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FOURIER--STIELTJES COEFFICTENTS AND
CONTINUATION OF FUNCTIONS

R. KAUFMAN

1. To introduce our subject we recall two classical problems of continuation for

certain functions of a complex variable.
(CA) Here/is continuous in R2 and analytic outside a closed set E; E is temou'

able for this problem if it is always true that/ is entire.

(QC) In this problem / is a homeomorphism of the extended plane, which is

K-quasiconformal outside E; E is remoaable if /is always quasiconformal in the

extended plane.

For both problems there is a best-possible theorem. -E is removable if it is of o-

finite length (Besicovitch [2]; Gehring [5]). In each problem' a product set FX[0' 1]

is non-removable precisely when F is uncountable (Carleson [3], Gehring [5]). Our

purpose is to find nonremovable sets contained in FX[0, 1], not of the product type

nor even approximately so. To describe these sets we denote by ,f a compact set in

R2 meeting each line x:xo 4t most once, so that I is the graph of a real function

whose domain is a compact set in R; since .l' is closed, that function is continuous.

Theorem. (a) In each compact set E1XE2, where E1 is uncountable and E2

has positiae linear measure, there is a gtaph f non-remouable for (CA).

(b) In each set E'rx[0, Ll, where El is uncountable, there is a graph l ' non-remoa-

able for (QC).

The reason for requiring an interval on the y-axis, and not merely a set of posi
tive measure in (b), can be seen from [1, p. 128]. Perhaps the correctclass of sets.Ea

could be found. When .82 is an interval, the non-removability of .f can be improved

in two directions.

2. Both proofs are based on a theorem of wiener (1924) about the Fourier-
Stieltjes transforms of measures on R; a streamlined version of this theorem is present-

ed in [6; p.421. We adopt the symbol e(t)=ez"it and the notation fr(u)= I e(-ut)'
p(dt). Wiener's theorem is then the relation limp(2N*l)-tZ]r* p(k):p(Z), and

in fact is an easy consequence of dominated convergence. When p is continuous, i,e.

has no jumps, and ),: px ir is defined by 1':1012, this becomes Zlnlfr'1t 71':o179).
This means that there is a set N, of positive integers, of asymptotic density 1, such
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that p(k)-Q as k*- in Ää.The Lebesgue space L'(dp) is separable so there is a
set Nz, again of asymptotic density l, such that e(-kt)*0 weak* in L-(dp) as

ft*- in Nr,thatis I e(-kt)f (t)p@t)-o for each/in Lt(dp). One moreuse of the
same device yields the following variant of Wiener's theorem for continuous measures

pinR:

(W) There is a sequence l=qr<Qz< ...€qnS... such that e(-pq,t)-O weak*
in L-(dp) ds t)+6s for each p:Xl, +2, X3,.... (etainty we could add the con-
dition 4u:v *o(t), but asymptotic density 1 is used merely to find the sequence and
has no further use.)

Following [3] and [5], we fix a continuous probability measure trt in E1.

3. Proof o.f (a). Let now E2 be a compact set of positive linear measure on the y
axis; there exists a function E@), analytic off Er, such that E:z-r*... near - ård
lEl=Ct on R2\Er. (The constant Cr:{f7n(Ez) was found by Pommerenke [8]
and is always the minimum value; see also [4; pp.28-30]. The value of C, has no
significance in the sequel.)

By Fatou's theorem for the half-plane, g admits one-sided limits a.e. on Er;
using Cauchy's formula and taking limits we obtain EG):I sO) Gy-()-rdy,
for all ({E2, where g€L-, g:0 off Ez.

Let now H€L-(R)IC1(R) and {t(():le(y)H(y)(iy-()-,dy, ((Er. Then
with 6:11i4, we can write

,l/ (0- H(yDE($

The last formula shows plainly that r! can be estimated by means of llEll- , llä ll - ,

|'H'll*, and the measure of Er.

4. Proof of (a), completed. Suppose now that the function g, the measure p, the
sequence (4n), and an integer plo arc held fixed. We form the sequence of functions

,lt"(o

- I tn?il- H(olso)ey -0-' dy.

- [ ee pQun I e@y) s(fl(x* iy -O-' dy p(dx).

- I EG-x) p(dx): I{ s(il(x* iy-O-'dyp(dx)

For fixed x€Er, the inner integral is defined whenever 4+x, andis O(p), or indeed
O(1*log lpl), hence /"(() is defined for all (, and is continuous in R2, by the con-
tinuity of p and dominated convergence. We claim that ry'r*0 unifurmly as v* * -.
Toverifythisclaimweconsidertheintegrals I"@DCj)@|-iy-(1-r4, aselements
of Ll(dp), parametriled by a complex number (. Dominated convergence shows that
this collection of functions is norm-compact in LL(dp); since e(-pqnx)*O weak*
in L*(dp) the uniform convergence follows.

It is now a simple matter to complete the proof. We suppose that Ezhas diameter

=112, as we can without loss of generality. Beginning with

fr(o
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we replac e .fo by an integral

where ä1€C'(R), Hrhas period I and mean 1, and Hr(t):g outside the set ltl=
1/4 (modulo 1). Hence

Ht(y- q"x) : l* Z'ape(py-pq"x)

where )lpanl=*-. Thus

The previous analysis establishes thatfi is continuous in the plane, andthat 7t*7,
uniformly as y+ €. Moreoverfr is analytic of the set defined by x(E1, y€E2 and

the relation ly-q,*l=l/4 (modulo 1). Since E2 has diamter =112, each line
Jr-r, meets the set of singularities in a set of diameter <.112, We choose v:vr
so that lft-fol=|f2, say, and tlen constructfi by inserting a factor Hz(!-q,,x),
etc. Hr(t):O outsidetheset lll=1/8 (modulol),etc.Thelimit/isthencontinuous
in R2 and analytic off the support of each function H*(y-q,ux) and off Etx.Ez.
Hence the (closed) set of singularities is already a gtaph f SErXEr. To ensure that

/ is not entire we have only to control the Taylor expansion of ft, fr, .. . at -. Now

fo(Q:?'+...; and the functions.fo are analytrc outside a fixed compact set; hence

the first coefficient at - can be controlled simply by writing it as an integral around a

large circle. (If/were entire, it would be constant.)
As mentioned before, a better result is possible when ,Ez is an interval: all the deri-

vativesf',f",... are uniformly continuous offI. To see this we choose g(y) to be

smeoth, as well as H1, Hr, ..., and estimate the partial derivatives 010y, 0'l0y', ...
at sach step, using Leibnlz'formula. We observe that if E and E2have no interior,
if l is analytic off ELI.E', and f is uniformly continuous there, t}ren / is entire.

(Thus the improvement just mentioned is not possible if E, has no interior; if .E'1

has measure 0 and E, has no interior, then f' cannot even remain bounded unless/
is entire.)

5. Proof of (b). Let g(y;:5inz2ny, 0=y=ll2 and g(y):Q otherwise. We

construct a sequence of real-valued functions

u(x, v) : I:* so) P @Y) = s(Y) P(- *, x)

u*(x, y) : I:* A,,(t, y) ... Ao(t, y) g(y) p (dt),

where each Ak=0 and A1,€C2(R). Then of course u*(x, y) is continuous and increas-

ing for each fixed y, \up(x,y)/By exists everywhere as a classical derivative and

0upl0x:0 away from the support of the measure A1(x,y)...Ae@,y)p(dx). Also,

Ae(x,y):Hr(y-q"x) where v:vr iS chosen as follows. Abbreviating G*:A,...A*

fr(O : f I HrU - Qnx) s(y) (x * iy - O-L dy tt (dx)

fr(O-fr(O : Z'ooI r?pq"x) I r@y)s(fi(x* iy-O-'dyp(dx).
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wehave

u*+t(x, il : I:*Hr*r(y- qnt)GeQ, Ds(Dp@t),

0 (uo *, - u) I 0 y : [ 
-_ 

*, i *rO - q, t) G 1,(t, y) s O) p @ t)

+ I : - lH r *' (y - q, t) - tl(0 lG r, (t, v) c O)l I 0 v) p (d t).

Since G1 and, S(Dare at least Cl, tåe following estimation of the first term here will
also be valid for the second one. We expand Hi*, in a Fourier series; observing that
the constant term (p:0) is now absent. Hence everything is reduced to estimation

of the integrals

2ntp [' _ GoQ, y) e (py - p q"t) s(v) p (dt),

which are clearly O(p). To proceed as in (a), we need a norm-compact subset in
L,(dp); we define it as the set of all functions Go(t,y)I(t=x) with xliy in R2,

l means characteristic function. With these adaptations; we obtain the uniform con-

vergence of u1,a1and 0up*110y. A further property ofao is necessary and easily ob-

tained: ur,(* -, y)-ukc *,y)>c>O when 1/8=y=3/8, with c indepandent of k;
obviously ao has this property. We carry out an infinite sequence of approximations,

observing that l0uol0yl=)n<.7, obtaining a real function z such that l\ulAyl=1
everywhere and 0ul0x:0 away from f, for a certain graph f EEIX[O, 1]. Now

f(x,y):u(x,y)*x+iy is a homeomorphism of Rs onto itself with f(-):-, Jf is

of class C1 off.l' and/is K-quasiconformal off,8. We verify the latter point following
a suggestion of the referee: offf we have lf,l'+lfrl':l+u|+l=51 while the deter-

minant f.:ur*I:l. Howeverlf cannot be quasiconformal in the plane, because

/(Q has area atleast cl4, as seen from the properties of u on horizontal lines.

By Lemma 3.1 of [8, p.200], the curve.l'is not removable even when K:1,
i.e. when the homeomorphism is complex analytic offf ; this means that it is in general

not even K-quasiconformal in the plane for any K= * -.
(In a subsequent note on exceptional sets we present a method for constructing

conformal mappings that avoids the Beltrami equation but uses more algebra.)

6. The sets ErXäz are not quite the most general that can be handled by Carle-

son's method and through which a curve .f can be passed.

Suppose that EcRz is compact and the set {x€R: m(n{,r1)=O} is uncount-
able. (Here "E(x) is the section of .E through x.) Each set {m(E(x))=t} it closed,

so that for some c>0 that set carries a continuous probability measure p. Let
h,(x,y) be continuous in R2, 0=hn=1, and lim h,:Xp everywhere. Supposing that

I I lh"(*,y)-Xn(x,y)ltt(dx)dy=n-2, wecan find a set ,BSR of positive p-measure'

such that Illt,(r,y)-xn(x,y)ldy*O uniformly fot x€B as n+*-. To each

section E(x), xQB, there is a function E, analytrc off,E(x) and bounded by some c',

while E ($: (-t + ... near €. This can be obtained by an explicit construction, show-



Fourier-stieltjes coefficients and continuation of functions

ing that E depends continuously on x in an appropriate topology. This is a perfect

substitute for tle compactness used before and so our proof for (CA) can be effected.
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