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ON MEROMORPHIC FUI{CTIOI\S CONTII\UOUS
ON THE STOII,OW BOUNDARY

PENTTI .rÄnvr

Introduction

In this paper we study meromorphic functions on an open Riemann surface

which extend continuously to the Stoilow ideal boundary (MC-functions). Our main
concern is how to classify the boundary elements into "essential" and "inessential"
points from the point of view of MC-functions. It goes without saying that for most
boundary elements the problem is banal: they are simply too "large" to tolerate
nonconstant MC-fanctions nearby. For example, all boundary elements of positive
harmonic measure are out of the question 116, p. 2651. To exclude trivialities, we
confine ourselves to "admissible" points, i.e., to elements which have neighborhoods
carrying nonconstant MC-functions.

Chapter I is devoted to topological properties of MC-functions. In particular, we
exhibit the close relationship between the openness of extended functions and their
covering properties. In Chapter 2, we propose a definition for removable and essen-

tial boundary points. It turns out that removability can be characterized as well in
topological as in algebraic and analytic terms: via the openness of extended functions,
via the field property of MC-functions and via a certain function-theoretic null-class,

respectively. As an application, we give a solution to a problem proposed by Ozawa,
concerning certain classification principles for Riemann surfaces [10, p. 751]. In
Chapter 3 we give conditions, in terms of cluster sets attached to the ideal boundary,
which guarantee continuous extension of the functions involved. As a very special
case we obtain a recent result of Ishchanov [5].

We note in conclusion that some of the problems discussed in the present paper

have been touched, although from a somewhat different point of view, in our earlier
works [6] and [7].
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1. Topological properties of MC-functions

1.1. Let Iil be an open Riemann surface; and let V be a subregion of W with
compact (possibly empty) relative boundary 0a,7. Then Z is said to be an end of W.

We often assume, as we may without loss of generality, that |sV consists of a finite
number of piecewise analytic closed curves. The (Kerdkjårtö-) Stoilow ideal boundary

of I4 is denoted by B and the relative Stoilow boundary of Z (see [15, p. 366]) by Bv .

The usual topological operations (closure A*Ä, boundary A-0A etc.) are to be

taken with respect to the compactified space WvB @r VvB). The class of analytic

or meromorph:c functions on Z is denoted by A(V) ot M(V), respectively. The sub-

class of A(V) (resp. M(V)) consisting of functions which have a finite (resp. finite or

infinite) limit at every relative ideal boundary element is denoted by AC(V) (tesp.

MC(V)).Whenever/is a function of class AC or MC,we let/* stand for the exten-

sion of/to the (relative) ideal boundary. We say that V is an admissible endif MC (V)
contains nonconstant functions. A boundary element p( f is called admissible provid-

ed there is an admissible end V with p(Fv.
LetV be an end of W with nice boundary, and suppose that f€AC(Vv|vV)

is nonconstant. Assuming that z€CV(|nV), the index of z with respect to f (\wV)
is defined to be

i(z; f(\wv)) : 12n)-' f u*rd atE(J@- 4

and the aalence function, as usual,

v1v@): Z1gl-"n(p; f),

where nQt; f) denotes the multiplicity of f at p. Then we have

Lemma l. Suppose that z(C\(f(0a,V)vf*(p)). fhen

Ytv : i(z; f(\wv))'

Proof. Fix zs€C\(f(0yIt)vf*(fri), and denote by d the distance between

{zo\ andf(O*V)vf"(fn). For evety p(By choose an open neighborhood U, such

init au, is contained in v and f*(u)c.D(f*(p),d12):{z€cllz-f*(p)l=dl2}.
Fromthe open coverin g {Uolp(fr} of B7 pickout a finite subcovering {Ue,, ..., Ue*}.

Let (4) be a relative exhaustion of vv|s,v such that the components of z!!
are noncompact. Since F:f-tQJv(U(,=r0Ur,) is a compact subset of % there is

apositive integerno such that FcIf, for n>ns. Given anycomponent C of V\(o,
there is i€{1,...,ft} such that CcUo,. Let Br,'.',8. be the components of
\s,I(onV. We infer that eachf (B;) is contained in some D(f*(pi), dl2), i:I, ..., k-

Thus the winding number of f (B) witå respect to zo is 0 for each i. We conclude from

the argument principle that

vrvQ) - i(ro; f@*V)). u
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Remark. The above result holds true even if z€f(0s,V)\"f.(fn) provided

i(z; f (\yV)) and t'7y are given a suitable interpretation in case zef(\wv) (see [2]).
1.2. Fix po(B and assume that po has an admissible neighborhood, i.e., there is

anadmissibleendV suchthat po€fv.Bypassingtoasubendandperformingapreli-
minary linear fractional transformation; we obtain the situation where Vv|yyY
carries a nonconstant AC-function / with f*(po)|f@*V).

10. Assume first that/*(Bn) is nowhere dense in C. Denote by G the component
of \./(ås,Z) which contains f*(p}. By Lemma 1, n:i(z; f(0nV))-0 for
z(G, and there is an open neighborhood Uc.C of f*(pr) such that for each

zQU\f* (Py) v qv(z):n Now let V:Vr=Vz)...4)... be a determining sequence

of po. By applying the argument above for each7, we get a decreasing sequence of
positive integers (ni:i(f"@o); f(fl*V))). The limit

n(po; f*): jg nj > o

is called the multiplicity or the local degree of f* at p6 @f. [4, p. 301]). It is clear that
n(po; f *) is independent of the choice of (4).Also, it is obvious that

(A) t'yy(z) : ZdTr)J;,n(p; f*) : i(z; f(\wv))

for every z€C\f(\wV) (note that the procedure given before applies to each

PCF).

20. Assume then that/*(fv,)has interior points for every subend V' of V for
which po6fy,. Fix such a V', andlet(V) be a relative exhaustion of V'. Let Fn

denote the closed set /*(fz)\fV\U;), n:1,2,.... By continuity, f*(|,)c
|OM, so that F, is a nowhere dense subset of f*(fr,) for each n. But clearly

,f-@r\U; ,F,c{z€Clvilv(z): -}. In other words, r1y becomes infinite in a set

residual inf* (Fo'). Therefore, given any neighborhood U of po, we can find a sequence

of points (2,)in C such that zn-.f* (po) and f-t(z)n U is infinite for each n. Hence

tlrere is no reason to define the local degree for f* at po in this situation.

1.3. Let X and I be topological spaces, and let f: X*Y be a continuous map-

ping. Then/is said tobe opentf f(U) is open in Ifor every open set Uin X.Itis
quasiopen, provided that for any y€f(X) and any open set U in X containing a com-
pact component of f -1(y), .y is an interior point of/(U). Further, / is light if every
point-inverse f-'(y), y€Y, is totally disconnected, and f is discrete if each point-
inverse is discrete, i.e., consists of isolated points. Clearly, a mapping is open provided

it is both quasiopen and light. For mappings of reasonably nice spaces - as is the
case in this paper - quasiopenness can be characterized by the condition 0f (U)c
f (Aq for each relatively compact open set U in X 120, p. ll2l.

We are now ready to state some useful results concerning the behavior of MC-
functions at the ideal boundary.
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Theorem l. Let W be an open Riemann surface, let V be an admissible end of
W with nice boundary, and let S€MC(Vv\7,V) be nonconstant. Let f stand for
glY. Then the following statements are equiaalent:

(l).f*: VvBr-i:Cu {-} is open.

Q) f* is quasiopen.

(3) f.$) is nowhere dense in e .

() f* $r) is totally disconnected.

(5) vy rs bounded.

(6) v7@) is finite .for each zQe .

(7) f* is discrete.

Proof. Since /* is light, we immediately have (1)e(2).
(3)+(1): Suppose Uis an open set in Yvpy and zo€f*(U). lf (f*)-t(z)aV

is nonempty, zo belongs to the interio r of f* (U) by the openness of/. So assume that
zo:f*(p) for some pQ|vnU. Then choose a subend V' of V such that PQfv,,
V'vBy,cU, f*(p){f(0rV') and f*(T') lÖ. Next, pick out a linear fractional

transformation E such that l1:rpo(f lV'v\ryV') is bounded. Plainly
h€AC(V'v0a,I/'). Lemma 1 now applies to ft. Thus, letting G denote the component

of C\h(årV') that contains h*(p):E@o), we have i(z; h(\yV'))-z=g 1o.

z(G; further, Gc.h*(Y'vfrv). We infer that zo is an interior point of f*(U).lt
follows that f* (U) is open in Ö.

(1) =+ (a) : Suppose that/* gives an open mapping into ö. Let p o( f v be arbitrary.
By the compactness of fv, it suffices to find a subend V' of V,with po(|n,, such

that f*(Bn,) is totally disconnected. Therefore, we may again limit ourselves to t}re
case that h:eo(flV'v|wV') belongs to AC(V'v|wV'), e being a linear fraction-
al mapping. Assume now that C is a component of h*(py,). Fix a point zo(\C.
Modifying V' slightly, we may assume that zo{h(önv'). Let G denote the compo-

nent of C\h(AwV') that contains zo. It follows from the openness of h* that
i(zr; h(\yV')):m=O (Lemma l).

Next, choose r>0 such that the disc D(zo,r)cG, and set B:\CnDGo,r).
Let z€8. We claim that (h*)-r(z) contains at most z points. Indeed, assuming

that we can find lz*1 points pr> ...;pm+t in (h*)-t(z), we can also find mutually
disjoint open neighborhoods (Ji of pi,i:1,...;m*1. B:ut then f^1[+rr h*(U)aG
is an open neighborhoo d of z and hence contains points from C\ft* (Bn,). Given such

a point z', the inverse image h-t(z') contains at least nz*l points (tn V'), whereas

Lemma 1 gives v1,1y,(z'):m. We are led to a contradiction.

Thus, å*l(å*)-{B) is discrete. Since it also defines, as is readily seen, an open

mapping onto B, we may apply [2, Lemma 2.ll.lt follows that the topological di-
mension of h*(Fv,n(h*)-1(B)):B is 0. We conclude that C reduces to a singleton.

This proves the implication (1)+(4).
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Since the implication (a)=+(3) is trivial, we have now settled the equivalence of
conditions (l) to (a).

(a)+(5): The number of the componenrs of e\(g(anY)vf*(F.',) is finite.
In each of them v, is finite and constant. The desired conclusion now follows from the
lower semicontinuity of vr.

(6)+(3): Suppose, for the moment, thatf*(B) has interior points. The argu-

ment of Section 2.1 then yields the result that vr is infinite in a residual part of f*(F).
This contradicts (6).

(4)+(7): Since discreteness is a local property, we may again refer to the results

of Section 1.2 about AC-funcions: (7) is indeed a direct consequence of formula (A).
The implications (5)=+(6) and (7)+(6) being trivial, the proof is complete. I,

Corollary 1. Let W be an open Riemann surface, let B be the ideal boundary of
IA and suppose that f€MC(Il) is nonconstant. Thm either

(a) f*(f) is totally disconnected, in which case ty*(z):27*61:,n(p; f*) is

finite and constant, or

(b) the interior of f*(P) is nonempty, and the set {z(eV1Q):*} is residual in

f. (p).

The next result, a direct consequence of Lemma 1, was given and utilized in [6].

Corollary 2. Let W and B be as abotse, and let f€AC(W). Then f*(fr)-
f*(wvf).

The following corollary provides a generalwation of Stoilow's uniqueness theo-

rem [17, p.124].

Corollary 3. Let W be an open Riemann surface, and let V be an md of W
such that the set By is infinite. Suppose that f€MC(Y) and f*(p):0 for eaery

p(fv. Then f aanishes idmtically on V.

To give an example of nontrivial AC-fwctions, take a compact totally discon-
nected set EcC such that m(E), the two-dimensional Lebesgue measure of d is

positive and set

.f(z): II "{ory
It turns out that/belongs to lc(ö\fl; for details see e.g. [3, p. 79-80].

Remark. We point out that all the results given in this chapter are of a purely
topological character. In particular, they remain valid if the analyticity of mappings
is replaced by interiority (in the sense of Stoilow). Of course, the requirement that
boundary elements be admissible can then be dropped.
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2. Essential and remoyable boundary elements

2.1. We begin with some terminology. Let E be a proper closed subset of C. Then

,E is said to be of class N6 if, for each domain CcÖ witn EcG, every function
G*C continuous on G and analytic on G\,E' is actually analytic all over G. The

subclass of Ns constituted by the totally disconnected elements of Ns is denoted by

NL.ltis known that every closed set Ecö of o-finite linear mesure is of class N6

and, on the other hand, no set whose Hausdorff dimension exceeds 1 is of class

lV6 (see e.C. t3l). In the natural way (see [6, p. 308]), the classes Ng and Ni can be

generalized for arbitrary Riemann surfaces.

LetV denote an end of an open Riemann surface W.We say that Z satisfies the

absolute AC-maximum principle if for each subend V' of V and for each f€AC(V'v
\wV')

sup {l,f(p)lln€v' v 0,v'} : max{lfb)lPea*r'1.

Theorem 2. Let Iil be an opm Riemann surface, let B be the ideal boundary

of W, and let p€F be an admissible boundary point. Then the following properties are

equfualent:
(l) Thereis anend VcW with p(fv such thatfor euery subendV' of V andfor

eaery nonconstant f(MC(V'), f* defines an open mapping V'vBu,-i.
Q) There is an end VcW with p(fr which satisfies the sbsolute AC-maximum

principle.
(3) There is nt end VcW with p€Fr such that for eaery subend V' of V,

MC(l/') constitutes a field.
(4) There is an end VcW with p(Fv such that for euery subend V' of Y andfor

eoery f€MC(V'), f*(fr,) belongs to NL.
(5) Thereisanend YclY with p€.frv andanonconstantfunctionf inMC(V)

such that f*(fr) belongs to N's.

Proof. (l)+(2): Suppose that VcW fulfils the hypotheses of (1). Let V' be

a subend of V,andlet f(AC(V'v06'Y') be nonconstant. Since V'vfrr, is an open

setin VvBy,f*(V'vfn) is open in C. Thereforef attains its maximum at a point

on |rV'.
(2)+(1): Suppose VcW såtisfies the absolute AC-maximum principle, and

for some subend V'cV and some nonconstant f€MC (V') /* fails to be open. By
the equivalence (l)e(2) in Theorem 1, we can find a relatively compact open set

UcV'wBy, such that 0f*(U)+f*(äU). Pick out a point zo€ål*(U)i*(0u)'
It is clear that zo:f*@o) for some p6([/nBn,. Now choose an end V"cU
such that po€Fv". Plainty, zo{f(|yV"). Let z1 stand for a point in \/.(7')
such that lzr-zol=min{lzr-zllzcf(0y,It)} (*" may assume that f*(") lies

in Q. Denote by g the function p*(zFf@))-t,p€V"v0nv". It is clear that
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gqAC(V"v0y,V") and lg*@o)l>max {ls(Dlpe0*V"}. We have obtained the desi-

red contradiction.
(1)+(5): Let V be an admissiblq end with p(.Fv, and let f€MC(Vv|wY)

be nonconstant. Reducing Z and performing a preliminary linear fractional transfor-

mation, we may assume thatlf belongs to AC (V v|sV). Since f* gives an open map-

ping of Vvf, into C, it follows from Theorem 1 that f*(Fi is totally disconnected.

Thus we may arrange f*(frr)nf(0wV):0.
Let z stand for max {iQ; f(\wv))lze A/(46,V)1. Then v1v@) is bounded

by n, in view of formula (A) in Section 1.2. Let .E; denote {zef*(fr)lv1y(z)=i},
/:0, ..., n-1; then E,-r:f*(fr). Since/is open, each -E; is closed. Moreover, we

claim that each Ei belongs to NL.
Assume that Es is not of class Nå. By a standard application of cauchy's inte-

gral formula (see e.g. [6, Lemma 4]), we can find a nonconstant function g in
lC(^,80). Clearly gol belongs to AC(V). Since g*(Eo)c(gof)*(fr), and

s* (E) contains interior points (see corollary 2 to Theorem 1), we conclude by Theo-

rem 1 that (sof)* is not open. This contradicts (1). Suppose next that, for some i,

E; is of class N!, and fix a point zo€Ei+r\zi. choose a neighborhood u 'of zs

such that åU is an analytic Jordan curvewith 0Un(f*(B)vf(0nV)):g and f-r(U)
contains j (j=i+l) relatively compact mutually disjoint Jordan regions Tl, n V

such that each z(.U has exactly i * 1 antecedents in Uto=rVo (with due account of
multiplicities). Then ,flZ\LJi=t( assumes no value in Ei,,1mU. Now -E;*1nU

must be of class Nå, for otherwise - reproducing the argument given above - we

would again arrive at a contradiction with (1). Since zowas atbitrary, and belonging

to Nå is a local property (see e.g. [6, p.308]), we infer E+L(NL. It follows that

E,-r:f*(fiv) is of class N!.
(5)+( ): Suppose VcW is an end which carries a nonconstant MC-fanction

/i with fd$iqL. Let V' be a subend of Z. Modifying V' slighfly we obtain

f'(f,wv')^ft(fiv,):$. Let G be a component of 

^6(ås,V') 

suchthat fd(By)a
Glg. Then v;o1r', is finite and constant, say re, in c\,ff(Bd. Assume that

t€MC(V') is nönconstant. By an argument familiar from the context of compact

Riemann surfaces, it can be shown thatf satisfies on l;l(\fr*(frr)) un identity

f" + Zi=r(a,ofo) f"-i : g,

where a1, ...,anare meromorphic functions on G\Å-(fv,). Arguing as in [6, p.

309], it can be shown that for each i,4, admits a meromorphic extension over

ff $',)ac (ttris is the point where use is made of the assumption fd(M<Nt).
Henceforth we regard each ai as defined and meromorphic all over G.

Denote by d the Riemann surface of the relation

P(2, w) : w" *Z!=tai(z)w"-i : 0, z(G,

i.e., the totality of pairs (2,w,),where zQG andw,is a function element with center

z and associated with the equation P(2, w):Q. Note that d is a finite union of con-

39
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nected Riemann surfaces. The functions c: (2,w")-z and a: Q,w,)*w,(z) are
meromorphic on G. Obviously, /* ((ff )-' (ft $r,) nG) n B y,) co (c-L (ff g 

",) 
nG)).

Hence by [6, Lemma 2], f*lff)-tUt$r,)ac)ofr,) is of class N!. Being a finite
union of sets of this kind, f*(fr,) also belongs to N[.

(5)+(3): Suppose V and, J'(MC(Z) satisfy(5). Fix pefv.Asin [6, Theorem 8],
there is a subend V' cV with p( fv, and an analytic function fo€AC (V'): V' *D-
{rccllzl-t} such that, given any g(MC(V'), one can find a unique h€M(D)
satisfying g:hofo. Making use of this composition, we can readily obtain tlre con-
clusion.

(3)+(2): Suppose there is a subend V' of Y and a function f(AC(It'v0wV')
with max{l/fu)llne\*v'}-.max{lf*@)llrcT'}:r. Pick out a point po€fv,
such that lf*(p)l:r. Let E be a conformal mapping of the disc D(O,r) onto the
half-strip {z(ClRe z=0, llm zl-.1} such that f* (p) corresponds to the point - -.
It is clear that the functions h:exp(Eof) and g:exp (t-i).g"/) belong to
AC(V'VA7V) (exp stands for z-e"); moreover, h(p) and g@)*O &s p-po
in V'. Now choose a sequence of points (p,) in V' surch that po*ps and
Re ((Eof)(p,)): -n for large n. Then lh(p)l:exp (-n) and lc@)l:
exp (-n*Im ((E"fl@"))). Hence ls@)lh(p)l:exp (Im ((E"fl@"))), whence
exp(-l)=-lg(p")lh(p)l=exp(1) for large n. We conclude that

(x) lim (slh)(p) * 0, oo
Pt Po
p €.Y'

Similarly, a simple calculation yields argg(pn):Im ((q"f)(p"))-Re((9ol)(p"))
and arg h(p,):Tm ((E"f)(p"))' Thus, arg h(p,) temains bounded, while arg g(p")
varies unboundedly as n+6. Hence arg(glh)(p,) also varies unboundedly as

n* -. But this state of affairs is in apparent contradiction with ( x ). The implication
follows.

The remaining implication (4)+(1) follows immediately from Theorem 1. n

In view of the preceding theorem, it seems reasonable to make the following defi-
nition (cf. 17, p. 3201):

Definition. Let p(fl be an admissible boundary element. Thenp is said to
be (AC-)renot:able if there is an end V wlth p(fv and a nonconstant function

f€MC (V) such that f* (f ,) is of class Ni. Otherwise p is called essentral. A closed
subset f' of fi is said to be removable if each element of P' is removable.

It is clear that the removable boundary points constitute a relatively open sub-
set of p.

Suppose W is parabolic. Then every admissible boundary point is removable;
indeed, given any end VcW and any f(MC(I/),J*(pi is of logarithmic capacity
zero (see [9]). More generally, the same is true of Riemann surfaces satisfying t]re
absolute AB-maximum principle (121, [10], [6]); this case can be characterized by the
relationf*(B)€No [6, p.304] (for Ns and other standard null-classes see [] or [5,
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Chapter III). It is to be noted that there are even parabolic surfaces which entirely

lack admissible boundary elements [4, p. 298].

2.2. Ov next theorem describes the class of globally defined MC-functions in
case B is removable.

Theorem 3. Let W be an open Riemann surJace, and suppose that the idcal

boundary f of W is remoaable. Then either
(a) MC(W):C, or
(b) MC (W) is a field algebraically isomorphic to the field of rational functions on

a compqct Riemann surface W', which is uniquely determined up to a conformal equi'

ualence. Moreouer, the isomorphism is induced by an analytic mapping of W intoW'.

Proo.f . Suppose that MC (W ) contains a nonconstant function /' By definition

and by Theorem 2, eachboundary element p€fr has a neighborhood Urwith|{Jo
in l/ such that f*(BaUr) is of class i[i. By compactness, we can pick out
Up,;...ttd" such that BclJi= r(10,. Hence J.$)cUi=rf*(frnUr,), whence /*(p)
is of class Ni. The theorem now follows from [6, Theorem 6]' !

A local counterpart to the preceding theorem is

Theorem 4. Let W be an open Riemann surface with ideal boundary p, and

suppose that p€.F is remoaabk. Then there is an end V of W with p(pv and an AC'

function Js: V-D:{zeCllzl=l} such that, giaen any f(MC(V), one can find a
unique g(M(D)(:1y1e class of meromorphic functions on D) satisfying f:gofo.
Accordingly, MC(V) is isomorphic to the field M(D).

Proof. See [6, Theorem 8]. tr

Suppose next that an end VcW has finite genus. ThenV can be imbedded con-

formally in a compact Riemann surface U*. Therefore p, can be realized as a subset

of U*. Thus, it makes sense to ask what Bn looks like near a removable boundary
point. An answer is given by

Theorem 5. Let W be an open Riemann surfuce, and let VcW be an end of
finite genus. Suppose that |y,V is a finite union of analytic Jordan curDes and f, is

remoaable. Then there exists afinite Riemann surface V* and a compact subset EcV*
of class N'" such that V is conformally equiaalent to Z*\.8. Further, V* is uniquely

determined up to a conformal equiualmce.

Proof.Let p(fr, and choose a planar end V'cV such that p(.Bv', Awy'
is a Jordan curve, and MC(y') contains a nonconstant function/. Assume also tlat
Z'satisfies condition (4) in Theorem2.By [1], Theorem 3], we can find a Jordan

domain GcC, a compact totally disconnected set FcG and a sense-preserving

homeomorphism g: Z'*G\F. Further, flv, and F being totally disconnected,

rp admits a homeomorphic extension cp*: V'vPn'-6. Consider the continuous
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mapping g:f*o(E\-L: G*C. It is clear that g is light. Also, gl\F is open
and sense-preserving, and g(F):f*(fn) is totally disconnected (of class Ni in
fact). Hence by [18, Theorem 9], g is light and open on G. By Stoilow's theorem [17,
p. l2tl, there is a plane domain G', a sense-preserving homeomorphism ry': G*G'
and a meromorphic function h on G' such that g:horlt. As in [7, p.319], we see that
ry'og defines a conformal mapping Y'*G\rlt(F). Further, by condition (a) in
Theorem 2 ({oE\$n,) is of class Ni.

Altogether, for each p(fv there is an open neighborhood UocVvBv of p
and a homeomorphism itr, of [Jo onto a plane domain such that @nlUr\Bn is con-
formal and iDr(fva%) is of class Nå. The very definition of Ni implies that the

transition mappings itrooiL;7: iDn([IoaUn)*Qr(UonUn) are actually conformal.
Accordingly , V v Fv can be given a conformal structure, compatible with that of V,

which makes Vuf, a finite Riemann surface. Clearly, Bn is of class N's in V*:
Vvf, (see[6,p.308]). Hence we may set E:frvi the inclusion mapping i; VtV*
defines the desired conformal homeomorphism Z*Z*\.E.

To prove tåe uniqueness, suppose that the pairs (Zt*,,8 ) and (Vf , Er) have the

required properties. Let tp; V*11\h and Er: V-V,f\Ez denote the related

conformal homeomorphisms. Then E:qzoetL maps Z1*\,81 conformally onto
Zr*\Er. SinceE't andErare totally disconnected, E admits a homeomorphic exten-
sion g*: Vf -Vd. Finally, El being of class Nt in Vf , g* is conformal throughout
vf. n

R e m a r k I . As appears from the proof, the uniqueness of Z* follows already from
the requirement that the set ,E; the realaation of the ideal boundary, be totally discon-

nected. It should be noted that there are realizations of removable boundaries which
contain proper continua. This state of affairs derives from the fact that there are sets

of class Nå which do not belong to Nse.

Remark 2. Suppose f<MC(V) under the hypotheses of the preceding theo-

rem, and let E map V conformally onto Z*\E with E in Ni. Then foE-r€
MC(V*\E) and, since E€NL, (f"E-\*:.f*o(q-t)* is meromorphic in V*.
In this sense,lf can be continued to be "meromorphic" on the ideal boundary.

Our next theorem gives a criterion to recognize the situation described above.

Theorem 6. Let W be an open Riemann surface, and let VcW be an end

whose relatiue boundary |sV consists of a finite number of closed analytic curDes.

Suppose AC (V v 0 vV) separates the points of V v \rV, and for each f( AC (V v 0 yV)
and for each subend V' of V

max {lf{p)l lpe 0*v'} - sup lf O>l lpe v'u E*Y'}.(1)

Then there exists afinite Riemann suffice V* and a compact subset EcV* of class

N's such that V is conformally equiaalent to Y*\E; V* is uniquely determined up to
a conformal equiaalence.
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Proof. Srnce AC(Vv\s,V) is point-separating, and each f(AC(Vv|n'V)
attains its maximum on \nV, it follows from a theorem of Royden [13, Theorem 3]

that Y has finite genus.

Let f€Ac(yv\wv), and let KcvvBn be a compact set. By assumption

and by the total disconnectedness of Fn, it is readily seen that lf*(pöl=
max{l/*@)llp<0X} for each po€K. Therefore, taken as an algebra of functions

defined in vvfly, AC(Yv\yyV) constitutes a maximum modulus algebra in the

sense of [8]. Hence by [8, Theorem 1], every fQAC(Vv|s,V) defines a quasiopen

mapping f*: vvBo*c. By Theorem l, f*(fr) is totally disconnected.

Fix a nonconstant f€AC(vv\y,v). combining [11; Theorem 3], u8, Theorem

9l and Stoilow's tleorem as in the proof of the preceding theorem, we infer that there

exist a finite Riemann surface V*, a compact totally disconnected set EcV* and a

conformal homeomorphism g: ZrZ*\8. Of course, V* can be taken as a sub-

region of a compact Riemann surface Z. Suppose E fails to be of class N'g in V* (and

in t). By [6, Lemma 4], we can t]ren find a nonconstant function g in AC(r\D.
Further, by Corollary 2 to Theorem 1, g*(Y*)cg*(7):g*1B1:@oq)*(fr)'
Hence goE,albeitamember of AC(Vw\*V), by thereflectionprinciple, does not

attain its maximum on \a,V. This contradicts (1).

The uniqueness of Z* is proven as in the preceding theorem' tr

Remark. It seems possible that Theorem 6 remains valid even if condition (1)

is imposed only on V. Actually, a result of this sort holds for the algebra of bounded

analytic functions on V, as shown by Wermer [19] and Royden [13]'

2.3. ARiemann surface IZ is said to satisfy the absolute AB'maximum principle,

briefly W€./lu, if
sup {I,ffu)l loevv \nv}: max{l,f(l)lln<0*v)

for every end vcl4t and for every f(AB(vv\wv) (:the class of bounded analy-

tic functions on Vv\y,V) (see [12], [10]). Furthet, W is said to belong to the class

9" rf, for every end VcW, the cluster set Cl (f; F) of every f(AB(Vv\wV)
attached to Bn is totally disconnected [10]. Finally,lV'is said to belong to the class

,iluprovidedthal AB(Vv0s,V)c.AC(Vw0nY) for every end VcW [10]. As to

the inclusion relations between these classes, it is immediate that Ouc,ilr; further,

the work of Royden [12] readily brings in the equality tr n:9n (see [6]). In the next

theorem, it will be shown that ,il":9u also. This setfles a problem proposed by

Ozawa [10, p. 751].

Theorem 7. The three classes defined aboae coincide

&n:9n: dn

Proof.It remains to prove that docfuu. Assume the contrary, and let W be a

Riemann surface in ,il1ir.93. By definition, there exist an end VcW and a func-

xon feAB(Vv0rV1:aC(Vv0wV) such that f*(f) contains proper continua.
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Hence by Theorem 1, f*lVvpy is not open. By Theorem 2, we can then find a
subend v' of v and a function g in AC (v'v06,v') such that max {ls @)lln<\nr'}=
r:max{lg*(DllneV'}:max{ls*(p)ll pcfr,}. pick out a point po(Fv, such
that lg*fu.)l:r.

Let rp be a conformal mapping of the disc D (0, r) onto tåe strip domain bounded
by the lines Re z:0 and Re z:1 such that g*(po) corresponds to the point f -l'.
Clearly, exp(9og)belongs to AB(V'v|yV'). Yet exp(tpog) fails to have alimit
as p*po in V'. This contradiction completes the proof. n

Corollary. LetW be an open Riemsnn surface. ThenW satisfies the absolute
AB-mds.imum principle if and only if AB(VvflyV):AC(Vv0s,V) for euery end
YcW.

Remark. In case W is planar or, more generally, has finite genus, the equality
dn:tila follows immediately from a result of Rudin. In fact, whenever p€\W is
an essential boundary point in the sense of Rudin [14, p. 333], there exists an analytic
function .f in AB(W), bounded by l, such that Cl (f; p), the cluster set of f at p,
equals tOD [14, Theorem t4].

3. A condition for continuity

3.1. Let V be an end of an open Riemann surface IA, andlet f be a nonconstant
boundedanalyticfunction onZsuppose thatno Cl(f;p), p€frv, separatestheplane
(note that each Cl (f; p) is connected) and Cl (f; f):Uorp,Cl(f; p) is nowhere
dense in C. We say that p€ Fv is a generalized antecedenr of a point z( C with respect to
/provided there is a sequence of points (p,) in Z such that p,*p and f(p,)-z as
n- *t in other words, p is a generalized antecedent of z if and only if z(Cl (f; p).

Let V' be a subend of Z such that AwV' is contained in V and consists of a finite
number of piecewise analytic closed curves. We will need the following generalization
of Lemma l.

Lemma 2. Suppose that z€C\(f(0s,V')vCl(f; fil). Then

vyy,k): i(z; f(0"V')).

ProoJ'. Fix zo€C\(f(AwI/')vcl(f; fr",)), and denote by d the distance ber-
ween {zo} and f(|s,V')vcl(f; fi. For every p(f v,choose an open neighborhood
Uo such that |UncV' and zo can be joined to - by an arc in C$1Uonlr1; this
is possible because C\Cl (f; p) is assumed to be connected. From the open cover-
ng {U rl p( Pr,} of B y, pick out a finite subcovering {(J p,, ..., U oul. Let (V) be a
relative exhaustion of V'v|s,V' such that the components of V'\Vi are non-
compact. Since F: l)!=r |Un, is a compact subset of V', there is a positive integer
no such that FcVi for n>ns. Let n>no. For every component C of v'{i
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there is i€{1,...,k} such that CcUo.. Let 8r,...,8- be the components of
\s,YinV'. Since each f(Br)iscontained in"omef@opv1, the winding numberof

f(B)with respect to zo is 0 for each.i. It follows from the argumentprinciplethat
v 1v,@o):i (zo; f(\nV')). n

We will extend the notion of local degree to the generalized antecedents. So fix
poQfv, and let zo€Cl(f;p). Let V' be a subend of V with Po€fv, such that

\y,V'cV and zo$f(|y,2'). Since every neighborhood of zo containspoints z ftom
C\Cl (f; f") with f-L(z)aV'*O, i(zo; f@y,V'))=0 by the preceding lemma. It
also appears from Lemma 2 that i(zo; f (0nV'1)=i(zo; f (|y,V")) whenever V" cV' .

Thus, it is reasonable to set

n(po, zo; fl : lnf {i(zo; f@wv))},

where V' runs oyer all subends of Zwith po€flv, and zo{f(|nv'). Itis clear that
n(po, zo; f)=0. Further, the definition gives rise to the formula

(B) ) rE1-re)nv,n(p; fl+ Z ltgfu,on(p, 
z; l) : i(z; f(0*v'))

for every z(C\f(\wV').
Remark. We point out a consequence for future use: Let Po€Fv, let V'

be a subend of Zwith po(fiv,, and let zo(Cl (f;pg). Then there is an open neigh-

borhood [I,ocC of zo such that vrv,@)7n(po, zo;f) for every z(U,.\Ct (f; f",).
3.2. We are going to show, roughly speaking, that meromorphic functions with

meager cluster sets on an admissible end admit continuous extension to the ideal

boundary. Besides, we obtain a condition for removability of the ideal boundary.

Theorem 8. Let W be an open Riemann surface, and let V be an admissible

end of W. Suppose f is a nonconstant meromorphic function on V such that Cl(f; 0n)
isofclassNsandnoCl(f;p), p€Fv, sepLtrate.ttheplane.Thenf admitsacontinuous

extension to Fv; a fortiori, f*(B) belongs to N's. Accordingly, B, is remotsable.

Proof. Since the problem is local and Cl (f; fr) is nowhere dense, we may

assume, passing to a subend and performing an auxiliary linear fractional mapping,

that/is bounded on Vv\yV. Similarly, we can find a nonconstant bounded func-

tion g in MC(V).
As the first step, we will prove that S* (F) is totally disconnected. Let zs(

Cl (f; F). Modifying Z slightly, we obtain zo{f (|wV). Letm stand for the positive

integer i(zo; f @sV)), and denote by G the component of C\/(|y,V) that contains

zq. Set U:/-1(G\Cl(f; frr)). By virtue of Lemma 2, g satisfies on U an identity

{+Zlt(aioflg^-i : g,

where ar, ..., am arebounded analytic functions on O\Cl (f; fr) (cf. tne proof of
the implication (5)+(4) in Theorem 2). We proceed to show that each ai can be

45
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continued to be analytic all over G. So fix z(Cl(f; f ")aG 
for a while, and let (zn)

be a sequence of points in G\Cl (f; F) such that zo-2. Let pr, ..., pk ot Qr, ..., Qv
be the antecedents or the generalized antecedents of z, respectively. Suppose

Ur,...,U,,,Ur+r,...,U*+r,,are mutually disjoint open neighborhoods (in Vvfr)
of the points pt, ..., q1, such that |U,lies in Z for each7. By formula B and the en-

suing remark, all antecedents of znlie in tJj]f' tli forlarge zr.It follows that ar(zn)*
2\-rn(p;f)S@)+Z!=J(q,zif)c*@j). We conclude that a, admits a con-
tinuous extension to Cl(f; F)aG.Further, by the assumption concerning Cl(f; fr),
aI can be regarded as analytic all over G. Obviously, a similar reasoning applies to
Qz, ..'t a-.

Denote by d the Riemann surface of the relation

(1) P (r, w) : w^ + ZLt aik)wm-t - 0, z€G.

Note that the number of the components of d is at most m. The mappings
c: (2,w,)*z and o: (2,w")-r'v,(2) are analytic on d (cf. the proof of Theorem 2).

Choose /,o=0 such that O(tu,r)cG. Then E,o:a(c-'(Ct17; Br1nO1zt41)
is a compact and nowhere dense subset of C.

Now let zo yary over Cl(f; fir). From the open covering {D(2,r,)lz€
Cl(f; fr')\ of Cl(f; p") pick out a finite subcovering {D(rr,r,,),...,DQ",r"")\.
We will complete the first part of the proof by showing that g*(Pr)cl)",=rE,,.
Solet p?fv, and choose a sequence of points (p,) in Z\/-l(Cl (f; F)) such thät
pn*p. We may assume, passing to a subsequence, that f(p")*zQ.Cl (f p). Now
z€D(zi,r,,)for some i€{1,...,s}. Itiscleart}rat (f(p"),s@,)) satisfies arelation
of type (1), say P(f(p,), g(p,)):O, for large n. By continuity, the same holds for
(",s*@)), i.e.,P(z,g*(p)):0. But this implies that s*@)€o(c-r(z)). Hence
g* (p)€E",. Thus g*(pn)c Ui=, 8,,. So by Theorem 1, g* (F) is totally disconnected
as was asserted. We note that the removability of Bn could now be readily established
by observing that E,,(Nc for each i. Of course, this also follows from the claim we
are going to prove next: that Cl(f; F) is totally disconnected.

The set g* (fr) being totally disconnected, it obviously suffices to prove that
Cl(f; fr)nO(zo,r)cc@-,G*@r)nE",)) for each i(.{1, ...,s}; of course, c ando
here stand for the center mapping and the value mapping associated with the point z;.

So fix i€{1,...,s}, and let z(Cl(f; f")nD(zt,r). Pick out a point p(fiv such
that z(Cl(f; p). Then we can find a sequence of points (p") in Z such that po*p
and f Qt,)*2. Clearly, we may also assume that f(p)(Cl(ll B) for all n. Now,
(f (p"), c(p,)) satisfies a relation of type (1), say P(f (p,),gk")):0, for large n.
By continuity, the same is true of (z,g*(p)). Hence there is a function elementw"
with center z associated with the relation P:0 such that a(2, w"):g* (p). But this
means that zQc(u-t(S*(p))cr@-'(g*(flr)nE,.)), whence the claim follows. Now,
byconncetedness, each Cl(/; p) reduces to a singleton. Therefore/extends to acon-
tinuous mapping of VvBy. !
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Corollary l. Let W be an open Riemann surface, and let E be a closed, totally

disconnected subset of W. Suppose f is a meromorphic function on W\E such that

the closed parts of Cl(f; E) are oJ'class Ng and no Cl(f; p), p€8, separates the plane.

Then f can be continued to be meromorphic on W.

Proof. Fix p€E, and choose a relatively compact region v in w such that

p€V and. En0V:0. Certainly A,E is then an admissible end of Z \,8'' It follows

from the preceding theorem, in view of the remarks following Theorem 5,thatf can

be extended to be meromorphic in a neighborhood of p. Sincep was arbitrary,the

proof is complete. n

The next result is due to Ishchanov [5].

C o rollary 2. Let G be a plane domain, and let E be a closed totally disconnected

subset of G. Suppose f is an analytic function on G\E such that Re f admits a conti-

nuous extension to E and takes a constant ualue there. Then f can be extended to be

analytic on G.

Proof. By assumption, we have a continuous function h on G and a constant c

with /rlG\,E:Re.f and hQD:s for all p€8. Planly, this implies Cl(f; p)cl:
{z€ClRe z:c\v{-) for each p(E.

Fk po€A andlet G'cG be a Jordan domain with po€G',\G'cG analytic

and 0G'nE:0. Pick out a finite point zs€Z\f (AG), and choose r>0 such that

D(zo,r)nf(0c'1:9, Then vylczy, is finite and constant, say r{, in D(zo,r\a

{z€ClRe z=c}i similarly,thereisanonnegative integer n" such that v/lG,\E(z):n"
for z(D(zs, r)n{z(clRe z=c}. It is now readily seen that there are at most n'+n"
pointsp;, i:L,...,k, in EaG' such that zs€Cl(f;p). Thus for each p€EnG'\
{pr, ..., pr,\ Cl(f; p) is a proper subset of 1,. By Corollary 1' / admits a meromor-

phicextensionJ'* to G'\{p., ...,P*\. But pi, i:I,...,k, berngnowisolated singu-

larities,/* can be taken as meromorphic all over G'. Since the arising of poles evidently

contradicts the hypothesis of the corollary, the assertion is proved. n
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