Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 9, 1984, 27–31

FOURIER—STIELTJES COEFFICIENTS AND CONTINUATION OF FUNCTIONS

R. KAUFMAN

1. To introduce our subject we recall two classical problems of continuation for certain functions of a complex variable.

(CA) Here f is continuous in \mathbb{R}^2 and analytic outside a closed set E; E is *removable* for this problem if it is always true that f is entire.

(QC) In this problem f is a homeomorphism of the extended plane, which is *K*-quasiconformal outside E; E is *removable* if f is always quasiconformal in the extended plane.

For both problems there is a best-possible theorem. E is removable if it is of σ finite length (Besicovitch [2]; Gehring [5]). In each problem, a product set $F \times [0, 1]$ is non-removable precisely when F is uncountable (Carleson [3], Gehring [5]). Our purpose is to find nonremovable sets contained in $F \times [0, 1]$, not of the product type nor even approximately so. To describe these sets we denote by Γ a compact set in R^2 meeting each line $x = x_0$ at most once, so that Γ is the graph of a real function whose domain is a compact set in R; since Γ is closed, that function is continuous.

Theorem. (a) In each compact set $E_1 \times E_2$, where E_1 is uncountable and E_2 has positive linear measure, there is a graph Γ non-removable for (CA).

(b) In each set $E_1 \times [0, 1]$, where E_1 is uncountable, there is a graph Γ , non-removable for (QC).

The reason for requiring an interval on the y-axis, and not merely a set of positive measure in (b), can be seen from [1, p. 128]. Perhaps the correct class of sets E^2 could be found. When E_2 is an interval, the non-removability of Γ can be improved in two directions.

2. Both proofs are based on a theorem of Wiener (1924) about the Fourier— Stieltjes transforms of measures on R; a streamlined version of this theorem is presented in [6; p. 42]. We adopt the symbol $e(t) \equiv e^{2\pi i t}$ and the notation $\hat{\mu}(u) \equiv \int e(-ut) \cdot \mu(dt)$. Wiener's theorem is then the relation $\lim_{N} (2N+1)^{-1} \sum_{-N}^{N} \hat{\mu}(k) = \mu(Z)$, and in fact is an easy consequence of dominated convergence. When μ is *continuous*, i.e. has no jumps, and $\lambda = \mu * \tilde{\mu}$ is defined by $\hat{\lambda} = |\hat{\mu}|^2$, this becomes $\sum_{-N}^{N} |\hat{\mu}(k)|^2 = o(N)$. This means that there is a set N_1 of positive integers, of asymptotic density 1, such

doi:10.5186/aasfm.1984.0909

that $\hat{\mu}(k) \to 0$ as $k \to \infty$ in N_1 . The Lebesgue space $L^1(d\mu)$ is separable so there is a set N_2 , again of asymptotic density 1, such that $e(-kt) \to 0$ weak* in $L^{\infty}(d\mu)$ as $k \to \infty$ in N_2 , that is $\int e(-kt)f(t)\mu(dt) \to 0$ for each f in $L^1(d\mu)$. One more use of the same device yields the following variant of Wiener's theorem for continuous measures μ in R:

(W) There is a sequence $1 \le q_1 \le q_2 \le ... \le q_v \le ...$ such that $e(-pq_v t) \rightarrow 0$ weak^{*} in $L^{\infty}(d\mu)$ as $v \rightarrow \infty$, for each $p = \pm 1, \pm 2, \pm 3, ...$ (Plainly we could add the condition $q_v = v + o(v)$, but asymptotic density 1 is used merely to find the sequence and has no further use.)

Following [3] and [5], we fix a continuous probability measure μ in E_1 .

3. Proof of (a). Let now E_2 be a compact set of positive linear measure on the y axis; there exists a function $\varphi(z)$, analytic off E_2 , such that $\varphi = z^{-1} + ...$ near ∞ and $|\varphi| \leq C_1$ on $R^2 \setminus E_2$. (The constant $C_1 = 4/m(E_2)$ was found by Pommerenke [8] and is always the minimum value; see also [4; pp. 28—30]. The value of C_1 has no significance in the sequel.)

By Fatou's theorem for the half-plane, φ admits one-sided limits a.e. on E_2 ; using Cauchy's formula and taking limits we obtain $\varphi(\zeta) = \int g(y) (iy - \zeta)^{-1} dy$, for all $\zeta \notin E_2$, where $g \in L^{\infty}$, g = 0 off E_2 .

Let now $H \in L^{\infty}(R) \cap C^{1}(R)$ and $\psi(\zeta) = \int g(y)H(y)(iy-\zeta)^{-1}dy$, $\zeta \notin E_{2}$. Then with $\zeta = \zeta + i\eta$, we can write

$$\psi(\zeta) - H(\eta)\varphi(\zeta) = \int [H(\eta) - H(\zeta)]g(y)(iy - \zeta)^{-1}dy.$$

The last formula shows plainly that ψ can be estimated by means of $\|\varphi\|_{\infty}$, $\|H\|_{\infty}$, $\|H\|_{\infty}$, $\|H'\|_{\infty}$, and the measure of E_2 .

4. Proof of (a), completed. Suppose now that the function g, the measure μ , the sequence (q_v) , and an integer $p \neq 0$ are held fixed. We form the sequence of functions

$$\psi_{v}(\zeta) = \int e(-pq_{v}x) \int e(py)g(y)(x+iy-\zeta)^{-1} dy \,\mu(dx).$$

For fixed $x \in E_1$, the inner integral is defined whenever $\xi \neq x$, and is O(p), or indeed $O(1 + \log |p|)$, hence $\psi_v(\zeta)$ is defined for all ζ , and is continuous in R^2 , by the continuity of μ and dominated convergence. We claim that $\psi_v \to 0$ uniformly as $v \to +\infty$. To verify this claim we consider the integrals $\int e(py)g(y)(x+iy-\zeta)^{-1}dy$ as elements of $L^1(d\mu)$, parametrized by a complex number ζ . Dominated convergence shows that this collection of functions is norm-compact in $L^1(d\mu)$; since $e(-pq_vx) \to 0$ weak* in $L^\infty(d\mu)$ the uniform convergence follows.

It is now a simple matter to complete the proof. We suppose that E_2 has diameter <1/2, as we can without loss of generality. Beginning with

$$f_0(\zeta) = \int \varphi(\zeta - x) \mu(dx) = \iint g(y)(x + iy - \zeta)^{-1} dy \mu(dx)$$

28

we replace f_0 by an integral

$$f_1(\zeta) = \iint H_1(y - q_y x) g(y)(x + iy - \zeta)^{-1} dy \mu(dx)$$

where $H_1 \in C^2(R)$, H_1 has period 1 and mean 1, and $H_1(t) = 0$ outside the set $|t| \le 1/4$ (modulo 1). Hence

$$H_1(y-q_v x) = 1 + \sum' a_p e(py-pq_v x)$$

where $\sum |pa_p| < +\infty$. Thus

$$f_1(\zeta) - f_0(\zeta) = \sum' a_p \int e(-pq_v x) \int e(py) g(y) (x + iy - \zeta)^{-1} dy \mu(dx).$$

The previous analysis establishes that f_1 is continuous in the plane, and that $f_1 \rightarrow f_0$ uniformly as $v \rightarrow \infty$. Moreover f_1 is analytic off the set defined by $x \in E_1$, $y \in E_2$ and the relation $|y-q_v x| \leq 1/4$ (modulo 1). Since E_2 has diamter <1/2, each line $x=x_0$ meets the set of singularities in a set of diameter <1/2. We choose $v=v_1$ so that $|f_1-f_0|<1/2$, say, and then construct f_2 by inserting a factor $H_2(y-q_{v_2}x)$, etc. $H_2(t)=0$ outside the set |t|<1/8 (modulo 1), etc. The limit f is then continuous in R^2 and analytic off the support of each function $H_k(y-q_{v_k}x)$ and off $E_1\times E_2$. Hence the (closed) set of singularities is already a graph $\Gamma \subseteq E_1 \times E_2$. To ensure that f is not entire we have only to control the Taylor expansion of f_1, f_2, \ldots at ∞ . Now $f_0(\zeta) = \zeta^{-1} + \ldots$; and the functions f_k are analytic outside a fixed compact set; hence the first coefficient at ∞ can be controlled simply by writing it as an integral around a large circle. (If f were entire, it would be constant.)

As mentioned before, a better result is possible when E_2 is an interval: all the derivatives f', f'', \ldots are uniformly continuous off Γ . To see this we choose g(y) to be smooth, as well as H_1, H_2, \ldots , and estimate the partial derivatives $\partial/\partial y, \partial^2/\partial y^2, \ldots$ at each step, using Leibniz' formula. We observe that if E_1 and E_2 have no interior, if f is analytic off $E_1 \times E_2$, and f' is uniformly continuous there, then f is entire. (T hus the improvement just mentioned is not possible if E_2 has no interior; if E_1 has measure 0 and E_2 has no interior, then f' cannot even remain bounded unless f is entire.)

5. Proof of (b). Let $g(y) = \sin^2 2\pi y$, $0 \le y \le 1/2$ and g(y) = 0 otherwise. We construct a sequence of real-valued functions

$$u(x, y) = \int_{-\infty}^{x} g(y)\mu(dy) \equiv g(y)\mu(-\infty, x)$$
$$u_k(x, y) = \int_{-\infty}^{x} A_1(t, y) \dots A_k(t, y) g(y)\mu(dt),$$

where each $A_k \ge 0$ and $A_k \in C^2(R)$. Then of course $u_k(x, y)$ is continuous and increasing for each fixed y, $\partial u_k(x, y)/\partial y$ exists everywhere as a classical derivative and $\partial u_k/\partial x=0$ away from the support of the measure $A_1(x, y)...A_k(x, y)\mu(dx)$. Also, $A_k(x, y)=H_k(y-q_y x)$ where $y=y_k$ is chosen as follows. Abbreviating $G_k=A_1...A_k$ we have

$$u_{k+1}(x, y) = \int_{-\infty}^{x} H_{k+1}(y - q_v t) G_k(t, y) g(y) \mu(dt),$$

$$\partial (u_{k+1} - u_k) / \partial y = \int_{-\infty}^{x} H'_{k+1}(y - q_v t) G_k(t, y) g(y) \mu(dt)$$

$$+ \int_{-\infty}^{x} [H_{k+1}(y - q_v t) - 1] (\partial [G_k(t, y) g(y)] / \partial y) \mu(dt).$$

Since G_k and g(y) are at least C^1 , the following estimation of the first term here will also be valid for the second one. We expand H'_{k+1} in a Fourier series; observing that the constant term (p=0) is now absent. Hence everything is reduced to estimation of the integrals

$$2\pi i p \int_{-\infty}^{\infty} G_k(t, y) e(py - pq_v t) g(y) \mu(dt),$$

which are clearly O(p). To proceed as in (a), we need a norm-compact subset in $L^1(d\mu)$; we define it as the set of all functions $G_k(t, y)I(t \le x)$ with x+iy in R^2 , I means characteristic function. With these adaptations, we obtain the uniform convergence of u_{k+1} and $\partial u_{k+1}/\partial y$. A further property of u_k is necessary and easily obtained: $u_k(+\infty, y) - u_k(-\infty, y) \ge c > 0$ when $1/8 \le y \le 3/8$, with c independent of k; obviously u_0 has this property. We carry out an infinite sequence of approximations, observing that $|\partial u_0/\partial y| \le 2\pi < 7$, obtaining a real function u such that $|\partial u/\partial y| < 7$ everywhere and $\partial u/\partial x = 0$ away from Γ , for a certain graph $\Gamma \subseteq E_1 \times [0, 1]$. Now f(x, y) = u(x, y) + x + iy is a homeomorphism of R^2 onto itself with $f(\infty) = \infty$, f is of class C^1 off Γ and f is K-quasiconformal off E. We verify the latter point following a suggestion of the referee: off Γ we have $|f_x|^2 + |f_y|^2 = 1 + u_y^2 + 1 \le 51$ while the determinant $J = u_x + 1 = 1$. However f cannot be quasiconformal in the plane, because $f(\Gamma)$ has area at least c/4, as seen from the properties of u on horizontal lines.

By Lemma 3.1 of [8, p. 200], the curve Γ is not removable even when K=1, i.e. when the homeomorphism is complex analytic off Γ ; this means that it is in general not even K-quasiconformal in the plane for any $K < +\infty$.

(In a subsequent note on exceptional sets we present a method for constructing conformal mappings that avoids the Beltrami equation but uses more algebra.)

6. The sets $E_1 \times E_2$ are not quite the most general that can be handled by Carleson's method and through which a curve Γ can be passed.

Suppose that $E \subset \mathbb{R}^2$ is compact and the set $\{x \in \mathbb{R}: m(E(x)) > 0\}$ is uncountable. (Here E(x) is the section of E through x.) Each set $\{m(E(x)) \ge c\}$ is closed, so that for some c > 0 that set carries a continuous probability measure μ . Let $h_n(x, y)$ be continuous in \mathbb{R}^2 , $0 \le h_n \le 1$, and $\lim h_n = \chi_E$ everywhere. Supposing that $\iint |h_n(x, y) - \chi_E(x, y)| \mu(dx) dy < n^{-2}$, we can find a set $B \subseteq \mathbb{R}$ of positive μ -measure, such that $\int |h_n(x, y) - \chi_E(x, y)| dy \to 0$ uniformly for $x \in B$ as $n \to +\infty$. To each section $E(x), x \in B$, there is a function φ , analytic off E(x) and bounded by some c', while $\varphi(\zeta) = \zeta^{-1} + \dots$ near ∞ . This can be obtained by an explicit construction, show-

ing that φ depends continuously on x in an appropriate topology. This is a perfect substitute for the compactness used before and so our proof for (CA) can be effected.

Supported by the National Science Foundation and the Center for Advanced Study (Urbana).

References

- AHLFORS, L., and A. BEURLING: Conformal invariants and function-theoretic null-sets. Acta Math. 83, 1950, 101-129.
- [2] BESICOVITCH, A.: On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighbourhood of non-isolated singular points. - Proc. London Math. Soc. (2) 32, 1931, 1-9.
- [3] CARLESON, L.: On null-sets for continuous analytic functions. Ark. Mat. 1, 1950, 311-318.
- [4] GARNETT, J.: Analytic capacity and measure. Lecture Notes in Mathematics 297, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [5] GEHRING, F. W.: The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 281, 1960, 1–28.
- [6] KATZNELSON, Y.: An introduction to harmonic analysis. John Wiley & Sons, Inc., New York— London—Sydney—Toronto, 1968. (Dover reprint, 1976.)
- [7] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, Berlin-Heidelberg-New York, 1973.

[8] POMMERENKE, CHR:. Über die analytische Kapazität. - Arch. Mat. (Basel) 11, 1960, 270-277.

University of Illinois at Urbana—Champaign Department of Mathematics Urbana, Illinois 61801 USA

Received 14 September 1983