—f(z)
is 1-1 and sense-preserving in D. When f=g+h as above we call g the co-analytic
part and h the analytic part of f. Notice that, if 'is locally univalent, so is its analytic
part.

1.2. From (1.1.2) and Liouville’s theorem it is easily seen that the univalent
harmonic functions from C to C have the form

(1.2.1) f(2) =az+7y+ Pz,

where |a|<|B|. These affine transformations will play a considerable role in what
follows and we observe that they map lines onto lines and ellipses onto ellipses.

The composition fog of a harmonic function f with an analytic function ¢ is
harmonic. However, if i is analytic, yof is not in general harmonic.

1.3. A function f=g+h harmonic in U= {|z|<1} can be expanded in a series

(1.3.1) f@re®y =3 _a,rirlem™® 0=r<1),
where
(1.32) ¢ =37 a2 h(@) =35 a, 7"
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We call a,=a,(f) the coefficients of f. The class of functions univalent in U and
normalised by a,=0, a;=1 will be denoted by S;. S} will denote the subclass with
a_,(f)=0. Note that the familiar analytic class S is contained in SY.

For f=g+heSy we have by (1.1.2) and Schwarz’s lemma

(1.3.3) 1g'(2)| = |zh"(2)] (z€U),
and in particular
(1.3.4) la_s| = 5.

1.4. If féSy, then |a_i|<1 and so applying a transformation of the form
(1.2.1) we see that

_ f—a_if
(1.4.1) h={es
belongs to SY. We then have
(1.4.2) f=fota_ifs-

This relation will enable us to obtain various properties of Sy from S.

1.5. If heS and |e|]<1, then f=¢h+heSy. We then have M(r,f)=
o(1/( —r)?) (r—1). There are functions in Sy with larger growth than this including
functions which map onto the Koebe cut-plane which have growth that is not
o(1/(1 —r)*)(r—1). This is one of the many differences between Sy and S. The straight-
forward boundary correspondence as exhibited for example in Caratheodory’s
theorem is no longer true in Sy. Also, it is not true that, if n—f(e") represents a
sense-preserving homeomorphism of the circle onto a Jordan curve K, the harmonic
extension of fto U is necessarily a univalent mapping onto the domain bounded by K.
However, a beautiful result of Choquet [1] shows that this is true when K bounds a
convex domain. In particular, if ¢(#) is a continuous increasing function on [0, 27]
with @(2n)=¢(0)+2n, then the mapping

. 1 2"[ 1+Ze—it] io(t)
(1.5.1) @)= / Req—— |V di

0

is a harmonic automorphism of U.

1.6. Choquet’s proof rests on two central facts. The first is purely topological,
namely that for a continuous extension to U of a circle homeomorphism to be 1-1,
it is sufficient to show that it is locally 1-1. This result depends on a general result of
topological degree which is worth stating explicitly. For f continuous on a closed
curve y, let d(f,7) denote the degree of f on 7, i.e. the winding number about the
origin of the curve foy. We then have what amounts to a generalized argument prin-
ciple:
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(1.6.1) If f(z) is continuous and non-zero in a domain D, then for any cycle I'
homologous to zero in D,

d(fi1) = 2herd(f;7) = 0.

The second observation of Choquet’s proof concerns the affine invariance of
convex regions which reduces the problem of local univalence to establishing that
a,(f)##0. This is achieved by neat but simple arguments rather similar to those we
use in Section 5, where we will show further that the analytic part of a convex map-
ping is univalent. We also obtain the sharp coefficient bounds for convex functions
in S, and SY.

1.7. In Section 2 we establish the normality of Sy making use of quasiconformal
methods and we include growth bounds for M (r, f). Section 3 is concerned with
convergence properties. We show that the Caratheodory kernel theorem does not
extend to S%. We also obtain a theorem on smooth approximation which is applied
later to avoid boundary difficulties. In Section 4 we obtain an undoubtedly poor nu-
merical estimate for A,=sup {|a,(f)|: f€Sy}. We also obtain lower bounds for
|f(2)|, which yields in particular a (1/16)-theorem for S¥ in analogy to the (1/4)-
theorem for S. Section 5 and Section 6 contain specific examples and a number of
sharp results on the special classes of convex, close-to-convex and typically real func-
tions. These results suggest the various open questions and conjectures which con-
clude the paper.

2. Normality of Sy
2.1. Theorem. Let f€Sy. There is an absolute constant ¢ satisfying

< 1.72

@.1.1) 0<g§27‘9'/6

such that f(U) omits some value on each circle {|w|=R} with R=g. For f€SY
there is an omitted value w, satisfying

(2.1.2) o = g = 213

< 1.21.

Proof. Suppose that f€ Sy attains in U all values w satisfying |w|=7. Denote
by ¢({) the conformal mapping of {|{|<1} onto the simply-connected domain
f({lo]<t})SU for which ¢(0)=0, ¢’(0)=0. Then ¢ extends continuously
to {|¢{|=1} and the mapping ({—f(¢({))/t is a sense-preserving homeomorphism
of {|{|=1}, which is harmonic in {|{|<1}. Thus

(2.1_3) _:_f(q) (eie)) = @0 — Z’:"w C, eine’

where «(f) is a continuous, strictly increasing function with «(27)=a(0)+ 2.
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A recent result of Hall [3], which improves an older result of Heinz [4], gives

1 27
(2.1.4) S IC PG+ (G = 2

Now for f given by (1.3.1) we have
(2.1.5) tIC_y=a_1¢'(0), C, =0, tC; = ¢’(0).

By Schwarz’s lemma ¢’(0)=1, so we deduce that

27:1/_.

(2.1.6) t=

(1+]a_ .

The results of the theorem follow immediate])’f.

2.2. Definition. For f€Sy we define the conformal associate of f as the
conformal mapping F: U—f(U) for which F(0)=0, F’(0)=0.

2.3. Theorem. Sy is a normal family and SY is a compact normal family.

Proof. We obtain an explicit upper bound for M(r, /), where 0=r<1 and
feSy. From (1.4.2) we have

2.3.1) M(r, ) < 2M(r, fy),

where f,€S%. We suppose now that f=g+heS%. Then for |z|[=R<1 we have
|g’(2)|=R|W (z)| and so the mapping z—f(Rz) (z€U) is Kx-quasiconformal, where
Kr=(1+R)/(1—R).

Put w(z)=F~ (f(z)) (z€U), where F is defined in (2.2). Then the mapping
z—w(Rz) (z€U) is Kg-quasiconformal in U and satisfies |w(Rz)|<1, w(0)=0.
By a well-known distortion theorem [5, p. 64]

(2.3.2) lo(R2)| = @k, (12)) (z€U).
Here
(233) ox = u (£2) 0 <r <1,

where p(r) denotes the module of the domain consisting of the unit disc cut from 0 to
r along the positive real axis. We refer to [5], Chapter II for the properties of u(r)
and ¢@g(r). For the moment it is sufficient to note that @ (r) isa strictly increasing
mapping of [0, 1] into itself for each fixed K=0. From (2.3.2) we see that

(2.3.4) o (re®)| = o (r) = inf{(pKR [-1%): r<R< 1}

. K+1 ) 1+r}
= inf{ox (57 7): K> 15H}.
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Clearly o(r) is a strictly increasing mapping of [0, 1] into itself. Now f(z)=F(w(z))
and hence from the Koebe distortion theorem

_ F(0)o(
(2.3.5) M(r, f) = o0
Furthermore f(U)=F(U) and so by Theorem 2.1 and the (1/4)-theorem
-
(2.3.6) F/(0) = 40, = ”9V3 .

This establishes normality, since a family of harmonic functions is normal if it is
locally bounded.

2.4. To prove compactness of S let (f,)=(g,+h,) be a sequence in S} con-
verging locally uniformly to f=g+h. By Hurwitz’s theorem Ah’(z)=lim, h,(z)#0
in U. Also |g’(z)/W (2)|=]z|, so f is locally univalent.

Therefore, if z; and z,€ U, z,#z,, we have d (f—f(z,), C1) =0, d(f—f(z2), C5)=0
for sufficiently small circles C,, C, about z;, z, respectively. Since

JAGEIICAN
f@—=f)

d(f,—f(z), C1)=d(f—f(z), C1) for large n. By the degree principle (1.6.1), f,
attains the value f(z;) in the disc bounded by C;. Similarly f, attains the value f(z,)
near z, and therefore the univalence of £, implies f(z,) #f(z,). Thus fisunivalentin U.

uniformly on Cj,

2.5. Theorem. The closure Sy of Sy consists of all functions of the form

(2.5.1) f=foteho,

where |e|=1 and f,€Sy. Also fEdSy=Sy\Sy if, and only if, |¢|=1. Every
extreme point of the closed convex hull of Sy lies on 0Sy and has the form

(2:5.2) f=ht+ef,
where f, is an extreme point of Sy.

Proof. The first two statements follow from (1.4.2) and the compactness of Sj.
Let f be an extreme point of the hull of Sy, so f€ Sy by the Krein—Milman theorem.
Hence f=f,+re”f,, where 0=r=1 and f,€S%. Then

(2.5.3) f=3U+n(f+ef)+5 A= (fo—e*fo)

is a convex combination of elements in Sy and so we must have r=1. Finally, if
f, were not an extreme point of S, then we could write

2.5.4) Jo= (1= po+1qo,
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where O<t<1 and p,, q,€S%. But then
(2.5.5) J=A=0)(po+e*po) +1(q+€* )

would not be an extreme point.

2.6. Remark. Theorem 2.5 will clearly hold for any subclass of S which is
invariant under the transformations (1.2.1) suitably normalized, provided that the
corresponding subclass of S is compact. The relationship between compact classes
in S and S} is taken up in the next section.

3. Convergence properties

3.1. In establishing the compactness of various subclasses of S proofs are com-
plicated by the fact that the Caratheodory kernel theorem is not valid in S%. The
difficulty arises essentially out of the possibility of discontinuities in the boundary
function. It will be recalled that a sequence (I,) of functions in S converges to FeS
(i.e. locally uniformly) if, and only if, the sequence of domains (F,(U)) converges in
the sense of kernel convergence to F(U). This result fails in S} both for the necessity
and the sufficiency.

3.2. Example. Define

(3.2.1) f(2) :31%- f:”(Reii—Ze—) €O dr  (zeU),

where
2 (k+1
(3.2.2) (z)_ﬂ [Tk:t<M

3 , k=0, 1,2].

For this function we have

(3.2.3) 00(f) = as(f) =0, ax(f) = 5 (1=,

Clearly f(z) for z€U takes no values outside the triangle whose vertices are the cube
roots of unity. Furthermore, by the following reasoning 1 is univalent in U.

Since ¢ (¢) is a non-decreasing step function in [0, 27] it is almost everywhere the
pointwise limit of a sequence (qp,,(t)) of strictly increasing, continuous functions on
[0, 2x] satisfying ¢,(2n)=¢,(0)+2x. The functions

(3.2.4) 5@ = j“[ LZ—)W O dr (z€U)

then form a sequence which converges locally uniformly in U to f(z). By Choquet’s
theorem each f,(z) is an automorphism of U. Thus f is univalent in U and one can
check that f(U) is the inside of the above triangle. Since f,(U)=U (n=1) one sees,
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after suitable normalizations, that one can have local uniform convergence without
having kernel convergence.

3.3. It is also not the case that for a sequence (f;) in SY, f,(U)—~f(U) implies
f.—f. This follows immediately from the fact that there exist f,, € S with f,(U)=
f2(U), but fi#f,. For example, we can take

z

(3.3.1) [ == (@) =Lh),

where /,(z) is defined in (5.5). Both functions are in S} and each maps U onto
{Re w= —1/2}.

3.4. In Example 3.2 we note the following: each f,(U) is convex, f(U) is
convex and f(U) is obtained from the kernel of (f,(U )) by making certain cross-cuts.
Such properties can be associated with convergence in a more general setting. This will
be discussed in detail in a forthcoming paper, where it will be shown that certain
subclasses of S%, corresponding to classical geometrically defined subclasses of S,
are compact. The convex case will be considered in Section 5 by a direct argument.
For now we prove only the following weaker result.

3.5. Theorem. Let (f,) be a sequence of functions in Sy converging locally
uniformly in U to f and let Q be the kernel of (f,(U)) with respect to 0. Then
(3.5.1) f)c Q.

Proof. If O<r<g<]1, then, because f is univalent,
£@-fG)
F(2)—f(zp)
uniformly for |z]=g, |zo|=r. Therefore for n=m say, the expression (3.5.2) has

positive real part when |z|=g, |z,|=r. It follows from the degree principle that, if
n=>m, f,(z) attains each value f(z,) (|zo|=r) for some z in |z|<¢ and so

(3.5.2)

as n —oe

flzl =1 € N £O).
The result follows immediately.

3.6. If £ is harmonic univalent in U we say that f; is subordinate to f if we can
write

(3.6.1) fo(2) = f(@(2)),
where w(z) is analytic univalent in U with |w(z)|]<1 in U and
(3.6.2) w(0) =0, w(0)=0.

It is clear that, if Dy is a simply-connected domain with f(0)€ Dy S f(U), then there is
a unique function f;(z) subordinate to f(z) with f,(U)=D,. Indeed we define w(z)
as the conformal mapping of U onto f~1(D,) satisfying (3.6.2).
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3.7. Approximation theorem. Let f be harmonic univalent in U and let
(Dy) be a sequence of simply-connected domains such that f(0)eD,Sf(U) (k=1,2, ...)
and such that
(3.7.1) D, ~fU) (k~<)
in the sense of kernel convergence. Then the sequence of subordinate functions (f)
converges locally uniformly to fin U. Furthermore, if each domain D, is bounded by a
Jordan curve J, D, then f, extends continuously to give a homeomorphism of U
onto Dy. If each J, is smooth then f; extends smoothly to U.

Proof. Let fi=fow,. If 0<r<l1, f({lz|=r}) is a compact subset of f(U)
and so there is a K such that

f{lzl=r) E D (k=K).

Hence {|z|=r}Sf (D)=, (U) and so (w,(U)) converges to its kernel U. By
Caratheodory’s kernel theorem, ,(z)—z locally uniformly in U, and hence the
same is true for f,—~f. If D, is bounded by a Jordan curve J, S f(U), then w,(U)
is bounded by a Jordan curve f~1(J,) S U, so w, extends continuously to a homeo-
morphism of U onto w,(U); and similarly in the case of smoothness.

4. Numerical estimates and a distortion theorem

4.1. Theorem. Let feSy, Then
(4.1.1) lag(f)] < 12,173.
Proof. Suppose at first that f¢Sy. Then from (2.3.5) and (2.3.6) we have

(4.1.2) M, f) = 82y3 _a() 0=r<1),

9 (1—o()
where o(r) is given by (2.3.4). We choose K=2, when
2Vr
4.1.3) Qs (r) = Tor (see [5], p. 64).
We then have

4.1.9) lao(n] =2 (:;f ) = 8;‘,‘? (1iofp(23(g)r))z ©<r=<1/3)

. T @2(1) -t
= 8213 gy ©= =D

141 = 14+8°
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Choosing S=.4046385951 we obtain

(4.1.5) las ()| < 12, 172.
For general f¢S we need to add at most 1/2 to this estimate from (1.4.2) and (1.3.4).

4.2. Bounds for |ay(f)| lead to distortion results for f€Sy just as in the analytic
case. Writing

4.2.1) Ay = sup {laz(f)|: f€Su}
we note that if f=g+heSy, then the function

[+ Zo)/(1 +2y2)) —f(2)

(422 pl)= BERRIXEN
is also in Sy, if |zo/<1. We deduce that
(4.2.3) |— (1—|zol2h"(z0) = Z(1 —|zol‘~’)h’(zo))| = A,(1—|z0|®) W (z0)|
from which it follows that

—[z)%t _ (142! _
(4.2.49) ——_(1+|z|)Az+1 = W@ = Gopme (A<D

From |g’(z)|<|W (z)| it follows that

(14 )4

(4.2.5) /(2| =2 f ———t)—A~H—1dt (2| =r<1).
In particular we see that
(426 7@ =0(q=m) -

4.3. There can be no overall positive lower bound for |f(z)| depending on |z],
when it is known only that f¢ Sy since, for example z+¢Z€ Sy for all ¢ with [e[<1.
However, a lower bound can be obtained depending on |a_;(f)|-

4.4. Theorem. For feS} we have

@41 1@ =4 (A<D
In particular
(4.4.2) d = sup{o: {w < o) SAU), fesp}= 1—16

Proof. For 0<o<1 let Sy(o) denote the class of functions f of the form

(FeSY).

(4.4.3) &) = ﬂ;’—z)-
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Suppose that f€S%(c) and let D=f(U), D,=D\{|w|=¢} for small ¢=0 such
that {jw|=¢}SD. Let ¢ be the distance from 0 to §f(U) and assume without loss of
generality that —d€9f(U). Let 4 be the plane cut along the negative real axis from
—0 to —oo and let 4,=AN\{|w|=¢}. D, and 4, are ring domains and

444 M(D,) = M(4,),

where M denotes module.

From the normalisation D, is approximately the image of the ring R,=
{e<|z|<1} by ffor small ¢=0 and it is easily checked that the approximation is
sufficient to justify the following arguments as &—0.

If ¢ is an admissible metric for R,, let ¢ be a metric for D, defined by

4.4.5 5 \=M,
(4 20 = g
where f=g+h, w=f(z). Lety be a path joining {|z|=¢} to {|z|=1} in R, and let§
be its image under f in D,. Then

2(2)|0, f (2)]

Jae vl = [ =g 2

where 9, f (z) is the appropriate directional derivative. Now |9,/ (2)| =l (z)| — g’ (z)
and so

[,8mdwl = [ o(2)]dz| =
and therefore ¢(w) is admissible for D,. Hence

1

(4.4.6) DD

- 1 1 2 . ;
= ngfffbsg(w) dudv (W= u+iv)

. 5 Jr(2) B .
=t ] ¢ Oy O G

=inf [, 5 1“’2 0*(2) dx dy,

the last inequality following from |g’(z)|=0clz|- |l (z)| for fe€S}(s). We choose

(1 —or)/((1+ar)r) o
SHa—on/+on 1) di &= re)

(4.4.7) 0(z2) =
and perform the integration in (4.4.6) to obtain

(4.4.8)

and hence

(4.4.9) M(D,) = -2—17—; [log%-—Z log (1+ a)) .

1 ( 1 ]"1
WMD) = = 2z |log 2log(1+0)+2log(l+o¢)
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On the other hand 46z(1—z)"% maps U onto 4 and approximately maps R,;
onto 4,. Since the module is a conformal invariant, we see that

(4.4.10) M(4,) =~ M(R, ;) = log (45 ]

From (4.4.4), (4.4.9) and (4.4.10) we see by lettlng e—~0 that

—2log (1+0) = log46.
We deduce that for f€S% (o),

1
() =6 =~ =1).
(4.4.11) lf(2)| = 5_ T Tor (Jz] =1)
We immediately obtain (4.4.1) for f€SY.
4.5. Corollary. Let fESH. Then

i
4.5.1) |f(2)f 4 (1 la_ 1(f)!) 1+ z))? (lz] = D).
Also
1
@52 (vl =3¢ (1-laa(n)) € 1

5. Convex and close-to-convex mappings

5.1. Let K, Ky and K% denote the respective subclasses of S, Sy and S where the
images f(U) are convex. Also let C, C and C}; be the subclasses with close-to-convex
images. We recall that a domain D is close-to-convex if the complement of D can be
written as a union of non-crossing half-lines. For other equivalent criteria see [9].
Every star-shaped domain is close-to-convex. A domain D is called convex in the
direction ¢ (0=@<m) if every line parallel to the line through 0 and €' has a con-
nected intersection with D. Such a domain is close-to-convex. The convex domains
are those convex in every direction. The following lemma will enable us to construct
examples of harmonic convex and close-to-convex mappings.

5.2. Lemma. Let D be a domain convex in the direction of the real axis and let
p(w) be a continuous real-valued function in D. Then the mapping

(5.2.1) w = w+p(w)

is 1-1in D if, and only if, the mapping is locally 1-1. In this case the image of D is con-
vex in the direction of the real axis.

Proof. If wi+p(w))=wy+p(wy) (Wy#wy), then writing wy=u;+ivy, wy=
uy+iv, we have vy=v,=c, say, and wu;+p@u+ic)=uy+p(u,+ic). Therefore the
real function u—u+p(u+ic), which is defined on some interval (., f.), is not strictly
monotonic and therefore not locally 1-1.



14 J. CLunNIE and T. SHEIL-SMALL

The image of D is convex in the direction of the real axis, since each line segment
w=u+ic (e,<u<p.) is mapped onto an interval.

5.3. Theorem. A harmonic f=g-+h locally univalent in U is a univalent mapping
of U onto a domain convex in the direction of the real axis if, and only if, h—g is a con-
formal univalent mapping of U onto a domain convex in the direction of the real axis.
In particular the subclass of S consisting of functions f such that f(U) is convex in the
direction of the real axis is compact.

Proof. If fis univalent and f(U) is convex in the direction of the real axis, then
writing w=f(z), z=z(w), we have
(5.3.1) h(z(w))—g(z(w)) = w—2Re g(z(w)) = w+p(w).
Since 1’ (z)—g’(z)#0 in U and z(w) is 1-1, the mapping w—w+p(w) is locally 1-1
and so univalent by Lemma 5.2. Hence z—h(z)—g(z) is univalent. The compactness
result follows easily from the compactness of the corresponding subclass in S.
Conversely, if h—g is convex in the direction of the real axis, then writing
W=h(z)—g(z), z=z(W), we have
(5.3.2) f(zw)) =W+2Re g(z(W)) = W+qW)
is locally 1-1 and so univalent by Lemma 5.2.

5.4. Example. Since z/(1—z)?*is convex in the direction of the real axis, so is
the harmonic function k,=g+h, where

(5.4.1) h(2)—g(2) = (T_% g'(2) = zh'(2).
We obtain

N 14z N z(1+z)
(54.2) h(z) = o & (@ = =

z—(1/2) 22+ (1/6) 2° _(1/2)z2+(1/6) 2
(1 _Z)3 > g(Z) - (1 _2)3 s

(5.4.4) ko(2) = Re [Z—z}g_l%z—i]ﬂ im ¢ _ZZ)Z].

(5.4.3) h(z) =

Hence k,cC% and we now show that ko(U) is C cut along the negative real axis
from —1/6 to . We write (1+2z)/(1—z)=w=u-+iv, when (5.4.4) becomes

1 3 __ 1 ? 2y — i 3 2 __ _1_ 7
(5.4.5) z Re (w 1)+ZzIm (w?) = G (®—3uv*—1)+ 5 Luv,
where u=>0. If wv=0, the right hand side of (5.4.5) varies between —1/6 and 4 .

On the level curve uv=c»0, the real partis u3/6 —c?*/(2u), which varies between — =
and 4o (O<u<+ o).
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Note that the function
(5.4.6) k(z) =2Re (g(z)+h(z)) = 2Re[
isin 0CxSaSy.

z+(1/3)z3 ]
(1—z)

5.5. Example. Since z/(1—z) is convex, the function /;=g+h defined by

(5.5.1) h@+e@) =1 g =—2(),

is convex in the direction of the imaginary axis. We obtain

o 1 N & .
(5.5.2) h(z) = =2 g@)= (1—27"
_z—(1/2) 22 _ a2z
(553) h(Z) = W: g(Z) - (1 _Z)Z '
z . z
(5.5.4) ly(z) = Re ['1—:7] +ilIm ( (1—z2)2 ] :

It is easily seen that I(U)={Rew=—1/2}, so [LEKj.
The function

. z
is in 0Ky.
5.6. Remark. Note that
(5.6.1) Iy (¢) = lim [, (ré)=—5 (0<0<2m

so even with such a smooth boundary as {Re w=—1/2} the boundary correspon-
dence which holds in the conformal case fails in the harmonic case. Furthermore it
can be shown that /;(z) does not map the circle {|z|=r} onto a convex curve if
Y2—1<r<1. Thus the hereditary property for convex conformal maps fails in the
harmonic case. This corresponds to the failure of the hereditary property for analytic
functions convex in one direction [2].

5.7. Theorem. A function f=g-+h €Kylif, and only if, the analytic functions
(5.7.1) h(z)—e?g(z) (0= ¢ < 2n)
are convex in the direction @2 and f is suitably normalized. In this case the functions

(5.7.2) h(z)+eg(z) (el =1)
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are close-to-convex in U. In particular h is close-to-convex. Finally K} is a compact
class.

Proof. If fis convex, then e~ ™?/*)f=¢~"/*h+¢'¢/%g is convex, so e~ "/*h—e'0%g

is convex in the direction of the real axis by Theorem 5.3. Hence h—e'g is convex in
the direction ¢/2. Conversely, the latter implies that f is convex in each direction
®/2, so fis convex. In particular h+ &g is close-to-convex when |e[=1 and hence for
O<r=<1 and 6,<0,<0,+2x,

re® h”(re'®) + ere®® g”(re')
W (re?) +eg’(re')

(5.7.3) :’ Re[1 + ] a0 = —m.

As the expression on the left is harmonic in ¢ for [¢|=1, this inequality continues to
hold when [¢/=1. This proves (5.7.2). The compactness of Ky follows from
Theorem 5.3.

5.8. Corollary. If f=g+hecKy, then

‘g(zl)—ggg)_
h(zy)—h(z,)

(5.8.1) <=1 (zi), |20 = D).

In particular, if feKy,
(5.8.2) lg(2)] < |h(2)] (0<|z| <1).

Proof. From (5.7.2) we deduce that

h(z)—h(z,) +e (g(zl)—g(zz)) =0

(5.8.3) — —
for |e|=1, |z, |zo]<1 and (5.8.1) follows immediately.

5.9. Theorem. If f€Kj}, then
(59.1) (vl <3) € f@).

Proof. If w¢ f(U), then for suitable real p,
(5.9.2) Re (e*(f(z2)—w))) =0 (|z| <1).
Hence if f=g-+h,
(5.9.3) Re (€#(h(z)—w)+e"#g(2) >0 (2] <1).

Thus applying a standard inequality for the coefficient of z we obtain |e~*|=2 |we'|,
ie. |w|=1/2.
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5.10. Theorem. If feK§, then for n=1,2,... we have

(5.10.1) la,(N|—la_, (N =
(5.10.2) la_n (N =221,
‘5.10.3) lay(f)] = ”erl .

Equality occurs for f=I, of Example 5.5.
5.11. Lemma. If f=g+he€Ky, then there exist real 1, u such that
(5.11.1) Re((e ™h(2)+e" g (2))(e*—e 29)) =0 (|z] <1)

Proof. Applying Approximation theorem 3.7 we may assume that f extends
smoothly to {|z|=1} with f(e"’) describing a smooth convex curve. Then

(5.11.2) 1(0) = —(%f (")

is continuous, periodic with period 2z and 0. Furthermore arg /(0) exists continu-
ously and is increasing, so that /(0) (0=0=2r) describes a continuous curve starlike
with respect to 0 and rotating once about 0 in the positive direction. It follows that
for each real ¢ we can find * (t<t*<t+2n) such that

G0
GG

Furthermore ¢* varies continuously with ¢ and 7**=7+2n. Therefore there is a f,
with #5=t,+n. We thus have

(l(z)]{>0 (ty <t < ty+m)
(1) ) l< 0 (ty+7m <t <t,+2n)

(5.11.3)

(5.11.4)

or equivalently

l_ezi(t—to) l(l))
(5115) RG(WW =0
for ty=t=ty+2n. Now
(5.11.6) (1) = ie*h’(e")—ie~ g (e™)
and so (5.11.5) becomes

(5.11'7) Re ((e—-iteito__ eite—ito) M_[_(eite——ito e~ ite xto) le'tg/(eu)] = 0.

1(1o) 1(1p)
Thus on {|z|=1},

(5.11.8) Re ((ef’o_e—itozz) (

ih'(z) ig’(z)]
Iw) 1@y )) =
We now obtain (5.11.1) by applying the maximum principle.
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5.12. Proof of Theorem 5.10. From (5.11.1) we have

. . 14z 1 1
—ip L/ il o =
(5.12.1) e (@)t e A< T 1= 1-22*’

where < means that the moduli of the coefficients of the function on the left are
bounded by the corresponding coefficients of the function on the right. Hence

(5.12.2) e~ h(2) et g(z) < 1_52' .

We obtain immediately (5.10.1). Next we recall that g’(z)=w(z)h’(z), where
|w(z)|=]z|. From (5.11.1) we obtain

w(z) F(2)
e—iu+eiuw(z) eiﬁ._e—ilzz s

(5.12.3) g'(z) =

where Re F(z)=0 (|z|<1), F(0)=1. Thus

z 1 1+z z

(5.12.4) fO<y—ST—Fm 17" 1—zp"

This gives (5.10.2). (5.10.3) follows from (5.10.1) and (5.10.2).
5.13. Corollary. If féKy, then for n=1,2, ...
n—1  n+l1

(5131) [a—n(f)l = 2 +T|a——1(f)la
(5132) 0,0l = 25+ la s (Dl +5—
In particular

(5.13.3) la, (N < In| (In| = 2).

Proof. Since the affine transformations (1.2.1) preserve convexity, we can write
f=fot+a_.(f)fo, where f,€K};. The result of the corollary then follows from Theo-
rem 5.10.

5.14. Convolution theorem. If f€Ky and @€K, then the functions
(5.14.1) @@+o)*xfeCy (o =1),

where % denotes convolution.
Proof. Writing f=g+h we have

P+ @) *f=a(p*g)+@xh=G+H, say.
Then for |¢|=1,

(5.14.2) H+eG = @*(h+eag)
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and so, since by (5.7.2), h+edg is close-to-convex and ¢ is convex, H+¢G is close-to-
convex by a well-known convolution theorem [8]. Therefore the theorem follows from
the following lemma.

5.15. Lemma. Suppose that G, H are analytic in U with |G’(0)|<|H’(0)|
and that H+¢G is close-to-convex for each ¢ (|e|=1). Then F=G+H is harmonic
close-to-convex.

Proof. If F(z;)=F(z,), then G(z;)—G(z,)+H(z;)— H(z,)=0. Either G(z)=
G(zy) and then G(z)+H(z,)=G(z,)+H(z,) so that z;=z, since G-+H is uni-
valent; or, with e=(G(z,)—G(z,))/(G(z1)—G(z5)) we have &G(z)+H(z)=
¢G(zy)+H(z,) so that again z;=z,. Thus F is univalent since |G’(0)|<|H’(0)|.

If |a|<1, |¢e|=1, then

(5.15.1) a(H+eG)+H+¢G

is close-to-convex in U and furthermore maps each circle {|z|=r} (0<r<1) onto
a close-to-convex curve. Choosing a=g¢ with 0<g<1 it follows that

(5.15.2) L,=oG+H+e(gH+G) (le]=1)

is close-to-convex univalent. In particular, writing z=re", 0L,/00#0 and as a func-
tion of z is harmonic in U. We deduce that

<

(5.15.3) I%(QITI—I-G) 8—%(9(_}+H)1,

since equality cannot hold, the right-hand expression is non-zero and the inequality
is valid at z=0. Consider fixed r (0<r<1) and 60,, 0, (0,<0,<0,+2r). If 4 arg
denotes the variation of argument in [6,, 6,], then, with [¢|=1,

(5.15.4) 4 arggé(H—i- 0G)
9 -(-9%(QH+ G)
=4 arg?)g((H+QG)+s(QH+G))—A arg |1+ ¢ ———-
W(H—l—QG\

QFI0+GG]

>—n—4 arg(1+sHo+QGo

by the close-to-convexity of L, in (5.15.2). Now

1 +8(QH91 + G@])/(HB;[ + 0601)

5.15.5 & _ —
(>13.3) T 2(oHy. & Go)(Ho, + 0Go)

maps {|e|=1} onto a circle with 1 inside and 0 outside, by (5.15.3). Hence ¢ with |¢|=1
can be chosen so that the second term on the right of the inequality (5.15.4) is O since
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it cannot exceed 7. Thus
(5.15.6) Aarg %(H+QG) >—7
and letting ¢90—1 we obtain

0
(5.15.7) A4 arg&;— F=—m.

Since F is univalent, it follows that F maps {|z|=r} onto a simple curve bounding a
close-to-convex domain. Thus F(rz) is close-to-convex in U for O<r<1 and letting
r—~1 the lemma follows by Theorem 3.7.

5.16. Remark. It can be shown that the class of mappings satisfying the con-
ditions of the lemma is invariant under convolutions with mappings of the form
ap+¢ (peK). An interesting particular case is the following.

5.17. Theorem. Let f=g+h be locally univalent in U and suppose that for
some ¢ (l¢]=1), h+eg is convex. Then f is univalent close-to-convex.

Proof. If |a|=1, then for suitable real p,

; h’(2)+0<g'(Z)J

w.__ - 27
(5.17.1) Re [e el 0 (z€U),
since {=g’(2)/l’ (z) satisfies |{|<1 (z€U) and {—(1+al)/(1+el) maps U onto
a disc or a half-plane excluding the origin. Consequently /4 oag is close-to-convex in
U for |x|=1 and so the theorem follows from (5.15).

5.18. If f is harmonic in U we define:

(5.18.1) V(f) = [2n")*12,;'=1 [nsz] a_ () +a,

2n)"t on 2n .
+ (n ] Zk=1 (n+ k] ak(])zk
as the n-th de la Vallée-Poussin mean of f. Thus V,(f)(re") is the ¥,-mean of the
Fourier series of #+—f(re"). From Theorem 5.14 we see that V() is close-to-convex,
when £ is convex, since ¥,(z/(1—z)) is convex [7]. In general it is not true that ¢

convex analytic, f convex harmonic implies (2 Re ¢)*f convex harmonic. However,
this is true for the V,-means.

5.19. Theorem. If f€Ky, then V,(f) is convex for n=1,2,... and
(5.19.1) n(HW) & ).

Proof. Since the ¥, kernels are positive and normalized, (5.19.1) follows from the
convexity of f(U). To prove that ¥,(f) is convex we apply Theorem 3.7, deducing
the existence of a sequence (f;) of convex harmonic functions such that each f;
extends smoothly to U with f({|lz|=1}) a smooth convex curve, and such that
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fi—~f (k=) locally uniformly in U. Then it follows from the results of Pélya and
Schoenberg [7] that each trigonometric polynomial ¥,(f;)(e”) maps the unit circle
homeomorphically onto a convex curve. Hence applying Choquet’s theorem, ¥,(f,)
is convex in U. Since V,(f,)—=V,(f) (k—<) we deduce the convexity of V,(f) from
Theorem 5.7.

5.20. Remark. The above argument applies to any variation diminishing kernel
V [7]. This property is more crucial here than in the analytic case.

5.21. Remark. The use of Choquet’s theorem isalso vital for this argument. For
example it is not true that f convex in the direction of the real axis implies ¥(f)
also is, nor even that ¥,(f) is univalent. For example. with n=2, f=k, we have

— 1—2 2 5 2 o)
(5.21.1) Va(ko)(2) = ity itae =g(2)+h(2),

where g’(z)=z/6, I (z)=2/3+5z/6. Since h'(—4/5)=0, V,(k,) 1s not univalent
in U. The argument of Theorem 5.19 breaks down only because Choquet’s theorem
does not extend to cover this case.

5.22. Theorem. Let feCy. Then
(5.22.1) la, ()] =5 @n+1) (n==£1 £2,..).
Equality occurs for the function kéoCy.

Proof. Applying the compactness results of Section 3 we may assume that f
extends smoothly to U with f({|z]=1}) a smooth close-to-convex curve J. Then on
J we have
(5.22.2) Aargdw =—n
over any subarc. Writing f=g+h this becomes
(5.22.3) arg (€' h'(e'%) —e~ 102 g’(%2))

—arg (e h'(e") — e““’l?(-em)) >—7
for 0;,<0,<0,4+2m. Also |g’(e”)|<|h (") and so
(5.22.4) Aarg (e?h'(e?)) = Aarg (e h'(e)—e " g'(e"))

e—ieg/(eie)] B
A4 arg [1— ) >—n1—7 = —27.

Thus with 6,, 0, fixed we have for arbitrary (=¢",
(5.22.5) 05+ @) — (0, + @) +arg h'(e®+9) —arg h'(e'®1+9)) = — 21
and applying the minimum principle for harmonic functions we deduce

(5.22.6) Aarg (e”h' () =—2r (|{| < ).
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In particular when (=r (0<r<l),
(5.22.7) A arg (re h'(re’%)) > —2x.

This implies that A belongs to the Kaplan class K(2, 4), i.e. we can write zh'=SF,
when S is starlike and |arg F|<=n. We obtain

, (1+2)*
(5.22.8) h (Z) << -(T-——Z)T 5
which is the required result for n=1, 2, .... If we now assume that f'is an extreme

point of Cy, then h’ satisfies (5.22.8) by approximation and also f€dCy applying
(2.5) and (2.6). Then g=e*h and the same coefficient estimates hold for
n=-—1, —=2,....

5.23. In a forthcoming paper it will be shown that C} is compact.

6. Typically real functions

6.1. The function f€H, the functions harmonic in U, is said to be typically real
if f(z) is real if, and only if, z is real. To obtain growth conditions we will further assu-
me that f is locally univalent in U. If f=g+h we suppose that [g’(z)|<|h’(z)|
(z€U), f(0)=0, |W' (0)|=1 and f(r)=0 (0<r=<1). The class of such functions is
denoted by T. (Note we do not specify h’(0)=1.) The subclass of Ty, with g’(0)=0
is denoted by T73.

6.2. We observe that, if /€Sy and has real coefficients then f¢ Ty. For f(z) =
f(z) and so f(z) =f(2) if, and only if, z=Z because of the univalence.

6.3. We observe further that for f=g+heTy,

. =0 (0 =0 < TC)
(6.3.1) Im f(re®) {< 0 (-m<0<0)

for O0<r<l1. It follows that the analytic function

(6.3.2) 1(z) = h(2)—g(2)
is typically real. In particular 7(z) has real coefficients and so
(6.3.3) a,(f)+a_,(HER (n=1,2,..).

Thus a,(f)—a-1(f)€R and so the function

_a(Nf@—a(NfE) .,
(6.3.4) f@= o T
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Inverting this we see that

(6.3.5) [ = ai(Nf(D+a-(NLE).
On the other hand every function of this form with f,¢ Tj and
(6.3.6) ai(N)+a_1(f) =0, la_i(N=<la(N =1

is clearly in Ty.

6.4. Theorem. If f,c T, then a,(fy)=1 and for n=2,3, ... we have
(6.4.1) lla, ()l —la-(fo)l| = n;
642l == @-DEn-D; |a,()] = ¢ @D+,
Equality occurs for the function ko€ Tg.

Proof. Since a_y(f;)=0, it is clear that a,(f) is real and positive, so a;(fy)=1.
Thus the function #(z)=hy(z)—g(z), where fy,=&,+hy, is a normalized analytic
typically real function. Therefore

(643) ian(ﬁ)) _’a—n(ﬁ))l =n (n = 25 3’ )
and we deduce (6.4.1). Also we can write

g0(2) = w(2)hg(2),
where o is analytic and |w(z)|=|z| (Jz|]<1). We deduce that

B R

which gives the first inequality of (6.4.2). The second follows applying (6.4.1).
Applying (6.3.5) we obtain immediately

6.5. Theorem. If fcTy, then
(6.5.1) la_,(f)] = -%—((n—l)(2n-—1)+'a_l(f)|(n+l)(2n+1))
- %(an—i—l) =12 ..);
(6.5.2) as(D] =~ (14 DA+ D +la1 (Nl (n—1)@n—1)
- -;—(2n2+1) =23 ..).

The function k€dTy is the overall extremcl.
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7. Open questions

7.1. Problem. If f=g+h is univalent in U and real on the real axis with
H(0)+g’(0)=0 is it true that f is typically real?

7.2. Harmonic analogue of the Bieberbach conjecture. Let f€S%,. The function
ko is on the present evidence the natural candidate for a harmonic Koebe function.
Theorem 6.4 suggests the following conjecture:

la,(Nl=la_u(Nlj=n r=2,3,..)
la_,(N)] = i(n—l)(zn—n (n=23,..).

As shown this is true for typically real functions. It is also easily shown using the
methods of Section 5 that the conjecture is valid in the cases that /(U) is starlike with
respect to the origin or convex in one direction. However, we have no verification in
the general close-to-convex case. Furthermore the first inequality is not even proved
in the general case for n=2.

7.3. Harmonic analogue of the (1/4)-theorem. If f€S} we have shown that
{lw|<1/16} S f(U). What is the best possible constant? For f=k, the constantis 1/6.

7.4. Bounds for inner mapping radius. Find the best lower and upper bounds for
the inner mapping radius of f(U) when f€S%. The lower bound is at least 1/16 by
Theorem 4.4.

7.5. Extreme points. Is there a correspondence between the extreme points of Sy
and S?

7.6. Uniqueness. For a given simply connected domain D how unique are the
possible mappings f€Sy, S% with f(U)=D?

1.1. Multiplier problem. What are the convolution multipliers ¢*: Ky—Kj,
i.e. harmonic functions ¢ such that f€ Ky=¢ % f€ Ky? A particular case is the radius
of convexity problem: for which values of r (0<r<1) is the function z—f(rz)
convex in U when fis convex in U. Certainly r=}2—1.

In conclusion we would like to express our gratitude to three colleagues. Richard
Hall for many stimulating conversations and a preview of his recent inequalities for
certain Fourier series. Also Richard gave the first example of a univalent harmonic
function whose analytic part is not univalent. Aimo Hinkkanen for suggesting the
metric giving the constant 1/16. Our original argument gave 1/27. Larry Zalcman for
bringing to our attention the work of Choquet on convex maps.
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