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ITERATION OF EXPONENTIAL FUNCTIONS

I. N. BAKER and P. J. RIPPON

1. Introduction

For any entire or rational function f in the complex plane define the sequence
of iterates ("), n€N, by f°(z)=z, f"=f""'of, n=1. The Fatou—Julia set F(f)
is the complement of the maximal open set C(f) in which (/") is a normal family.
The Fatou—1Julia theory of iteration [14, 15, 17] attempts to analyze the way in which
F(f) divides the plane and to consider the various possible limit functions for conver-
gent subsequences of (/") in the components of C(f).

The fixed points of fare of great importance in this study. The value z; is a fixed
point of exact order (or period) p if f7(z;)=z,, f*(z:)#z for k<p. In this case the
values z;, f(z))=2z,, ..., f(z,-1)=2z, form a cycle of fixed points of order p, such
that f(z,)=z;. By definition (f)’(z,) is called the multiplier of z, and one finds that
all fixed points of a cycle have the same multiplier. If the multiplier of z; has modulus
less than 1 (greater than 1) then z;, and also the cycle z;, ..., z,, are called attractive
(repulsive); in the attractive case each z; belongs to a different component D; of C(f),
such that [ J?_, D; contains at least one singularity of the inverse /! of f (c.f. Section
2, property X).

We shall study the case when f(z)=e¢" and a is an arbitrary complex parameter.
Some aspects of this study are very old. For example, Euler [13] considered the con-
vergence of the infinite exponential

bbb

b

which, if we put b=e¢% can be regarded as the convergence of the sequence
(€)) w, =f"(0), f(z)=e" n=12, ...

Euler found the range of real b (or a) for which (1) converges. For complex a,
apart from some exceptional cases, the sequence (1) converges for a in a domain D,
bounded by a cardioid (Section 3, Theorem 1).

The study of the sequence (1) is no isolated curiosity, but is fundamental to the
understanding of many aspects of the iteration. If we wish to know which limit func-
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tions can arise in components of C(e*) then the set of singularities of the inverse
functions f~" plays an important part (Section 2, properties XI and XII), and
these are just the values in (1).

As the parameter @ moves outside D; the convergence of (1) shows an interesting
complicated bifurcation. The plane contains for every positive integer p open sets
ﬁp such that for a in D, the function f(z)=e" has an attractive cycle of period p.
For different p, g the sets D,, D, are disjoint. Every component D, of a D, is un-
bounded, except for D,=D, which is the cardioid region mentioned above. There is
a single component D,; for p=>2 there are infinitely many D,. Any D, is tangent to
many D, k=2,3, .... All D, are simply-connected. The relations are indicated for
small values of @ and p in the figures. The existence and properties of D, are discussed
in Sections 4—7.

For a in any D, the sequence (f"(0)) splits into p periodic convergent subse-
quences n=mp+j, 0=j<p, 1=m=<-oe, each convergent to one of the fixed points
of an attractive cycle. For values of a in the same D, the iteration of the functions ¢
will show similar features.

Recently D. Sullivan [22, 23] has completed the analysis of Fatou and Julia, at
least for rational functions, by proving the non-existence of wandering domains.
A wandering domain for f is a component D of C(f) such that f"(D)nf™(D)=0
for all n=m=1. Sullivan’s proof does not apply to entire functions in general, which
may indeed have wandering domains [7]. However, Sullivan’s method can be adapted
to show (see Section 8), Theorem 6:

For a#0 the function ¢* has no wandering domains.

This result is useful in simplifying the discussion of the possible limit functions
which can occur. Some consequences are noted in Section 9. In particular the constant
oo is never a limit in a component of C(e*).

One may also ask when there are no limit functions, in the sense that F(f)=C.
It has long been known that this can occur for rational functions and recently M.
Misiurewicz [19] proved Fatou’s conjecture that F(e”)=C. It is interesting that
many examples occur in the exponential class; in particular this is the case for all
real a=1/e and also for a set S of values which lie in the boundaries of the D,
and such that any arc of any 0D, contains a non-countable dense subset in S.

We also determine all cases when C (e*) is connected and give some account of
the iteration theory for the whole class e*.

It may be noted that our work has many parallels with that of Douady and Hub-
bard [12], who examine the iteration of the family g(z)=2z*4c¢, where ¢ is a complex
parameter. The main cause of this similarity is that the classes z2+c and e** each have
inverse functions with precisely one (finite) singularity and thus form the rational or
transcendental classes which we may expect to have the simplest iteration theory.
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There are of course many differences between the cases; for example the iterative
behaviour of z2+4¢ is essentially the same for all large values of c.

The authors would like to thank Aimo Hinkkanen and Terry Lyons for many
helpful discussions and in particular for providing the proof of Lemma 8.14.

2. Results from iteration theory

We need a number of properties of the Fatou—1Julia set defined in the introduc-
tion. Where not otherwise stated they are proved for entire functions in Fatou [15].
It is assumed throughout that f is a non-linear entire function.

I. C(f) is open. F(f) is perfect and non-empty.

II. C(f) and F(f) are completely invariant under f in the sense that if z€C(f)
then f(z2)eC(f), and if, further, f(w)=z, then weC(f).

III. For any positive integer p, F(f)=F(f").

IV. An attractive fixed point of any order belongs to C(f), a fixed point whose
multiplier m satisfies |m|=1 or m= a root of unity, belongs to F(f).

V. In[0,2n] there is a class K of ““centrum numbers” such that for any f, if f has
a fixed point z, of order p and multiplier m=e", where 0¢K, then z,€C(f). Moreover
in this case there is a function S(z) analytic near z; with S’(z)=1, S(z1)=0 such
that Sof?oS ~1(z)=€"z near 0, and f* isunivalent in the component of C(f) which
contains z,. The class K has measure 2.

C. L. Siegel [21] showed that K includes all § such that 0/ is not a Liouville num-
ber. H. Riissmann [20] showed that K/m also includes certain Liouville numbers.

VI. The repulsive fixed points are dense in F(f) [4].

There exists at most one value « such that the set of equations f"(z)=a, n€N,
has in all a finite set of solutions. If such an « exists it is called Fatou-exceptional and
f hastheform f(z)=a+(z—a)*e?®, where k=0 and g is entire.

VII. Given any z€F(f) and any w different from the Fatou exceptional point if
this exists, there is a sequence Zn, » m€N, such that f"k(znk):w, Zy >Z, Moo,

VIII. Given z€F(f), N an open neighbourhood of z, K any compact plane set
which does not contain the Fatou exceptional point if there is one, then there exists ny
such that for all n=n, we have f"(N)DK.

IX. If in a component D of C(f) some subsequence of (f™) converges to a finite
limit function, then D is simply-connected.
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X. If o is an attractive fixed point (of order 1) of f, then the component D of C (f)
which contains o also contains a singularity of the inverse function f~1. The sequence
f"—a in D.

If o has multiplier 1 so that f has an expansion
f(2) = at(z=0)+aps1(z—0)" 4 iy #0,

then a€ F(f) is on the boundary of m components of C(f), in which "o and each
component contains a singularity of f~*.

If o has a multiplier which is a primitive g-th root of unity then o. is on the boundary
of one or more cycles of q-domains D, ..., D,, which are permuted cyclically by f and
in which f"—~u; each such cycle contains a singularity of f~*.

Similarly if a,, ..., o, are the points of an attractive cycle, then each o; belongs to
a different component D; of C(f) and at least one of the components contains a singu-
larity of f~1.

This was proved by Fatou [14] for rational functions and his proof applies
also to the entire case.

XI. Let S be the set of finite singularities of the inverse of the non-linear entire
Sfunction f and let E=J_,f"(S). Set L=Eu{e}.

If L has an empty interior and connected complement, then no sequence (f™)
has a non-constant limit function in any component of C(f) [6].

XII. If L is defined as in X1, then any constant limit function of an (") in a com-
ponent of C(f) belongs to L [6].

3. Simple convergence of f"(0). The domain D,

Suppose that ¢* has an attractive fixed point z; of order 1. Then z,=e"1.
Putting t=az,, we have z;=¢€' and a=te™"; the multiplier of z, is ae*1=az,=t.
Thus we have shown that

D, & {a; e has an attractive fixed point of order 1}

may also be described by
D,={a; a=te™" for some complex ¢ with [f|<1}.

Thus D, is the interior of a cardioid. See Figure 1. ‘
We may note that the case a=0 is included, corresponding to the constant func-
tion 1 and has multiplier 0. No other fixed point of any order can have multiplier 0.
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Convergence of (1) w,=f"(0).

If w, is constant for n=n, we call the convergence terminating. This does indeed
occur for a countable set of values of @, as described in detail in [9]. It will follow from
Theorem 2 below that terminating convergence of w, cannot occur for any a in the
closure D, of D. Using this remark we may state Theorems 1 and 3 of [9] in the slightly
stronger form

Theorem 1. If a=te™, |t|<1 or t= a root of unity then the sequence (1) con-
verges to €'. If t=e*"® where 0 is a centrum number, in particular if 0 is a non-Liou-
ville number, then (1) diverges.

If (1) converges then either a€ Dy or a is one of the countable set of values, all of
which lie outside D,, which lead to terminating convergence.

The centrum case is of measure 2n on the circle. It will follow from Theorem 7,
Corollary 1, that (1) cannot satisfy lim w,=<- in the centrum case.

Remark. The convergence of (1) in the case |t|<1 is an easy consequence of
Section 2, property X and the fact; that ¢ is the multiplier of the fixed point.

Next generalize the notion of terminating convergence: The sequence (1) has
terminating convergence of period g=1 if there is some k such that we=wy,,.

Theorem 2. Suppose that the sequence (1) has the property of terminating con-
vergence of period q=1 for some a+#0,1. Then for every peN every fixed point
of order p of f is repulsive.

Lemma 3.1. (See e.g. [6].) The finite singularities of the inverses (f")™* of f"
are all transcendental and are 0, wy, ..., W,—1.

Proof of the theorem. Suppose that for some g=1, k=1 one has w,=w;,,.
Then the different members of (1) are wy, ..., Wi, ..., Wy ,—1 (all non-zero) of which
Wi, ooy Wiiq—1 are fixed points of order g. We take p=1 and f such that f7(f)=p
and have to show that |(f?)(f)|=1. Note that f=0.

We remark that in the special case when a=2Ini, [ a non-zero integer, we have
terminating convergence with ¢=1, k=1, w;=1. If also p=1, f=1 we have
Ilf/(B)|=2|l]r=1 so the result holds in this special case by direct calculation. Consi-
der any other case.

There is a disc D of centre f and positive radius d such that D contains neither
0 nor any member of the sequence (1), except that in the special case when f=w,_;,
0=i<q the centre f§ belongs to (1). We have the expansion

@ F7(2) = B+ A(z—P)+B(z—B)Y+...,
' AB #0, s=2.
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There is thus a branch z=F(w) of the inverse function of w=f7(z) which is analytic
in a neighbourhood of f and satisfies

3) F(w) = B+A7 (w—p)+b(w—p)+...,
b =—BJ/A®TL.

For any positive integer n the n-th iterate F"(w) is given by

(4 F'(w)y=B+A7"(w—Pp)+...

which is an analytic branch of the inverse of w=f""(z) near f. Since the only
possible singularities of F” are 0 and members of (1) it follows that F" is analytic in D
for all n.

The next stage is to show that (F") is a normal family in D. Suppose that
F"(w)=0 for some win D. Then w=/"?(0)=w,,£D so that w,, can only be f8. But
F*(B)=B#0 and so F" never takes the value O in D. Suppose next that I"(w)=1
for win D so that w=w,,,€D, and again w=p. If g=1 then f is a fixed point of
order 1 which means that f=¢* andalso 1=F"(B)=p=e". Thence f=1, a=2Iri;
but this case has been excluded by our preliminary discussion. Thus if g=1 the func-
tions F" omit 0, 1 in D and form a normal family.

If g>1 we again have F"(w)>1 in D except in the case when w=f=1. But
in this case we have B=w, and further f(f)=w, is a different member of (1). If
F™(w)=w,, wED, then w=f"(wy)=f""*2(0)=Wp,+2 o that w=pf. But F"(f)=
B#w,. Thusin all cases (F") omits two values {0, 1} or {0, f()} in D and forms a
normal family in D.

It remains to show that |4|>1 holds in (2), by eliminating the other possibili-
ties. If |4|<1 the non-normality of (4) is obvious. If 4 is a root of unity, say 47=1,
then (4) gives

Fiw) = +w—p)+yw—p\+..., t=1,7#0.

Then for all positive integers n
Fra(w) = p+(w—Pp+ynw—pF+...,

so that F"(B)=p but (d'/dw")F"=t!yn at w=f, which contradicts the normality
of F" in D.

We therefore suppose that |4|=1 but that 4 is not a root of unity. We
select a sequence () of integers such that n;— o, A" —1. By (4) and normality
there is a subsequence, which we may assume to be n,, such that F™ converges
locally uniformly in D to a function

©) Y(w) = B+(w—PB)+ 2, an(W—h)".
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In a neighbourhood of f, which we may take to be independent of n,, we have
F(F")=F"(F), and hence F(Q))=y (F).

Suppose that /is the smallest value of »n such that a, is non-zero in (5). Equating
coefficients of (w—p)" in the expansion of F(¥)=y(F) shows that A~'=A4"1,
which is impossible, since A4 is not a root of unity. Thus all a,=0 and ¥ (w)=w.

If Aisthe disc |w—pf|=d/2 inside D then for some fixed d’>0 and all large
the set F"<(4) contains the disc 4”: |w—f|<d’. Hence fP"(4’)ycA. Thus the
functions f?" are normal in 4" and f™(f)=p, (f*™)(f)=A"™—1. We may select
a subsequence of the f?"« locally uniformly convergent in 4” to a non-constant limit
function ¢ such that ¢(f)=p, ¢’(f)=1. From Section 2, property VIII it fol-
lows that 4’ C(f). Now the set L of Section 2, property XI is by our assump-
tions and Lemma 3.1 a finite set, so that by the property XI there are no non-constant
limit functions in C(f), which contradicts the result just proved about ¢. We conclude
that 4 cannot have the form assumed and the proof that |4|>1 holds is complete.

4. Domains D, tangent to D,

Theorem 3. For each integer p=2 and for each primitive p-th root n of unity
there is a domain D, which lies outside D, but is tangent to D, at ay=ne™", such that
for ain D, the function € has an attractive fixed point of order p.

Proof. If ay=ne™" then &=e" is a fixed point of f with multiplier f"(&)=n.
A calculation (see e.g. [3, Theorem 2]) shows that

ST(@D) =8+ -0+ 2,001 4 (2 =0 Appsr # 0.

C(f) contains kp domains each with ¢ as a boundary point and by Section 2,
property X each contains a singularity of f~*, which by Lemma 3.1 has at most
p singularities. Thus k=1.

It is convenient to work with the parameter ¢ such that a=te™", rather than
with a itself. We have to find a region D’ in |¢|>1 and tangent to the unit
circumference at t=#, such that, for 1€ D’, a=te™", ¢** has an attractive fixed point
of order p.

Now for any ¢ near n we have

J(@) =¢+1(z= O+ 25 a,(0(z—O)"
/(2 =+ 2=+ 25 4,(D(z=0),

where ¢=é' and A,(n)=...=A4,(n)=0, A,.(n)#0. Writing F(t,2z)=f"(z) we
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find that when t=n, z=(=e" we have

U
=1, j=1,
o'F .
(7) -5'27 20, ]:2,...,p,
#0, j=p+l1,
and
oF
(8) 7—0.

We examine those fixed points of f which ‘‘coincide” as a multiple (p+1)-fold
solution z=e" of fP(z)—z=0 when a=ne~", that is we consider the solutions of

F(t,z)—z=0 for z as a function of 7 near t=#, z=e". Putting z—e"=Z, t—n=T
we have
F(t,2)—z=2" _ Auw.Z"T" =0,

m,n=0
where
AO,O - AI,O =...— Ap'() == 0, AP+1’0 # 0

Ay =pnP71#0, A4;,=0.

Thus the Newton polygon for the problem has 2 sides, one of which joins (1, 1)
with (p+1, 0), with slope —1/p. There is an expansion

9 Z=c,THP4c,THP+ ..., ¢, #0,
which represents p of the desired solutions near T=0. The coefficient ¢, is determined
from
(10) 1‘11,1C1‘+‘1‘1p+1,ocith =0.
For the p fixed points given by (9) the multiplier is

F
%fp(z) = 1+?9—Z = L+ (p+ D) Apy1,0Z0+ o+ Ay T+

=14+{(p+1)A,41,0c] +A41,:} T+higher powers of 7,
after substituting (9). Using (10) we see that

(p+1) A, 11,00+ A1, = —pAy = —pinP L,
Thus
P 204
T
0z n

and there is a region D’ of the t-plane outside |¢|>1 and bounded by a curve which
is tangent to the circle |t|=1 at t=# such thatfor €D’ all the p fixed points deter-
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mined by (9) have multiplier less than one in modulus. These fixed points must then
form a single attractive cycle. The theorem is proved.

At t=n there are (p+1) coincident fixed points e". The remaining one is of
course the fixed point which has been attractive for |f|<1 and becomes repulsive
as t passes outside the unit disc.

5. General properties of D,

Theorem 3 shows that for each p the set {a; f(z)=e has an attractive cycle of
order p}=0. Henceforth D, shall denote a component of this set, whether or not it
is tangent to D,.

It follows from Section 2, property X that if a€D,, for some p=1, then
for k=1,2, ..., p each of the sequences f "P+k(() is convergent, as n—eo. In parti-
cular

D,nD,=0, if p#gq.

Lemma 5.1. In D, the sequence (f"(0)), n€N, converges locally uniformly to

one of the attractive fixed points z(a), which is analytic in a.

Proof. Take a fixed a,€D, and denote e“” by f,(z). Since 0 is in the component
of C(f,) which contains one of the points z,=z(a,) of the attractive p-cycle we have
by Section 2, property X lim fg?(0)=z, as n—eo. Put o=|[(f) (zo)|<1. Take
a fixed ¢ such that c<g<1. Choose a disc 4={z; [z—z,|<d}, d=0, such that
I(f&) (4)|<g, so that ff(4)cA’={z; |z—z,|<eod}. There is a positive integer g
such that fP4(0)€4’. By continuity there is a neighbourhood U of a, such that

(i) UcD,,

(i) fP1(0)€d, acU,

(iii) fP(4)c 4, acU.

Thus for a€U and any n€N we have f"t9?(0)cA by (i) and (iii). Hence
f@+DP(0) is a normal family of analytic functions of a in U, convergent pointwise to
some value z(a) of the attractive p-cycle for a by (i). The convergence must then be

locally uniform.
Since f"(0) is an entire function of a we have:

Corollary. D, is simply-connected.

Lemma 5.2. Suppose that the fixed point z(a) of order p of e** remains analytic
on the open arc y in the a-plane ending at ay#0. Then provided (7Y (z(a)) remains
bounded on y one cannot have z(a)-—e as a-—-a, on Y.

Proof. If z(@)=f"(z(a))=f""*(f*(z(a)))> as a—a, then f[*(z(a))~-<,
k=1,2,...,p. But then (f?)(z(a))=d"f"(z(a))f* *(z(a))...f(z(a))~><, against
assumption.
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From Lemma 5.2 it follows that not only is the z(a) of Lemma 5.1 analytic in
D,, but further that as a approaches a finite boundary point b of D, the relation
lim sup |( f ”)’(z(a))[él implies z(a) does not have a transcendental singularity at
b. In fact z(a) remains analytic at b unless (9/0z) (f” (2)—z)=(/")(2)—1 becomes
zero, in which case z(a) may have a branch point.

Define the function M(a)=M(D,,a) given by

(11 M(a) = (f7)(z(a),

which is thus analytic in D, and which remains analytic at the finite boundary points
of D,, except for at most algebraic singularities where M (a)=1. The boundary
consists of arcs of level curves |M(a)|=1.

Lemma 5.3. For p>1 any D, is unbounded.

We note that M () in (11) never takes the value O forany a€D,. If D, is bounded
it is a compact simply-connected domain bounded by arcs of |M (a)]=1. Now
OM(D,)cM(OD,)c{M; |M|=1}. Thisimplies that 0€M(D,), against assumption,
and the lemma is proved.

Finally we note that in general the boundary curves of D, have cusps at points
where M (a)=1. We carry out the calculations for D,, remarking that it will be shown
in the next section that there is only one D,, namely the one found in Section 4, which
is tangent to D; at a=—e.

Lemma 5.4. Suppose that a,€0D,, ay# —e, M(a))=1. Then 0D, has a cusp
at azao.

Proof. Let z(a) be one of the two attractive fixed points of / 2. Then f{(z (a))=z(a)
is the other and as a—a, we have z(a)—~¢ (say) and z(a)—n=f(&). Further
(f2y(©)=1. If for a=a, we have ¢=n, then f/({)==*1. In either case then a,
is on the boundary of D;. The case f’(¢)=1 corresponds to a,=e~ ', t=1 in the
notation of Section 3. Two first order fixed points of f coincide at {=n=e but there
is no cycle of period 2 near these. The case f"(&)=—1 corresponds to f=—1,
a,=—e, which has been excluded by hypothesis.

Thus in the above argument we have ¢#n and also go¢# —1, since qpd=—1
implies ayn=—1 and C=n.

At a=a, we have, near z=¢,

f2(2) =E+(z—OFa,(z=E+

and a similar expansion near z=#. Since (f%)~! has only two singularities, there is
by Section 2, property X just one component of C(f) near ¢ in which f ¢ and
containing one singularity of £ =2, and another similar component near 1. This implies
that a, 0.
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If F(a,z)=f%*(z)—z we have at a=ay, z=¢ that

2 F
Ge =0 G =2 Go= i) = u o

F=4 0z2 da

Putting z—¢=Z, a—a,=A this gives an expansion
0= F(a, z) = uA+a,Z*+bAZ+ ...,
which has a local solution near A=0 of

Z = (—pla)' P AP+ 3 e, AR
This leads to

, oF ) ‘

()(z(a)) = l+—= = L+ A(a—ap)2+...
0Z

where 2=2a,(—u/a,)’?. Thus the boundary of D, near a, has the same form as the
level set |1+A(a—ay)?|=1, thatis a curve with'a cusp at a, and D, fills out the
angle of 2n bounded on one side by this cusp.

Remark. A calculation similar to that of Theorem 3 shows that at a point a
of dD, where the M (a) of (11) is a primitive g-th root of unity, ¢=>1, there is a D,,
tangent to D,.

The situation is illustrated for p=6 by Figure 1. Note for instance the
regions D,, Dy, Dy, D; tangent to D,, the D, tangent to D, and the Dg tangent to
D, or to the Dg. Various cusps on dD, and the 0D, also show up clearly.

These figures were obtained by testing for the various cases with a computer, and
not all parts of the regions D,, p=4,5, 6, were plotted. In the missing parts, which
are in any case too slender to plot accurately, the terms /" (0) become too large for the
computer to handle.

6. The single domain D,

Theorem 4. There is a single D, which is an unbounded domain tangent to D,
at a= —e and lying in the left half-plane. The boundary of D, is a single curve which
for large a=X+iY has the asymptotic form Y=te *?(1+0(1)), as —X— 4o

Proof. Consider a fixed D, and denote by &=z,(a), n=z,(a) the attractive
fixed points of f(z)=e" in D,. Write M (a)=(/f?)'(¢) as in (11). Each boundary
component is an unbounded level curve |M(a)]=1 and two of these curves cannot
intersect (see Lemmas 5.1 (Corollary) and 5.3).

Writing s=al, t=an gives se'=te'; st=M(a). For any a in D, we have
Ist|<1 so that one of s, #, say ¢, satisfies |[t|<1. Since we® is univalent in |w|<1
we then have [s|>1. By continuity of #, ¢ in D, one has |t|<1, |s|>1 forallain D,.
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Now observe that for ain D, we have |é|=le'|=e~! and thus 1=|st|=|a¥n|=
Ina?|/e, |n|<e/la|* and |t|=|an|<e/|al. For large a in D, then

1
S| — |tol] = —.
[se’| = [te'] < —

Now from the series inversion of te'=w (see e.g. [16, p. 141]) one obtains

_ - woy L+m)" 1
= o T e <=
Since te'=s¢* and a=se~" we obtain
(n+ )" !

s

s(sef)",  lse’| <—i—

a=2, (=1
and

12) st = s(teye—t = (se)a = 5 (— 1)"(”—“—)1—1

1
s(se)*tt,  |se’| < s

Notice that the map a—s—~a=se~" is one-to-one and conformal between D,
and a region E of the s-plane which lies in the set E;, where [se’|<1, |s[>1, whichis
part of the left half-plane. We may define st(a)=¢(s), s in E. For all large a in D,
we have |sef|<1/e and ¢(s) is given by (12). On the boundary of E one has
lp(s)|=1.

By (12) |@(s)/s%*|>1/2 if |se’|=0 where § is some constant such that 0<d<
1/e. Now the unbounded component E, of [se’|<d belongs to E;. Moreover (12)
gives an analytic extension of ¢ to E, which containsall large points of E. The boundary
of E, is a simple arcs(t)=x(t)+iy(1), —oe<t=<oo, such that y(tr)—>=Le as
17—+, For large y(r) we have |@(s(7))[=(/2)|s(r)|>=1 while @(s)~0 as
s=x+1y, y constant, x—~— oo, since ¢=0/(s%"). Thus for any large 7 there is a
point x;(t)+iy(r) in E, which lies on a curve [p|=1. Thus there is a level curve
lp|=1 on which Ims—+oc and one on which Ims——eo. Further ¢(s)—0
as Re g— — oo

Since @(s5)=0(|s|) as s—co in E, the Phragmén—Lindeldf principle implies
that if |@(s)|=K on a simple curve I in E, which approaches o at both its ends,
then |@(s)|=K holds in the component of the complement of I" which lies in E,.
If E, contains two distinct level curves |@|=1 then there is a region {s; |@(s)[>1}
which is necessarily unbounded, which lies in E, for large s and in which [¢ ()|
as §-oo. This is impossible by the preceding remarks. Thus there is a unique level
curve y, on which |p(s)|=1, in E, whose ends have been described above. E is the
domain bounded on the right by y. The conformal mapping back to D gives finite a
for finite s so that the image of y is a single boundary component. Thus the uniqueness
of y shows that there is a unique D, whose boundary is a single curve.

On the boundary of E we have from (12)

lp(s)| = ls2ef—s%e®...| = 1.
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As s—o on 0E, se’~0 so that we have |s?¢’|(1+0(1))=1, which for large
s=X+i¥ gives X2+Y?*=e*(1+0(1)). As s—eo we thus have X——eo,
X2*~0 and so Y?*=e*(1+0(1)). The map between a and s satisfies a=s—
s(s€®)+...~s as s—eo on OF so that the equation of dD, has a similar form.

7. Dpyp=2

The distribution of the components D,, p=>2, is extremely complicated and we
shall be able to give only a partial description.

Denote by a strip a region which is bounded by a single Jordan arc receding to oo
in both directions and lying entirely in a set of the form {x+iy; a<y<p, x>0}
where o, ff, 0 are real.

Any family of disjoint strips has a natural ordering, one strip being “less than”
another if it lies below the other in some right half-plane.

The figures suggest that the D, have the following structure.

(a) Each D,, p=2, is a strip.

(b) For each p>2 the components D, form themselves into families (which we
call p-families) in such a way that there is an order-preserving bijection between each
p-family and the integers. Moreover, between each adjacent pair of components in a
given p-family there is to be found a single (p+1)-family.

Some confirmation of these properties is given by the following result.

Theorem 5. There exists a family of strips A,, p=2, which form p-families as
described by (b) above, such that the restriction of each strip A, to some right half-
plane lies in a single component D,.

We first give a criterion which guarantees that the complex number a lies in one
of the components D,, p=2.

Lemma 7.1. Suppose that |a|=1Je. Set f(z)=e** and g(z)=e!"1*; suppose
that, for some p=2,

-p
el < [l ()
la|
Then f? has an attractive fixed point.

Proof. Let 0<g=1/|al. Then, for |z|=g,

f7)] _ U@ | 4G
70| = P [ me dé“”‘p[gw‘é?ﬁan 7@ D
= exp (elal? max |f77(&)...f(®)]) = exp (e(lalg?~*(1/]a])?)

‘5151/\ al
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since maxgj=10) |/7(€)|=g’(1/la]), and |a|>1/e implies g(x)=x, g'(1/|a))=
gP71(1/]al) for j=p—1. Choosing ¢, as we may, so that

e|f?(0)| < ¢ < (lalg?~*(1/la]) >,
we deduce that, for |z|=o,
LfP(2)] < el fP(0)] = o.

Hence f? maps {|z|=¢} into itself properly, and so has an attractive fixed point.
To apply the lemma set a=x+iy and, for k=1,2,...,p, define A,=2.(a)
and 60,=0,(a) by 2,=0,=0 and

lk+1:elk(xCOSOk—ySin9k), k = 1, 2""a p_l,
Op 41 = €M (xsin O +ycosb), k=1,2,..,p—1.

Thus f*(0)=e**% k=1,...,p.
Next put, for p=2,

Q,= {a = x+iy; x > 4|y|, cosb(a) >—;-, k=1,2,..,p—2, cosf,_,(a) <—%}.
For a in Q, we have |tan 0,|<V3, k=1,2,..,p—1, and so

xcosf,—ysinf, =5 xcos0p >5x, k=1,2,...,p-2,

and
. 1
x00s0,_;—ysinf,_; <5 xcosf,_; <—x.
Hence
) 1
A’k+1>fxelk5 k:1a25---a p”'z,
and
1.,
hp < —7 X€ p-1.
Because A;=x we obtain
.1/4 xeX
— 1 1l/axe”
|/?(0)] = exp (/lp) < exp (_T xel/dxe ]’

where the expression on the right contains the term x exactly (p —1) times. Thus for
x=>4 we have
/?(0)] < 1/eP~1(x), where e(x) = expx.
We wish to show f7(0) satisfies the inequality of Lemma 7.1. Since for all sufficiently
large a in Q, we have x> |a|/2 and g?~*(1/|al)=g"%(e) the desired result will follow
if we can show that
la|

er—1 (T) > e(lalg?~2(e))
holds for all sufficiently large a. This is easily done by induction. Thus we have shown
that there is a constant K, such that all points of

Q,n{Rea = K,}
lie in components D,,.
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We now show that the sets Q,, p=2, have the kind of structure described in
(b) above. First put

4 { 2r ra<4n}
= D — < —
a; 3 arg T

B:{a; —§<arga<%}

and
C={a=x+iy; x=4|y[}.
Thus
Q,={a; acC, f*0)eB, k=2,..,p—2, fP10)cA
The set

Q, = {a€C; e*c A}

is evidently a sequence of strips, which we label S,, n€Z, by writing S, for the com-
ponent of Q; such that 2nn<y=0,(a)<(2n+2)n. These form the required family of
strips referred to as 4; in Theorem 5.

Between the S, are the components of

{a = x+iy; x >4|y|, cos O,(a) > 3} = {a€C; e*c B},

These are also strips which we label T, n€ Z, one between each adjacent pair of S,
Sn +1s
Now apply the following lemma repeatedly.

Lemma 7.2. Suppose that T<C is a strip and that ¢ maps T conformally onto
Bn{lz|=R} for some R=0. If y(a)=ap(a), acT, then T contains a strip T’
such that Wy maps T’ conformally onto Cn{|x|=R’} for some R’ =0.

Proof. Since
larg a| = tan™?! &] <n/8, acC—{0}
and
larga| = /3, a€dB—{0},
the boundary of y/(T) does not intersect Cn{|z|=R’} when R’ is large enough.
Therefore this set is covered exactly once by y and we can take

T'=y~(Cn{z|>R’}).

Applying Lemma 7.2 to each of the strips 7,, n€Z, defined above we obtain a
strip T}, lying in T,,, which is mapped by y(a)=ae® conformally onto Cn{|z|=R,}
for some R,=0. We can then define, for m, n€Z,

Sum = {a€T,; ae*cCn{|z| = R,}n S,}

and
Ty = {a€T,; ae®cCn{lz| = R} T,}.

Evidently, for a¢S,, we have a€C, e¢’€B and ¢““¢ A. Thus the strips S, form
themselves into the 4-families of strips referred to as 4,. On the other hand for
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acT,, we have acC, f*(0)€B, k=2, 3, and by another application of Lemma 7.2
we can find 5-families 4; inside the strips 7}, . In this way the proof of Theorem 5 may
be completed by induction.

We can push this approach a little further and show for example that there are
components D, having width 7 at <« and components D, asymptotic to the lines
Im a= +2kn (from below in the cases in the upper half-plane). Also it can be shown
that the lines Im a=0, +2n, +4n meet no component Dy, but we omit the details.

The figures suggest that the union of the components D,, p=1, is dense in the
complex plane, but we have not been able to prove this.

8. Wandering domains

Lemma 8.1. If f(z)=e%, a#0, then any component of C(f) is simply-connected.

Proof. Consider a component D=0 of C(f). By Section 2, property IX
we need consider only the case when f"—e in D. Since all /" omit the value 0, the
reciprocals 1/f" are entire and converge to O uniformly in D. It then follows that D
is simplyconnected.

Definition 8.2. A component U of C(f) is a wandering domain of f if
S™U)Nf"(U)=0 for all non-negative integers m, n such that m=n. (Here f"(z)zz.)

We shall prove
Theorem 6. If f(z)=e%, a0, then f has no wandering domain.

Remark. If U is a wandering domain then there is at most one integer j=0
such that 0€fJ(U). We may replace U by f/**(U) and assume 0¢ f/(U) for all
j=0. For any k=0 there is then a branch of f~* which is analytic in f***(U)
and (by Section 2, property 1I) maps f**'(U) univalently onto f*(U). Thus f
is a one-to-one conformal map between f*(U) and f**+*(U).

We shall prove Theorem 6 by following Sullivan’s method [22, 23] which uses
quasiconformal maps.

Definition 8.3. A4 function u(x,y) is ACL (absolutely continuous on lines) in
a plane domain D if, for every closed rectangle Rin D with sides parallel to the x and y
axes, u(x,y) is absolutely continuous on almost every horizontal and almost every
vertical line in R.

Definition 8.4. ([1], [18]). A4 topological map ¢ of the plane domain D into

C is called quasiconformal if
(i) ¢ is ACL,
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(i) there is a constant k such that 0=k<1 and |@,|=k|@,| holds almost every-
where, where
¢, = % ((px - i(py)! Pz: = '12: ((Px + i(py)’

The quantity u(z)=¢,/¢,, which exists almost everywhere, is called the
complex dilatation of the map.

In the above definition the map ¢ is conformal if and only if u(z)=0 almost
everywhere. We shall often use the following formulae. (See e.g. [18, p. 191].)

Lemma 8.5. If ¢:G~H, y: H—~K are quasiconformal then Yo =1 () is also,
and the dilatations satisfy

(i) if ¥ is conformal p,,(z)=p,(z) ae.

(i) if @ is conformal p,,(z)=p,(¢(2))(¢"(2)/¢’(2) ae.

If @, are onto then we can reverse the implication in (i):

(iii) Zf py,=H, ae.in G then y is conformal.

Lemma 8.6. Suppose that f is a one-to-one conformal map from a domain D to
a domain Dy, and that ¢ is a quasiconformal map defined on D and D, and whose com-
plex dilatation =y, satisfies

(13) w(f(2) = n@f () (z) ae. in D.
Then @fe~t is conformal in ¢ (D).

For by 8.5 (ii) u,,(2)=p,(/)(f)[f=u,(2) ae. in D, thatis Ui,re-1o=H, a-€.
in D and the result follows from Lemma 8.5.

The existence of a large family of quasiconformal maps is guaranteed by an
existence theorem for solutions of the Beltrami differential equation ¢@.=ug,.

Lemma 8.7 (e.g. [11, [18]). Given any measurable function p on the plane such
that ||u||..=esssup |ul<1, there exists a unique sense-preserving quasiconformal

homeomorphism ¢@=o¢" of C onto C such that @.=up, (ae.)and @ fixes 0, 1, .

Clearly we can use a different normalisation by replacing ¢ by Log, where L
is an arbitrary Moebius transformation. For a fixed normalisation, for example that
chosen in 8.7, L. Ahlfors and L. Bers [2] proved that if xu depends continuously and
differentiably on parameters, the same is true of ¢*. Their result includes the following.

Lemma 8.8. Write t=(t,,...,t,) and s=(sy,...,5,). Suppose that for all t
in some open set ACR" one has for the i of Lemma 8.7 that u(t, z)€ L. as a function
of z with ||ull.<1 and that (suppressing z)

(14) p(t+s) = p()+27, ai@si+lsla(, s)

with |a(t, s)|-=c, ¢ constant, and «(t,s)—~0 a.e. in z as s—~0. Suppose that
la;(t+5)|. are bounded and that a;(t+s)—~a;(t) a.e. for s—0.
Then " is in C1(A) as a function of t for fixed z.
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Remark. Ahlfors and Bers prove much more, namely that ¢* has an expansion
QrIT = MO L I QrOL g o (sly(t, 5),

with |y, s)|z—~0 for s—0, where for a certain integer p=>2 and an arbitrary
(fixed) R=0 one has
_ [w(z1) —w(zy)| ; 1/p
Iwla = sup St ([ el dx )™

ls=r  |71—2Zal' TP

i

They also show that as ¢’—¢ under these assumptions then [§#¢) %) —gr®:-a0)
0. Since y and 6*® vanish for z=0 it follows that for fixed z, y(7,s5)(z)=0 as
s—0 and that 0*%(z) is continuous in t.

First stage of the proof of Theorem 6. Preliminaries

Suppose that f'has the wandering domain U. By an earlier remark we may assume
that U is simply-connected and f maps every f*(U), k=0, 1—1 conformally onto
).

Define the equivalence relation ~ on C: x~y if and only if there exist positive
integers m and n such that f™(x)=/"(y). If x~y and y~z then there are positive
integers m, n, k, p such that f™(x)=f"(y), f*(y)=/"(z) and so f™(x)=f""(z),
which gives x~z.

A class of equivalence [x] meets U in at most one point, for if x, yeU, f™(x)=
f"(y), then m=n by the definition of wandering domain and then x=y since
f™ is a homeomorphism.

Lemma 8.9. Given a measurable function p on U such that |u|=k<1 on U,
there is an extension of u to a function in L= (C) which is ““f-invariant” in the sense that

(14) w(f(2) = p@ @I @) ae.in C.
Further ||p|l<=supy |u/.

Proof. Given pon Uset u(z)=0 if [zZ]nU=0. If [zZ]nU={x}, x€U, then there
exist positive integers m, n such that f™(x)=f"(z). In this case define

(15) u@) Y@/ @) = w2 @I ().

The derivatives involved never vanish. The equation (15) gives a well-defined and
indeed unique extension of u to the set [U] of classes which contain a representative in
U. [U] is a countable union of components of C(f) and thus open. The function u
thus extended is measurable on each component f*"(U) and thus measurable in the
plane. The function p defined in this way satisfies all the conditions asserted in the
lemma.
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Lemma 8.10. If the measurable function u satisfies ||ull..<1 and the condition

(14) of Lemma 8.9 denote by @=¢" the quasiconformal homeomorphism of C which
satisfies @.=pe, a.e. and which fixes 0,1 and o=. Then for f(z)=e" the function
fu=@fo™" is an entire function of the form e"* where b=b, is a constant.

Proof. By construction f, maps C to C, f,(z)#0 and f*is a local homeomor-
phism. By Lemma 8.6., f, is locally conformal and thus is an entire function whose
derivative never vanishes.

Now by for example [18, p. 74] there are positive constants C and K such that
for all large |z| we have

02| < Clzl%, o7 (2) < Clz[%.

For large |z|=r this leads to |fp~1(z)|<exp (Ja|Cr*) and ]f,,(z)|<C exp (ArK)
for A=|a|CK. Thus f, has finite order and so f,=¢? where g is a polynomial. Since
7. #0, g is linear, f,(z)=e"”*% But ¢(1)=1 implies f,(0)=e’=1 and we have the
form claimed above.

Second stage. The main quasiconformal construction

Following Sullivan we construct a family of dilatations u which satisfy (14) and
depend in a C' manner on N=3 real parameters 7;. The associated b, of Lemma
8.10 is a single complex parameter (equivalent to two real ones) which depends C*
on the #;. This implies the existence of a non-constant continuous arc in the #-space
along which b, is constant. A contradiction is derived from this in the final part of
the proof.

The construction begins in the unit disc and is carried over by conformal mapping
first to the wandering domain and then by extension to the plane.

Notation. Henceforth  denotes a fixed conformal map from the unit disc D
onto the simply-connected wandering domain U, while @, b and ¢ are three distinct
points of dD.

N is a fixed integer such that N=3. Set

T:{(tl""a tN); TiGRﬂ ]ti‘<1’ léléN}

On the arc (d, b) pick values e, v=1,2, ...,2N such that arg d<0,<0,<...
...<0O,y<arg b.
Let 6, be a real continuously differentiable function, 1=;j=N, such that

0;=0, 0¢1;=[05;_1,05]; 6;=0, 0€l;;
0;(0)+0 < 0y;,0—06;0) =0y, for 0€l;;
1

[07(0)] oy

(16)
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For any t€T the function 0+ > ;6;(f) is monotone and gives a map of
[0, 2] to itself. This extends to

(17) o(t, re®) = rexp (i(0+ 3 1;6,(0))),

which is a homeomorphism of the disc D onto itself. Different choices of # give dif-
ferent maps ¢, all of which fix 4, b, & In particular 70 implies ¢>=Id.
Each ¢(t, z) is quasiconformal in D, for ¢€C*(D) and

(18) o= ¢:/p, = € (¢r+%¢o] / (%—%%]
= — (e =) 1,870)/(2+ 2 1,55(0)).

Thus in D, p, satisfies |u,|<1/3 by (16). Further p,(z) is continuous in z.
Observe that y=v¢@y 1, with ¢ given by (17), is quasiconformal in U and
maps U onto itself. The dilatation of x is, by Lemma 8.5., given by

(19) ty = (YWY,

which is continuous and thus measurable in z in U. Further |u,/<1/3 in U.
Use the construction of Lemma 8.9 to extend y, to an f-invariant complex dila-
tation in the plane, which we still denote by the same symbol, and which satisfies

ln,|<1/3 in the plane.
Denote by @=®, the quasiconformal map of C to itself which has complex

dilatation y and fixes 0, 1, . By Lemma 8.10
(20) D, f;t = eb?,

where b is a constant which depends on .
We now check that u, satisfies the differentiability conditions of Lemma 8.8.
For z such that [z] meets U there is some z; in U and positive integers m and n such

that f"(z)=f"(z;) and by (15)

1,(2) = (I ™ (2 i (2 (S D™ (z0)-
Using (18), (19) we have
@1 1 (2) = " (L, 482+ 27 45 B):

where y(2) is real and B;=05} (argy ~X(z;)) is constant in ¢ and satisfies |;|<1/2N
by (16). For other values of z we have p,=0 and can retain the formula (21) if we
set y=p,;=0.

Calculation gives

a;(f) = é"2B,)(2+ 37 Biti)*
als, 1) = “‘eiy(ZIN ﬁisi)2 (2+21N ﬂi(si—]-t,.))“l(Z—[—Zf’ Bi fi)—2

and
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which satisfy the requirements of Lemma 8.8. Thus we have proved the first part of
the following

Lemma 8.11. The quasi-conformal maps ®, constructed above depend on t in a
C' manner for t€T and fixed z. Further ®,f &7 *=e"*, where b is a constant in z and
is in CY(T).

To prove the last part of the lemma take a fixed point z; of f: e*1=z; and
observe that &,(z,) is a fixed point of €=, f @;*. Thus

(22) b= (1/®,(z0)) log ®,(z,).

Now ¢=0 makes y=0 and thus @, is analytic and with the given normalisation
must be the identity map. Then for 7=0 we have b=a, Py(z;)=z; and we can
choose the value of logz, to make a=(1/z)logz,. But, as ¢ varies in T, ®,(z;)
is continuous in ¢ and never zero so that the right hand side of (22) is locally well-
defined and continuously differentiable in 7. Thus beC(T).

Lemma 8.12. Take N=3. Then there is a non-constant arc o in T such that
b(t) is constant on o.

Proof. Put b=X,+iX,. If rank (0X,/0t;), 1=i=2, 1=j=3, has its maximum
value of 2 at t=1€7, we can assume that say 9 (X;, X5)/0(, 1)#0 at T and hence
in a neighbourhood of 7. The inverse function theorem applied to the map X;=X, (),
X,=X,(t), Z=t; near t gives C" solutions #,=F;(X;, Xy, Z), t,=F:(X1, X5, Z),
ty=Fy(Xy, Xo, Z)=Z mnear X,(7), X,(7), 75. Holding X;, X, constant we obtain the
arca: X,=const, X,=const, f=Z which is in 7 for |[Z—1,| small.

If the maximal rank of (0X;/0t;) is 1, occurring at =7, we can assume
0X,/0t;#0 near t=t and apply the inverse function theorem to X;=X;(?), Y=t,,
Z=t, near 7 to obtain C" solutions t=F(X;,Y,Z) near X;(1), 7, 73, such that
X,\(F(Xy, Y, Z))=X,, Y(F(X,,Y,Z))=Y, Z(F(X,,Y,Z))=Z. Then for ¢ on
the arc a: t=F(Xy, 1., Z) where X;=2X;(1), X,=2X,(1) and |[Z—1,| is small we
have t€T and « is the required arc.

If rank (0X;/0t;) is always zero then any arc will do.

Conclusion of the proof

The last stage is to derive a contradiction from the result of Lemma 8.12. Suppose
that t=1(0), 0=0=g,, is the equation of the arc« in that lemma. Write Q,=
(D,fol) ®,,- Since (0) and #(o) give the same b in (20) it follows that Q,f=fQ,.
From this we deduce

Lemma 8.13. Q, leaves every point of F(f) fixed; Q, maps U onto U, for
0=0=o0,.
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Proof. Suppose that z, is a fixed point of some order p of 7. Then Q, commutes
with /7 and so Q,(z))=Q2,(/?(z0))=/"(2,(25)). Thus Q,(z,) is one of the discrete
set of fixed points of order p of £, Q,(z,) is continuous in ¢ and Q,(z,)=z,. Hence Q,
fixes every fixed point of every order of 1. These points are dense in F(f) by Section
2, property VI and the first statement follows. Consequently ©, maps each compo-
nent of C(f) into a component of C(f). Again it follows by continuity from the case
0=0 that U is mapped to U.

Lemma 8.14. Q, is a homeomorphism of U onto U which leaves each prime end
fixed.

For the definition of prime ends see e.g. [10]. The point of Lemma 8.14 is that
different prime ends may have the same ‘“impression”, that is correspond to the same
point sets on the boundary. Lemma 8.13 asserts only that Q, is the identity as a point
mapping on OU. The result of Lemma 8.14 is asserted in [23]. The following proof is
due to T. A. Lyons.

Proof. Fix any o with 0=0<0, and write Q,=Q, o=y 1Q_ . Then w is an
orientation-preserving homeomorphism of the unit disc D to itself and the boundary
points of D correspond 1—1 to the prime ends of U under the map . The map
extends to an orientation-preserving homeomorphism of S=dD to itself. It is enough
to prove that w is the identity on S. If this is not the case we may choose 0,0,
in [0, 271] so that w(e")=¢"" and Y has radial limits o, , o, at €', .

Now @ is the identity on U and as r—~1~ we have Y (re®)=Qy (re®)—
Q(a;) since Q is continuous and Q(o;)=o,. But by assumption o(re')—
w(e1)=€"" so that we must have a;=0,. The image of the radii {re”; 0=r<1}
under y, together with oy, therefore constitutes a Jordan curve J in U.

We now choose a small positive 6 such that 0,4+d<0, and w(0,+6)€
(05, 0,+2m). Then for 0;€(0;,0,+9) we have w(0;)€(0,,0,+2n). For almost
all 07 in (0,, 0, +9) the radial limit o’ of Y exists at €1 and also at ez, where 6= (65).
Thus we obtain a second Jordan curve J’ formed by the image under  of the radii
from O to e/, e/ together with the value o’. J and J” cut at 1 (0) and are otherwise
disjoint except perhaps at o, o if a=0o’. But the curves must cut more than once if at
all, so we do have a=da'.

Thus lim,.;- Y (re)=a for almost all " in (6, 6,+35). But this is impos-
sible since ¥ is univalent. Thus the lemma is established.

By Lemma 8.14 all @,y map U onto the same domain U and induce the same
map of the prime ends of U to the prime ends of U. Denote by ¢ some conformal
map of D onto U. Then hy=y"1 ®,s Y is a quasiconformal map of D onto D.

The dilatation of h, is, by Lemma 8.5 (i) and noting that pg=p, in U,
x=y oy, the same as the dilatation of Yoy "', that is y,, where @=0¢(1(0), z)
is given by (17).
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By Lemma 8.5 (iii) applied to h,09~(t(c)) and ¢(t(c)) it follows that h,=
L,¢(t(0)), where L, is a conformal self-mapping of D, that is a Moebius trans-
formation, which may of course depend on ¢. By our remarks on prime ends all 4,
have the same boundary values for 0=0¢<a,, which shows that on 0D L, (7(0))=
L,¢(t(0)), these expressions being continuous on D. Since ¢(#(0)) is the identity
map on the boundary arc b¢ one has L, =L, for all o. But this implies that q)(t(a))z
¢(1(0)) on D for an arc of values (o) not all zero. This contradicts the construc-
tion of ¢ in (17). The proof is complete.

9. Limit functions and domains of normality

We shall give a few results about the iterative behaviour of the functions e®.
Some previous contributions in the case a=1 are [19] and [24].

Theorem 6 shows that any component D of C(f), f=e", is preperiodic in the
sense that there exist integers k=0, p=0, such that Dy=f*(D) and f?(D,)CD,.
By an extension of the Wolff—Denjoy theorem one sees (cf. [8]) that only the following
two possibilities can arise:

1) (f™), neN, converges in D, to a constant limit A. Either A=< or 1 is
a finite solution of f7(4)=2A. In the latter case we have either 1€ D, and /. is an attrac-
tive fixed point of order p, or 160D, and in this case (f?)'(X) must be a root of unity
(see [14, Section 54] where Fatou proves for the rational case that we cannot have
convergence of /"? to A in such a domain D, if (f¥)'(%) has modulus 1 but is not a root
of unity. The proof remains valid for entire functions.).

(ii) D, contains in its interior a ‘‘centrum”, that is a fixed point A such that
(f?Y(A)=exp (2ni0), where 0 is irrational. In this case there is a subsequence of /"7
which converges to the identity in D,.

Remark. Case (ii) will occur only if a is in the boundary of some D,, since
(f?Y(A) varies analytically with a. Thus (i) and (ii) are mutually exclusive by the re-
mark preceding Lemma 5.1.

These are the cases found by Sullivan [22] for the corresponding iteration of
rational functions, except that our domains D, D, are simply-connected and thus the
case of the Herman rings, which may arise for rational functions, cannot occur here.

As a further simplification the case A=< in (i) cannot in fact occur.

Theorem 7. For f(z)=e%, a0, there is no component D of C(f) and sequence
of integers n; such that n;—~e and f"i(z)—<e in D.

Proof. 1t is enough to show that if f?(D)c D for some positive integer p, then
/™ does not have limit < in D. Suppose that on the contrary "’ in D as n— ce.
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Then f"™~1=f=1(f") also has limit = in D and similarly for /"~ for any fixed i.
Thus the whole sequence /™ has limit e in D as m— oo,

Consider any disc 4 of centre z; such that AcD. Since (f")(z)=a"f"(z)-
f""Uzy)...f(z1), while f(2)##0 and a0, f™(z;)—<c implies that (f")(z,)—>
as n—oo. By Bloch’s theorem there is an integer n, such that for n=>n, the domain
f"(4) contains a disc of arbitrarily large radius and hence a segment y such that ay
is vertical and has length at least 2n. Then f"*'(4) contains f(y) which is a circum-
ference surrounding 0, and for large » this circumference has arbitrarily large radius
since f"*'(4)—~<. But f(y) belongs to some simply-connected component D" of
C(f). Thus C(f) contains the interior of f(y), which implies F(f)=0, against Section
2, property 1.

Corollary 1. If f"(0)—e then F(f)=C.

This follows from Theorem 7 and Section 2, property XI. It occurs at least
for real a such that a=1/e. This extends the result of Misiurewicz [19] for a=1.

Corollary 2. C(e”)=0 implies that acD, for some p.

Thus in particular for any of the countable set of values a such that the sequence
(1) has terminating convergence of some period ¢, that is for a such that f"(0)=
f"*T9(0) holds for some positive integers n, g, Theorem 2 shows that F(e*)=C.
Further examples of these maximal Fatou—Julia sets are given by

Theorem 8. The set S={a; F(e*)=C} is dense in every 0D,. Indeed, each
arc of a 0D, contains a non-countable subset of S.

Proof. Observe that two different D,, D, can touch at most at one point of their
boundaries, since at a dense subset of dD, the region D, is tangent to other unbounded
disjoint D,,. Thus the set A4 of points a which belong to two boundaries 0D, is
countable.

Fix a region D,. Denote by M (a) the multiplier of the attractive cycle of fixed
points of ¢**. Then M (a) is analytic in D, and |M(a)|=1 on dD,. Take an arc y
of 0D, on which M (a) is analytic and maps y to an arc of the unit circumference.
Take acy—A such that M (a)=exp (i0rn), 0 irrational. We note that e** has just
one cycle whose multiplier has modulus one, since a is not on two dD,’s, and that
there are no attractive cycles. Thus if C(e”*)#0, then there are no admissible cons-
tant limit functions by (i) and there is therefore a centrum of f? with multiplier "™
If we choose 0 appropriately the centrum case can also be ruled out.

Lemma 9.1. Cremer [11]. If

(i) g(z)=€"“z+... is a non-linear entire function,
(ii) F(r) is a positive function of r such that

M(gar)<f7(r)a r=ry,
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(iii) lim inf,_ .. |e"?—1[Y/°" O =0, r=>r,, where F" is the n-th iterate of F,
then 0 is a non-centrum of g. For fixed F there is in any neighbourhood of any angle
¢, an uncountable subset of ¢ which satisfy (iii).

We continue the proof of Theorem 8. There is a constant B such that |a|=B,
|z(a)|=B holds for a€y and z(a) a point of the p-cycle whose multiplier has modu-
lus 1. Apply Cremer’s lemma to g(z)=f"(z+z(a))—z(a). For acy we have for
r=rq(a) that

M(g, r) < M(f?, r+B)+B < M(f?, 2r) < h*(2r),

where h(x)=e"*. Take F(r)=h"(2r) and we see that for n=¢ in a dense un-
countable set and hence for a in a dense uncountable subset of y we do not have a
centrum. Thus F(e**)=C. The theorem is proved.

Turning to the cases when C(e*)=0 the simplest situation occurs when C (e*)
has a single component, which is then a completely invariant domain.

Theorem 9. C(e*) has a single non-empty component if and only if a€ D;u{e™}.
In all other cases when C(e“*) is non-empty it has an infinity of components.

Proof. If ac Dyu{e~'} then a=te™" for [t|<1 or t=1. Thus the fixed point
E=¢€" of multiplier 7 is in a component G of C(f), where f=e"* (or in the case =1
we have £€0G). Since 0€G and f(G)=G—{0} we may take z; near 0 in G and
have for some branch of f~! that f~!(z,)€G. By continuation of f~* around a circle
centred at 0, which we may suppose to stay in G, it follows from the complete in-
variance of C(f) that every branch of f~1(z;)€G. By analytic continuation f~1(2)€G
for all z€G, z##0, and all branches f~!. Thus G is completely invariant. But for
any component G, of C(f) we must have /*(G;)cG for some k by the basic classifi-
cation (i) and (ii). Thus C(f)=G has a single component.

Conversely, if C(f) has a single component G then G is completely invariant.
Since f(G)CG there must, by the above analysis of cases, be a first order fixed point
n whose multiplier has modulus not exceeding 1. Since f cannot be a univalent map
of G to G the centrum case is ruled out and f"(z)—n in G as n—eo. Thus either
a€D; or the multiplier of # must be some p-th root of unity p=1. It remains to
show that p=1.

Suppose that p>1. An examination of the local iteration of f near # shows that
the p components G, ..., G, of C(f) whose boundaries contain 7, as mentioned in
Section 2, property X, are necessarily different. For (see e.g.[3]) there is an angle
A of directions at 5 such that for any small segment ¢ which approaches # in 4, if
¢’ is the rotation of ¢ through 2x/p, then f"(z)-n uniformly on ¢ and ¢’. If we sup-
pose that g, ¢” are in the same G; we can join their ends in G; to obtain a Jordan curve
y on which f"(z)—# uniformly. It follows that the interior of y belongs to G; and so to
C(f). Buty is a point of F(f) whichisinvariantunder z—f and thus under (approxi-
mate) rotations about 5 by 2nk/p, for some integer k prime to p. This is incompa-
tible with the existence of y. Hence if p=>1 there are at least p components of C(f).
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Finally, if there are finitely many, say N, components of C(f), they are permuted
among themselves by the map f. Hence each is invariant, and completely invariant
under /™ where m=N!. By [5] the entire transcendental function f™ can have at most
one completely invariant component of C(f™)=C(f) and so N=1.

Most other cases are covered by

Theorem 10. For a€D,, p=>1, or for acdD, such that the multiplier of the
non-repulsive p-cycle for f=e* is 1, there is a cycle Gy, ..., G, of components of
C(f), such that f(G))=G;1, G,.1=GCq, and [ converges to a fixed pointin each G;.
Further, every component G of C(f) satisfies f(G)CG; for some N, i.

All this is obvious. Further, since 0 belongs to one of the cycles G;, it follows
first that G;_,;=/"%(G;) is unbounded and, by repetition of maps by /1, that every
component of C(f) is unbounded.

Theorems 8,9 and 10 cover all except the centrum cases. If f(z)=e* has a
centrum then O and hence all f"(0)€F(f).

We sketch the proof in the case when, in addition, a€dD,, so that there is
among the components of C(f) a centrum domain G which contains a first-order
fixed point £. G is mapped univalently onto itself by f. Further there is a sequence
n, such that n,—e and f"<(z)—z, f~"(z)—z in G, where f " is the branch of the
inverse of f™ such that f~"x<(£)=¢.

We show that every point 7 of dG belongs to the set L of Section 2, property
XI.If not there is a neighbourhood K of 7 which does not meet L. Then by [6, Lemma 1]
any set of branches of /=" which are analytic in a domain are also normal there. We
take a simply-connected subset K of H such that K meets G and K contains a point
n of F(f). The branches /" are analytic and normal in K and so have limit z there.

If K'={z: |[z—n|=9}cK and K"={z: |z—n|<g/2}, then for large n, we have
fM(K)DK”, f"™(K”)cK’. But this contradicts Section 2, property VIII since
neF(f). Thus MeL.

If 0¢C(f) then for some k,p we have f*(0)¢ H, where H is a component of
C(f) such that fP(H)c H. If H is not a centrum domain then L has only p limit
points, while if H is a centrum domain the limit points of L are all in C(f). This
contradicts 0GC L.

While this article was in the press we learned of forthcoming work by R. L.
Devaney and (independently) A. E. Eremenko and M. Yu. Lyubich which seems to
have points in common with some of our results.
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