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1. Introduction

1.1. A continuous function f:u*iu defined in a domain DEC is harmonic
in D if u and u are real harmonic in D. In any simply connected subdomain of D we
can write f:E*h, where g,h are analyttc and d denotes the function z-g1z).
The Jacobian of f is then given by

(1.1.1) J1Q) : lh'lz)12-ls'(z)12.

The mapping z-f(z) is locally l-l if Jr(z)+O in D. A result of Lewy [6] shows that
the converse is true for harmonic mappings, and therefore z*J'Q) is locally 1-1
and sense preserving if, and only if,

(1.x.2\ ls'@)l = lh'(r)|.

We call such mappin gs locatly uniaalent,and we say/is uniualentin D if z*f(z)
is 1-l and sense-preserving in D. When /:g1h as above we call P the co-analytic
part andhthe analytic part of f. Notice that, if/is locally univalent, so is its analytic
part.

1.2. From (1.1.2) and Liouville's theorem it is easily seen that the univalent
harmonic functions from C to C have the form

(r.2.I) .f(") : aZ*TI f z,

where lal=lBl. These affine transformations will play a considerable role in what
follows and we observe that they map lines onto lines and ellipses onto ellipses.

The composition f oE of a harmonic function f with an analytic function g is
harmonic. However, if ry' is analytic, rlrof is not in general harmonic.

1.3. A function f:E+lt harmonic in (J:{lzl= 1} can be expanded in a series

(1.3.1) f(re'I: Z:-a,rlntsino (0 < r < 1),

where

(1.3.2) g(z): Zi d-,"", h(z): Zi o,"".
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We call an:a,(f) the cofficients of f. The class of functions univalent in U and

normalised by ao:O, ar:1 will be denoted by s". s$ will denote the subclass with
a-tT:O. Note that the familiar analytic class S is contained in S!r'

For f:911t€S!r we have by (L.l'2) and Schwarz's lemma

(L .3.3)

and in particular

(1.3.4)

ls'V)l = lzh'(r)l (z€U),

1.4. If J€ S ", then lo -tl = I
(1.2.I) we see that

(1.4.1)

belongs to ,SL. We then

(1,.4.2)

la -rl = +.

and so applying a transformation of the form

.c f-a-Jru L-la-rl'
have

f -fo+a-tfo.

This relation will enable us to obtain various properties of S" from S[.

1.5. If h<S and lel=l, rhen f:sfitrh(Sl. We tåen have M(r,f):
O(ll(l-r)r) (r*1). There are functions in ,Ss with larger growth than this including

functions which map onto the Koebe cut-plane which have growth that is not
o(1i(1-r)a)(r*1). Thisisoneofthemanydifferencesbetween.Ssand,S.Thestraight-
forward boundary correspondence as exhibited for example in Caratheodory's

theorem is no longer true in ,Ss. Also, it is not true that, tf t*f(eit) represents a

sense-preserving homeomorphism of the circle onto a Jordan curve K, the harmonic

extension of f to U is necessarily a univalent mapping onto tle domain bounded byK.
Howevern a beautiful result of Choquet [1] shows that this is true when K bounds a

convex domain. In particular,rf tp(t) is a continuous increasing function on[0,2n)
with rp(2n):cp(0)*2n, then the mapping

(1.5. 1.)

is a harmonic automorphism of U.

1.6. Choquet's proof rests on two central facts. The first is purely topological,

namely that for a continuous extension to U of a circle homeomorphism to be 1-1,

it is sufficient to show that it is locally 1-1. This result depends on a general result of
topological degree which is worth stating explicifly. For /'continuous on a closed

curve ?, letd(f,7) denote the degree of/on 7, i.e. the winding number about the

origin of the curve f oy. We then have what amounts to a generalized argument prin-

ciple:
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(1.6.1) If f(z) is continuous and non-zero in a domain D, then for any cycle i-
homologous to zero in D,

dU, r): Z*rdfi: O.

The second observation of Choquet's proof concerns the affine. invariance of
convex regions which reduces the problem of local univalence to establishing that
ar(f)+O. This is achieved by neat but simple arguments rather similar to those we

use in Section 5, where we will show further that the analytic part of a convex map-
ping is univalent. We also obtain the sharp coefficient bounds for convex functions

in S" and S[.
I.7 . In Section 2 we establish the normality of Ss making use of quasiconformal

methods and we include growth bounds for M(r,f). Section 3 is concerned with
convergence properties. We show that the Caratheodory kernel theorem does not
extend to S!r. We also obtain a theorem on smooth approximation which is applied
later to avoid boundary difficulties. In Section 4 we obtain an undoubtedly poor nu-
merical estimate for lr:s11p {lor(f)l: f(Sa}. We also obtain lower bounds for

lf(z)1, which yields in particular a (lll6)-theorem for,S!, in analogy to the(ll4)-
theorem for ,S. Section 5 and Section 6 contain specific examples and a number of
sharp results on the special classes of convexo close-to-convex and typically real func-
tions. These results suggest the various open questions and conjectures which con-

clude the paper.

2. Normality of ,S,'

2.1. Theorem. Let f€Sr. There is an absolute constant a satisfying

(2.L.1)

such that f (U) omits some aalue on eqch circle
there rr an omitted aalue e)a satisfying

o..q< znlo 
=,

9

lorol € Qo =ry< 1 .21.

I.72

{lrl:R} with R=q. For /e sg

(2.1.2)

Proof. Suppose that f(Ss attains in U all values o satisfying lotl=t. Denote
bV E(0 the conformal mapping of {l(l=1} onto the simply-connected domain

/-1({lol=r})9U for which E(0):0, E'(0)=0. Then E extends continuously
to {l(l:1} and the mapping (*f(E(0)lt is a sense-preserving homeomorphism
of {l(l=1}, which is harmonic in {l(l=1}. Thus

(2.t.3) l -f {rf"t'>) - "ia(o) 
: Z:* cnein|,

where a(0) is a continuous, strictly increasing function with aQn\:q19112r8.
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A recent result of Hall [3], which improves an older result of Heinz [4], gives

(2.t.4) !F-,r*g,p*!v,1, =#.
Now for f given by (1.3.1) we have

Q.1.5) tC-t- a-re'(O), Co:0, tCr: E'(0).

By Schwarz's lemma E (O)=1, so we deduce that

(2.r.6)

The results of the theorem follow immediately.

2.2. Definition. For f(Sn we define the conformal associate of / as the
conformal mapping F: U*f(U) for which F(0):9, F'(0)>0.

2.3. Theorem. Ss is a normal family and Sou is a compact normal family.

Proof. We obtain an explicit upper bound for M(r,f), where 0=r<1 and

f€5". From (1.4.2) we have

(2.3.1) (r,-f) = 2M(r,f),

where fi€.Så. We suppose now tåat f:E+h(Son Then for lzl=R=l we have

lg'Q)l=_nlh'(z)l and so the mapping z-f(Rz) (zeu) is K*-quasiconformal, where
Ke:(1+Ay(l-R).

Pr;it a(z):p- (f(")) (z€(I), where F is defined n Q.2). Then the mapping
z*a(Rz) (z(U) is K*-quasiconformal in U and satisfies la(Rz)l=|, co(0):9.
By a well-known distortion theorem 15, p. 641

t=ry(1 + lo-rlz)l,P.

la(Rz)l = E**(lrD Q€[I).

ExU)- tr-,[+) (o= r<L),

lctt(rei\)l = 6(r) - inf{e'" [å) i r <A = 1]

(2.3.2)

Here

(2.3.3)

(2.3.4)

where p(r) denotes the module of the domain consisting of the unit disc cut from 0 to
r along the positive real axis. We refer to [5], Chapter II for the properties of p(r)
and q*(r). For the moment it is sufficient to note that E*(r) is a strictly increasing
mapping of [0, 1] into itself for each fixed K>0. From Q.3.2) we see that

-inr{r.(#i') ,K>+.$}
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Clearly o(r) is a stricfly increasing mapping of [0, 1] into itself. Now /(z):p(r@)
and hence from the Koebe distortion theorem

Furthermore f (U)-F(U) and so by Theorem 2.1 and the (Il4)-theorem

(2.3.5)

(2.3.6)

M(r,f) = !'(o)o!2 .
(1 - o(r))''

F'(o) € 4Qo = 
\nf 

.l- g '

This establishes normality, since a family of harmonic functions is normal if it is
locally bounded.

2.4. To prove compactness of S[ let (f):(f,*h,) be a sequence in S[ con-

verging locally uniformly b f:E+h. By Hurwitz's theorem h'(z):li1vlnh!"(z)*0
in U. Also lg'(z)lh'(z)l=lzl, so/is locally univalent.

Therefore, if z1 and z 2Q 
(J, z 1# z 2, we have d (f - f (t ),Cr) = 0, d (f -f(r r), C r) = 0

for sufficiently small circles Cr,C, abottt 21,2, respectively. Since

ffi * 
' uniformlY on c1'

d(f,-f(rr),Cr):d(f-f(zr),Cr) for large n. By the degree principle (1.6.1), f,
attains the valae.f (21) in the disc bounded by C1. Similarlyf, attains thevalue f(zr)
neat zzand therefore the univalence offi implies f(zr) +f(z). Thus/is univalent in U.

2.5. Theorem. The closare Sp of Ss consists of all functions of the form

f - fo+ tfo,

,where lel=l and fr€50s. Also f(lSu:S"\Sr if, and only if, lel:|. Eaery

extreme point of the closed conoex hull of So lies on 05" and has the form

(2.5.2) f - fo+ €t"fo,

where fo is an extreme point of Sfu.

Proof. The first two statements follow from (1.4.2) and the compactness of ,Sp1.

Letf be an extreme point of the hull of Ss, so /€ S11 by the Krein-Milman tåeorem.

Hence f:fo*retuIo, where 0=r<1 and Å€Så. Then

(2.5.3) f - * rr * r) (fr+ e'o f)+ + (1 - r) (fo- e'" fo\

is a convex combination of elements in Ss and so we must have r: 1. Finally, if
fswere not an extreme point of S$, then we could write

(2.5.t)

fo - (1 - t) po* tQo,
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where 0<t<1 and ps,4o€S$. But then

Q.5.5) f : (l-t)(po+ei"Fo)+t(qo*eh4o)

would not be an extreme point.

2.6. Remark. Theorem 2.5 will clearly hold for any subclass of ,Ss which is
invariant under the transformations (1.2.1) suitably normalized, provided that the
corresponding subclass of ,SS is compact. The relationship between compact classes
in S and S$ is taken up in the next section.

3. Convergence properties

3.1. Inestablishingthecompactnessof varioussubclassesof S},proofsare com-
plicated by the fact that the Caratheodory kernel theorem is not valid in S$. The
difrculty arises essentially out of the possibility of discontinuities in the boundary
function. It will be recalled that a sequence (,F|) of functions in S converges to F€S
(i.e. locally uniformly) if, and only if, the sequence of domains (f,(U)) converges in
the sense of kernel convergence to F (U). This result fails in S[ both for the necessity
and the sufficiency.

3.2. Example. Define

(3.2.r)

where

(3.2.2)

For this function we have

(3.2.3)

EQ):ry W<t=ry, k-o, r,r).

Aearly f(z) for z(U takes no values outside the triangle whose vertices are the cube
roots of unity. Furthermore, by the following reasoning/is univalent in U.

Since E(t) is a non-decreasing step function inl},2nl it is almost everywhere the
pointwise limit of a sequence (E"@) of strictly increasing, continuous functions on

10, 2n] satisfying q,(2n): En(O) *2n. The functions

ao(f) - a -L(fl- 0, ar(f) : *(1 - ,-znits).

(3.2.4)

ttren form a sequence which converges locally uniformly in U to f(z). By Choquet's
tåeorem eachf"(z) is an automorphism of U. Thus/is univalent in U and one can
check that/(U) istheinside of the above triangle.Sincef,(U):U (n=-l) one sees,
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af.ter suitable normalizations, that one can have local uniform convergence without
having kernel convergence

3.3. It is also not the case that for a sequence (f") in S!r, f"(A*f (A implies

7,*7. Thisfollows immediately from the fact that there existf ,fz(So, with ft(U):
fr(U), bat f1*f2. For example, we can take

(3.3.1) fr(,) : , J;Q) - IoQ),
z

L- z

where /o(z) is defined in (5.5). Both functions are in S$ and each maps U onto

{Re w= -rl2}.
3.4. In Example 3.2 we note the following: each f"(U) is convex, f(A is

convex andf(U) is obtained from the kernel of (f"(U))by making certain cross-cuts.

Such properties can be associated with convergence in a more general setting. This will
be discussed in detail in a forthcoming paper, where it will be shown that certain

subclasses of ,S$, corresponding to classical geometrically defined subclasses of 
^9,

are compact. The convex case will be considered in Section 5 by a direct argument.

For now we prove only the following weaker result.

3.5. Theorem. Let (f,) be a sequence of functions in Sos contterging locally

unifurmly in U to f and let Q be the kernel of (,f"(U)) with respect to 0. Then

(3.5.1) f(u) 
= 

o.

Proof. If 0=r<g<1, then, because/is univalent,

(3.5.2) "f"(t) -.fko\
ffi-'1 

as n-+-oo

uniformly for lzl:q, lrol=-r. Therefore for n>m say, the expression (3.5.2) has

positive real part when lzl:g, lzol=r. It follows from the degree principle that, if
n>m,fn(z) attains each value f(zo) (lzol=-r) for some z in lzl-p and so

fkol=i=,if,g).
The result follows immediately.

3.6. If f is harmonic univalent in U we say that fo is subordinate to f rf we can

write
(3.6.1) foQ) : f(a(z)),
where ar(z) is analytic univalent in U with la(z)l<I in U and

(3.6.2) rll(0) - 0, @'(:0) > 0.

It is clear that,if Dois a simply-connected domain with /(0)€Doe f(A, then there is

a unique function.fi(z) subordinate to J'@) with fr(U):Do. Indeed we define ar(z)

as the conformal mapping of U onto f-'(Di satisfying (3.6.2).
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3.7. Approximation theorem. Let f be harmonic uniaalent in U and let
(D) be a sequence of simply-connected domains such that f(O)(Do=f (U) (k:1,2, ...)
and such that

(3.7 .r) Dx *.f (U) (k --..;

in the smse of kernel conuergence. Then the sequence of subordinate functions (fy)
com)erges locally uniformly to f in U. Furthermore, if each domain Do is bounded by a
Jordan cunte Jo9D, thm f* extends continuously to gtae a homeomorphism of U
onto Dy. If each Jy is smooth then fo extends smoothly to U.

Proof. Let fo:footo. If 0<r= 1, f({lzl=r\) is a compact subset of f (U)
and so there is a K such that

f({l"l = r\) E Do (k > K).

Hence {lzl=r}=f-L(D):a*(U) and so (ro(U)) converges to its kernel U. By
Caratheodory's kernel theorem, ae(z)*z locally uniformly in U, and hence the
same is true for 7o-7. Tf D* is bounded by a Jordan curve Joe f(U), then a*(A
is bounded by a Jordan cvve f-t(Jo) S U, so ccro extends continuously to a homeo-

morphism of U onto artq; and similarly in the case of smoothness.

4. Numerical estimates and a distortion theorem

4.1. Theorem.

(4. 1.1)

Let f(S r, Then

lar(fl| < I2,I73.

Proof. Suppose at first that f(Son. Then from (2.3.5) and Q.3.6) we have

(4.t.2)

where o (r) is given

(4.1.3)

We then have

(4.1.4) lor(fl|

M(r,f)=rydfrtf (o= r<1),

by (2.3.4). We choose K:2, when

qr(r) : { (see [5], p. 64).I+r \

5!@:f) =8?F-& (o- r<u3)-rz

:8ruOffi (o= t<t)

- l6nFffi'-16n1/T 1+'sz (o=,s= 1).
,su (1 - s)n
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Choosing 5:.4046385951 we obtain

(4.1.5) lar(fl\<. t2,172.

Forgeneral/€Ss weneedtoaddatmostll2tothisestimatefrom(1.4.2)and(1.3'4).

4.2. Bounds for la2(f)l lead to distortion results for /€Sp just as in the analytic

case. Writing

(4.2.1) lz : suP {lor(fl\, f<S"l

we note that if f:E*h(Ss, then the function

(4.2.2) EQ):ffi
is also in ,Ss, if lzol=1. We deduce that

(4.2.3> l* ft - polzh"(zo) -zoT -lzsl2)h'(zJ)l =,lr1t -lzsl'z)lh'(zr)l

from which it follows that

(l-l,l\rtz-]" 1l ' r-l\/"-l(4.2.4) Effi*=lh'(z)l=fffi (lzl <1).

From lg'(z1l-.lh'(z)l it follows that

(4.2.5\ lf@)l=zt;ffiat (lzl :r=1).

In particular we see tlat

(4.2.6) 'tfQ)t:t(p; (,1 *1)'

4.3. There can be no overall positive lower bound fot lf(z)l depending on lzl,

when it is known only that /€,Ss since, for example z*e7(Su for all e with lel=1.
However, a lower bound can be obtained depending on la-1(/)1.

4.4. Theorem. For feSfu we haae

(4.4.1) tfQ)t=+åW Pt=r.
In particular

(4.4.2) d : sup{q: {lrl = e} gf(U), /e sp1 = +.
Proof. For 0<o=1 let ,Sh(o) denote the class of functions/ of the form

(4.4.3) .f("):ry (r€sf).
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Suppose that fcSlr(o) and let D:f(U), D":D\{lwl=e} for small e=0 such

that {lwl<e}SD. Let ä be the distance from 0 to \f((D and assume without loss of
generality that -ö(0f (U). Let / be tJlLe plane cut along the negative real axis from

-ö to -- ard let /":/\{lwl=e}. D"and /"are ring domains and

(4.4.4) M(D) = M(/),
where M denotes module.

From the normalisation Du is approximately the image of the ring Ä,:
{e=lzl<1} by f for small e=0 and it is easily checked that the approximation is

sufficient to justify the following arguments ås e*0.
If q is an admissible metric for R,, Iet Q be a metric for D" defined by

(4.4.s) o(w):#ffi,
where /:g.uh, w:f(z). Let y be a path joinine {ltl:e) to {lzl: l} in R" and let !
be its image under f in D". Then

where fl,f (z) is the appropriate directional derivative. Now lfl"f @)l=lh'(z)l-lg'(z)l
and so

I ,a@) ldwl - a

T[,1
(
( ld '1,

)t

z)l

z
(

f(
w
lö

+
z)l

4

and therefore g(w) is admissible for D,. Hence

L(4.4.6) fu = t1t If ,"d(w)'du du (w - u*iu)

=i"r II."ffiqz(z)dxdy,
tle last inequality following from lg:(z)l=olzl.lh'(z)l for /€,S$(o). We choose

(4.4.i) s( ' G-or)l((t+9{)t) (z: reio)'' ) : 
i: (Q, - ot)l( + ot) 0 dt

and perform the integration in (4.4.6) to obtain

(4.4.8) åD = zn(rog!-2bs(t+o)-t2toe(r+oe))
and hence

(4.4.s) M(D) = |(t t!-2bg(1+ ")).

e'G)- inf II *. dxdy (t-x*iy)

[ ,a@) ldwl =- f , ek)ldrl - r,

z)

t;
4(
)l- 'k))'(lh'(,
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On the other hand 4öz(1 - z)-' maps U onto Å and approximately
onto År. Since the module is a conformal invariant, we see that

(4.4.1,0) M(Ar) '\' M(Rr4r) : *1og t+)
From (4.4.4), (4.4.9) and (4.4.10) we see by letting e *0 that

-21os (1 + o) = log 4ö.

maps Retu

We deduce that for /A St"(o),

(4.4.1r) Vk) I = ö =+Gh Qrl- 1).

We immediately obtain (4.4.1) for fesou.

4.5. Corollary.Let f(Sr. Then

(4.5. L)

AIso

(4.5.2) [r,r =#(1 - ta-,(f)r)) 
= 

r(]).

5. Convex and close-to-convex nappings

5.'!.. Let K, Ks and Kfu denote the respective subclasses of 
^S, 

Ss and 
^S$ 

where the

images f(U) are convex. Also let C, C , and Copbe the subclasses with close-to-convex

images. We recall that a domain D is close-to-convex if the complement of D can be

written as a union of non-crossing halfJines. For other equivalent criteria see [9].
Every star-shaped domain is close-to-convex. A domain D is called convex in the

direction q (O=q<n) if every line parallel to the line through O and ete has a con-

nected intersection with D. Such a domain is close-to-convex. The convex domains

are those convex in every direction. The following lemma will enable us to construct
examples of harmonic convex and close-to-convex mappings.

5.2. Lemm a, Let D be a domain conuex in the direction of the real axis and let
p(w) be a continuous real-ualuedfunction in D. Then the mapping

(5.2.r) \t) + l,u+ p(w)

is l-I in D if, and only if, the mapping is locally 1,-1. In this cqse the image of D is con'

aex in the direction of the real axis.

Proof. lf w1*p(w1):wz*p(wr) (w1lw2), then writing w1:r\*iu1, te2:
u2Iia, we have D1:'02:c1 say, and q*p(ut*ic):u2*p(u2*l'c). Therefore the

real function u*u*p(u*ic), which is defined on some interval (u", f ),is not strictly
monotonic and tåerefore not locally l-1.
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The image of D is convex in the direction of the real axisn since each line segment

w-u*ic (a"<u<.fr") is mapped onto an interval.

5.3. The o re m. A harmonic f: g I 7t locally uniaalent in U is a miaalmt map ping

of U onto a domain cowex in the direction of the real axis if, and only if, h-S is a con-

formal uniualent mapping of U onto a domain conaex in the direction of the real axis.

In particular the subclass of Sos consisting offunctions f such that f(U) is conuex in the

direction of the real axis is compact.

Proof. Ifl is unival ent and f ((I ) is convex in the direction of the real axis, then

writing w:f(z), z:z(w), we have

h('(r)) -s('(r)) - w-2Re s(z(r)) - w+p(w).

Sinceh'(z)-g'(z)+0 in Uand z(w)is 1-1, the mapping w*w*p(w) is locally l-1
and so univalent by Lemma 5.2. Hence z*h(z)-SQ) is univalent. The compactness

result follows easily from the compactness of the corresponding subclass in S.

Conversely, if h-g is convex in the direction of the real axis, then writing

W:h(z)-g(z), z:z(W), we have

(s.3.2) f("(r)):w+zRe s!(w\) :wt q(w)

is locally 1-l and so univalent by Lemma 5.2.

5.4. Example. Since zl(l-z)z is convex in the direction of the real axis, so is

the harmonic function ko: P ih, where

h(r) - s(r) - g'(z) - zh'(z).(5.4. L)

We obtain

(5.4.2)

(5.4.3) h(z) -

(5.4.4)

(1 - z)"

z - (Il2) zz + (tl6) zg

z(I* z) .

(L- t)n '

_ (I 12) zz * (t 16) zg

(r - ,)'
, g(z)

(r - z)'

Hence ko(Con and we now show that ks(U) is C cut along the negative real axis

from - 116 to -. We write (1 +z)l(l-z):w-u+ia, when (5.4.4) becomes

f n. (r'-1)+ |tlm(wz) - tr"'-3uu2-1) ++iuu,(5.4.5)

where u>0. lf uu:O, the right hand side of (5.a.5) varies between -116 and * -.
On the level curve ua : c * 0, the real part is us f 6 - c2 I Qu), whichvaries between - €
and *- (0<z<**).
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Note that the function

(5.4.6) k(z) :2te(g(z)+h(")) : 2ne (wl
is in åCsSäSs.

5.5. Example. Since zlQ-z) is convex, the function lo:!*h defined by

(5.5.1) h(z)+ g(z) : å, s'(z) : - zh'(z),

is convex in the direction of the imaginary axis. We obtain

(5.5.2) h'(z) : T+, s'(z):-&t

(5.5.3) h(z):#,s@):-t$t
(s.s.4) ts(z):*"(T=)*irm (T:ry)

It is easily seen that to(U):{Re w= -Il2), so /o€K?r.

The function

(5.5.5) l(z):rtr^(n?)
is in åKs.

5.6. Remark. Notethat

(5.6.1) to@tt):limlo?ei\:-+ (0<.0<2n)

so even with such a smooth boundaryas {Re w:-ll2l the boundarycorrespon-

dence which holds in the conformal case fails in the harmonic case. Furtlermore it
can be shown that Io@) does not map tåe circle {lzl:r} onto a convex curve if
fi-l=r=L Thus the hereditary property for convex conformal maps fails in the

harmonic case. This corresponds to the failure of the hereditary property for analytic
functions convex in one direction [2].

5.7. Theore m. A function f:E+h (KEif, and only if, the analyttic functions

(5.7.1) h(z)-eto g(z) (0 < ep = 2n)

are cowex in the di.rection El2 and f is suitably normalized. In this case the functions

(s.7.2) h(z)+eg(z) (lel = 1)
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are close-to-cowex in U. In particular h is closelo-conuex. Finally Kfr is a compact

class.

Proof. If/is convex, then e-iqlaf:"-IolzT4Sirg isconvex, so e-tetzh-eielzg
is convex in the direction of the real axis by Theorem 5.3. Hence h-erEg is convex in
the direction gl2. Conversely, the latter implies that / is convex in each direction
cpl2, so f is convex. In particular h*eg is close-to-convex when le l:1 and hence for
0<r<1 and 0t<Qr-.0t+2n,

(5.7.3)

As the expression on the left is harmonic in e for le | = I , this inequality continues to
hold when lel=l. This proves (5.7.2). The compactness of KS follows from
Theorem 5.3.

5.8. Corollary. If f:E*h€Ka, thm

(5.8.1) lffiEl='(zr,tz,t=t).
In particular, if f(Kn,
(5.8.2) lg(z)l = lh(z)l (0 < lzl < 1).

Proof. From (5.7.2) we deduce that

(s.8.3) h("')-l@ *r(e?t)-g(')) *'zt- zz zl- zz

for lel=1, lz1l, lzrl=l and (5.8.1) follows immediately.

5.9. Theorem. If f€Kh, then

(5.e.1) (1,1 = !)= f(u).

Proof. lf w{f(U), then for suitable real p,

(s.e.2) Re(etu1flz1-w)))=0 (lzl=1).

Hence if 7:911t,

(s.9.3) Re (ett'(np)-w)+e-tu g() = 0 (lzl = 1).

Thus applying a standard inequality for tle coefficient of z we obtain le-iul=-211r"tt'1,
i.e. lwl>112.
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5.10. Theorem. If f<KL, then for n:1,2,... we hatse

(5.10.1) llo,(nl-@_.Qfill= t;

(s.10.2) la-,(f)l = #t
3(5.10.3) b,Al = "t' .

Equality occurs for f:1o of Example 5.5.

5.11. Lemma. If f:g|h€Kn, then there exist real ),,p such that

(5.11.1) Re ((e-tah'121+eru g'(z))(eit - "-it' 
7z)) > 0 (zl < 1).

Proof. Applying Approximation theorem 3.7 we may assume that f extends
smoothly to {lzl:l} withf(eto) describing a smooth convex curve. Then

(s.1t.2) t@):#rr"",

is continuous, periodic with period 2n and 10. Furthermore arg /(0) exists continu-
ouslyandis increasing, so that l(0) (0=0=2a) describes a continuous curve starlike
with respect to 0 and rotating once about 0 in the positive direction. It follows that
for each real I we can find t* (t<t*<t*22) such that

(s.11.3) 9:-=9.l/(/)l l/0)l '

Furthermore l* varies continuously with r and t**:t*2n. Therefore there is a lo
with rf:1oaz. We thus have

(5.11.4) *(#)t=: ,.';,;::::il,*rr,
or equivalently

(5.1r.s) p.f1-{-d #t'l =o'*( ei(t-til l(to)):"
for to<t=ts*22. Now

(5.11.6) I(t): isitV'1.\-ie-ttg-\e\
and so (5.11.5) becomes

(5. 1 1.7) R. ({, - 
t, ro. - eit e- it, 

W * reit e - it o - e- it 

"o, 
iet'-!l!-t')) 

= n

Thus on {ltl:l},
(5.11.s) n.[r"'*-"-.,z\(re--#)) =t
We now obtain (5.11.1) by applying the maximum principle.

17
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5.12. Proof of Theorem 5.10. From (5.11'1) we have

(5.12.1) e-rPh'(z)+e'og'(")..8#: #,
where << means that the moduli of the coefficients of the function on the left are

bounded by the corresponding coefficients of the function on tfie right. Hence

(5.12.2) e-tPh(z)+eiP r1t1 ..f;.

We obtain immediately (5.10.1). Next we recall that {(z):a(z)h'(z), where

la(z)l=lzl. From (5.11.1) we obtain

(s.12.3) s'(z):ffi67ff"V,
where Re F(z)>O (lrl=1), F(0):1. 16ot

(s.12.4) {(z).<a=#E:&.
This gives (5.10.2). (5.10.3) follows from (5.10.1) and (5.10.2).

5.13. Corollary. If .f€Kr, then for n:I,2, ...

(s.13.1) lo-,al= #*#b-,(f)|,
(5.t3.2) b,al=+v-,l/lt++.
In particular

(5.13.3) la"Qfil=lnl (lnl=2).

Proof. Since the affine transformations (1.2.1) preserve convexity, we can write

f:fo*a-r(7)/e, where fo(Kfu. The result of the corollary then follows from Theo-
rem 5.10.

5.14. Convolution theorem. If f(KE and q(K, then the functions

(5.14.1) (aQ+E)xfeCn (lal = 1),

where x denotes corwolution.

Proof. Writing f:E+h we have

(uQ*E)xf : alExg)aqxh: G*H, sa''
Then for lel=1,

(5.14,2) H*eG: qx(h*ed,g)
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and so, since by (5 .7 .2), h + eag is close-to-convex and g is convex, H j- eG is close-to-
convex by a well-known convolution theorem [8]. Therefore tle tåeorem follows from
the following lemma.

5.15. Lemma. Suppose that G,H are analytic in U wilh lc'(0)l=111'(0)l
and that H*eG is close-to-conaexfor each e (lel:l). Then F:G*H is harmonic
close-to-contsex.

Proof. lf F (zt) : p (zr), then G (zr) - G (zr) * H (z) - H (zz) : 0. Either G (zr\ :
G(zr) and then G(z)*H(zr):61sr)+H(z) so that zt:zz since G+H is uni-
valent; or, with s:(G(zr)-G(zr))l(G(z)-G(z)) we have eG(zr)+H(zr):
EGQ)+H(zr) so that again zr:22. Thus F is univalent since lc'(0)l=lä'(0)1,

If lal=1, lel:1, 16"tt

(5.15.1) a@*H*eG
is close-to-convex in U and furthermore maps each circle {lzl:r} (0<r<1) onto
a close-to-convex curve. Choosing a:qe with 0=g=1 it follows that

(5.15.2) L,: aG+H+e(eH+G) (rl - 1)

is close-to-convex univalent. In particular, writing z:ret0, ALJA|#0 and as a func-
tion of z is harmonic in U. We deduce that

(5.15.3)

since equality cannot hold, the right-hand expression is non-zero and the inequality
is valid at z:0. Consider fixed r (0<r<1) and 0r,02(01<Qr<.Qr*2n). If / arg
denotes the variation of argument in [01, 0rl, then, with lel:1,

(5.15.4) t urg$@+ eA

.a: t arg fr ((,"+ scl +e ( qE + Q) - Å* 
[t 

.' 
#;J

>-n-/*t(r*rffi)
by the close-to-convexity of L" in (5.15.2). Now

(5.15.5) , -!.!'lnF:'r 9'),!,9:'I nQ:'l- L-le(pHo,+Ge)l(Ho,* QGt,)

maps {lel:1} onto a circle with I inside and 0 outside, by (5.15.3). Hence e with lel:1
can be chosen so that the second term on the right of tle inequality (5.15.a) is 0 since
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Since F is univalent, it follows that F maps {lzl:r} onto a simple curve bounding a

close-to-convex domain. Thus F(rz) is close-to-convex in U for 0<r< I and letting
r-L the lemma follows by Theorem 3.7.

5.16. Remark. It can be shown that the class of mappings satisfying the con-

ditions of the lemma is invariant under convolutions with mappings of the form
dq+E kOeX1. An interesting particular case is the following.

5.17. Theorem. Let f:g+h be locally uniualent in U and suppose that for
some 6 (lef =l), hleg is com)ex. Then f is uniaalent close'to-comsex.

Proof.If lal=l, then for suitable rcal p,

it cannot exceed TE. Thus

(5.15.6)

and letting Q*l
(5.1 5.7)

we obtain 

Åatg #@+qG) 
>-rc

0/arg67F>-Tt.

v,(f) - rt-' z;=,(,'; k), -k(fl zk + ao

+ f"\-' zx =,(,'; o) oru ),o

(5.17 .r)

since (:g'(z)lh'(z) satisfier l(l=l Q(U) and (-(1+a()10*e0 maps U onto
a disc or a half-plane excluding the origin. Consequently h*ag is close-to-convex in
U for lal=l and so the theorem follows from (5.15).

5.l8.If f is harmonic in U we define:

(5. 1 8. 1)

as the zr-th de la Vallde-Poussin mean of/. Thus ((/)(ret'1 is the l(-mean of the

Fourierseriesof t*f(ret). FromTheorem5.l.4wesee thatl((f) isclose-to-convex,
when/is convex, sinceV,(zlQ-z)) is convex [7]. In general it is not trae that E
convex analytic,lf convex harmonic implies QRcq)xf convex harmonic. However,
this is true for the l(-means.

5.19. Theorem. If f€Kt, then V"(f) is eonaex for n:1,2,... and

r4,(f)(u) 
= 

.f(u).

Proof. Since the trl kernels are positive and normalized, (5.19.1) follows from the

convexity of f(U). To prove thatv"(f) is convex we apply Theorem 3.7, deducing

the existence of a sequence U) of convex harmonic functions such that each fe
extends smoothly to U with fo({l"l:l}) a smooth convex cuive, and such that

(5.1 9.1)
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fk*f (k*-) locally uniformly in U. Then it follows from the results of Pölya and

Schoenberg l7l that each trigbnometric polynomial 11,(f)(et') maps fhe unit circle
homeomorphically onto a convei curve. Hence applying Choquet's theorem, lf,(fo)
is convex in U. Since V"(f)*\U) (ft*-) we deduce the convexity of lilfi from
Theorem 5.7.

5.20. Remark. The above argument applies to any variation diminishing kernel
V l7l. This property is more crucial here than in the analytic case.

5.21. R e m a rk. The use of Choquet's theorem is also vital for this argument. For
example it is not true that f convex in the direction of the real axis implies V"(fl
also is, nor even that ll(f) is univalent. For examplel with n:2, f:ko we have

2l

(5.21.1)

where g'(z):216, h'(z):21315116. Since h'(-415):0, Vr(ki is not univalent
in U. The argument of Theorem 5.19 breaks down only because Choquet's theorem

does not extend to cover this case.

5.22. Theorem. Let .f(Ca. Then

(5.22.1) lo"(fl|= f,{Znr+l) (n : lI, +2, ...).

Equality occurs for the function k€\Cn.

Proof. Applying the compactness results of Section 3 we may assume that f
extends smoothly to U with f({l"l:l}) a smooth close-to-convex curve "I. Then on
J we have

(5.22.2) A arg dw = -Tt
over any subarc. Writing f-S+h this becomes

(5.22.3) arg(eie'h'(eie'1 e-"'ftr'11

-arg (t"rh'(eie'1 -e-iet@1) = _ 
Tc

for 0t=02-0r*2n. Also lg'@t')l=lh'(ttu)l and so

Å arg(eiT h'(et')) : A arg(r" h'(r")-e-*W))

- A arslt - ffil> - Tt - TE - -2n.

(5.22.4)

Thus with 0r,0, fixed we have for arbitrary (:e'e,

(5.22.5) (0r* d-(0t * d+argh'(sit0'+e)) -atgh'1et{a'+o) > -2rc
and applying the minimum principle for harmonic functions we deduce

(5.22.6) Å arg(ei, h'Gr'u)) > -2n (l(l - 1).
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In particular when (:v (Q<.r<l),

(5.22.7) Åarg(rer0h'(ret0))>-2n.

This implies that h' belongs to the Kaplan class K(2, 4), i.e. we can write zh':SF,
when 

^S 
is starlike and larg Fl=n. We obtain

(5.22.9)

which is the reqtrired result fot n:1,2,.... If we now assume that/is an extreme
point of e", then h' satisfies 6.n.q by approximation and also f€|es applying

Q.5) and Q.6). Then g:eiqh and the same coeffi.cient estimates hold for
n: -1, -2, ,...

5.23. ln a forthcoming paper it will be shown that Cfu is compact.

6. Typically real functions

6.1. The function f(.H, the functions harmonic in U, is said to be typically real
if f(z) is real if, and only rf, z is real. To obtain growth conditions we will further assu-

me that/is locally univalent in U. If f:E+lt we suppose that lg'(z)l<lh'(z)l
(z€U),/(0):0, lå'(0)l:1 and f(r)>O (0<r<1). The class of such functions is
denoted by Tr.(Note we do not specify h'(0):1.) The subclass of Zs with g'(0):O
is denoted by f&.

6.2. We observe that, if /€Ss and has real coefficients then /€ 7". For f(4:
f(Z) andso f():f(z) if,andonlyif, z:Z becatseof theunivalence.

6.3. We observe further that for f:lth€Ts,

(6.3.1)

for 0< r<L It follows that the analytic function

(6.3.2) t(r) - h(t)- sQ)

is typically real. In particular t (z) has real coefficients and so

(6.3.3) a"(f) * a -"(f)(R (n - I, 2, ...).

Thus äJö-a-1(/)€R and so the function

(6.3.4) f,(r)-m[q-1-ft)rc1-lo-'ffi€r&'

r=0 (0=0=n)
rmf (r-t') t= o (-n < o= o)
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Inverting this we see that

(6.3.s) .f(") : arfl foQ) + a -rflffi.
On the other hand every function of this form with fo(T& and

(6.3.6) alQf)+a-rQf)>0, la-rTl<fu'Qf)l:l
is clearly in Ts.

6.4. Theorem. If fs(T!r, then ar(fö:l' andfor n:2,3,... wehaae

(6.4.1) lla,(fo)l-la-,(f)ll= n;

(6.4.2) lo-,Vo)l= f fn-rlf 2n-t); lo,Vo)l = lf"*r)(2n+t').

Equatity occurs for the function ko(T&.

Proof. Since a_1(fi):0, it is clear that a1(fs) is real and positive' so a1(fi)- 1.

Thus the function t(z):po1"1-go(z), where fo:Eo*ho, is a normalized analyttc

typically real function. Therefore

(6.4.3) lo,(fJ -' a -fil = n (n : 2, 3, ...)

and we deduce (6.4.1). Also we can write

s6k): a(z)h'oQ),

where co is analytic and lar(z)l=lzl (lzl<t). We deduce that

(6.4.4) s'oa):&t'(z).<+åh
which gives the first inequality of @.a.\. The second follows applying (6.4.1).

Apptying (6.3.5) we obtain immediately

6.5. Theorem. If feTs, then

(6.5.1) la-,(fl]= f tf"-O Qn-t)+la-tDKn+t)(2n+t))

= !{zn'*t) (n: !,2, ...);

(6.s.2) V,AI=f(tn+rl Qn+r)+lo-,(.Dlll-t)(2n_t))

- !{zn'+t) (n:2,3, ...).

The fi,mction k([Tn is the oaerall extremel.
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7. Open questions

7.1. Problem. lf f:91å is univalent in U and real on the real axis with
h'(0)+e\O)=0 is it true that / is typically real?

7.2. Harmonic analogue of the Bieberbach conjecture. Let /€S?r. The function
ko is on the present evidence the natural candidate for a harmonic Koebe function.
Theorem 6.4 suggests the following conjecture:

\lo"(f)l -la-n(flll= " (n - 2,3,...)

lo -n1)l = å @ - r) (2n- 1) (n - 2, 3,. . .).

As shown this is true for typically real functions. It is also easily shown using the
methods of Section 5 that the conjecture is valid in the cases thatf(U) is starlike with
respect to the origin or convex in one direction. However, we have no verification in
the general close-to-convex case. Furthermore the first inequality is not even proved
in the general case for n:2.

7.3. Harmonic analogue of the (ll4)-theorem. If /€SPr we have shown that
{lwl= 1/16}S f(a). Whatis the bestpossible constant? For f:ko theconstant is 1/6.

7.4. Bounds for inner mapping radius. Find the best lower and upper bounds for
the inner mapping radius of f(U) when /e S$. The lower bound is at least 1116 by
Theorem 4.4.

7 .5. Extreme points.Is there a correspondence between the extreme points of ,Sf
and S?

7.6. Uniqueness. For a given simply connected domain D how unique are the
possible mappings f€5", SP, with f (U):D?

7.7. Multiplier problem. What are the convolution multipliers g*: Kn*Kn,
i.e. harmonic functions g such that f(Kyt+E xf(Ks? A particular case is the radius
of convexity problem: for which values of r (0<r<1) is the function 7-f(rz)
convex in U when f is convex in U. Cettainly r=lT-1.

In conclusion we would like to express our gratitude to three colleagues. Richard
Hall for many stimulating conversations and a preview of his recent inequalities for
certain Fourier series. Also Richard gave the first example of a univalent harmonic
function whose analytic part is not univalent. Aimo Hinkkanen for suggesting the
metric giving the constant 1/16. our original argument gave 1127. Larry zalcman for
bringing to our attention the work of Choquet on convex maps.
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