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ITERATION OF' EXPONENTIAL FUNCTIONS

f. N. BAKER and P. J. RIPPON

1. Introduction

For any entire or rational function / in t}te complex plane define the sequence

of iterates (f"), n(N, by fo(r):2, f":fo-Lof, n>1. The Fatou-Julia set F(/)
is the complement of the maximal open set C (f) in which ("f") is a normal family.

The Fatou-Julia theory of iteration ll4, 15, 171 attempts to analyze the way in which
F(/) divides the plane and to consider the various possible limit functions for conver-

gent subsequences of (l'') in the components of C(/).
The fixed points of f are of great importance in this study. The value 4 is a fixed

point of exact order (or period)p if J'e(zr):zr, fo(zt)+", for k-p. In this case the

values 21, f(21):zz, ...,f(ze-t)-zo form a cycle of fixed points of order p, such

that f(z):zr. By definition (f\'(zr) is called the multiplier of zl and one finds that
all fixed points of a cycle have the same multiplier. If the multiplier of zt has modulus

less than 1 (greater than 1) then 21, and also the cycle ZL, ..., zp, are called attractive
(repulsive); in the attractive case each zi belongs to a different component Dl of C (f),
such that U!=rDt contains at least one singularity of the inverself-l of/ (c.f. Section

2, property X).
We shall study the case when f(z):eo' and a is an arbi1.rary complex parameter.

Some aspects of this study are very old. For example, Euler [13] considered t]re con-

vergence of the infinite exponential

bbb" ,

which, if we put b:eo, can be regarded as the convergence of the sequence

(1)

Euler found the range of real b (or a) for which (1) converges. For complex a,

apart from some exceptional cases, the sequence (1) converges for a in a domain Dt
bounded by a cardioid (Section 3, Theorem 1).

The study of the sequence (1) is no isolated curiosity, but is fundamental to the

understanding of many aspects of the iteration. If we wish to know which limit func-
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tions can arise in components of C (e") then the set of singularities of the inverse

functions f-" plays an important part (Section 2, properties XI and XII), and

these are just the values in (l).
As the parameter a moves outside Dt the convergence of (1) shows an interesting

complicated bifurcation. The plane contains for every positive integer p open sets

Do such that for a in b o the function f (z) : eo" has an attractive cycle of period p.

Får different p, q the seit D' Dn are disjoint. Every component D, of a .0, is un-

bounded, except for Dr:fit which is the cardioid region mentioned above. There is

a single component Dr; for p>2 there are infinitely many Do. Any D, is tangent to
many Dor,, k:2,3,.... All D, are simply-connected. The relations are indicated for
small values of a and p in the figures. The existence and properties of Dn arc discussed

in Sections 4-7.
For a in any Do the sequence (l(0)) splits into p periodic convergent subse-

quences n:mp*j, O=-j=p, l=m=o, €åch convergent to one of the fixed points

of an attractive cycle, For values of ain the same Dothe iteration of the functions eo'

will show similar features.
Recently D. Sullivan 122,231has completed the analysis of Fatou and Julia, at

least for rational functions, by proving the non-existence of wandering domains.

A wandering domain for / is a component D of C(/) such that f (D)af-(D):0
for all n>m>-L. Sullivan's proof does not apply to entire functions in general, which
may indeed have wandering domains [7]. However, Sullivan's method can be adapted

to show (see Section 8), Theorem 6:

For a#0 the function eo' has no wandering domains.

This result is useful in simplifying 6he discussion of the possible limit functions

which can occur. Some consequences are noted in Section 9. In particular the constant

- is never a limit in a component of C(e*).
One may also ask when there are no limit functions, in the sense that F(fl:C.

It has long been known that this can occur for rational functions and recenfly M.
Misiurewicz [19] proved Fatou's conjecture that F(e):C. It is interesting that
many examples occur in the exponential class; in particular this is the case for all
real a=lle and also for a set S of values which lie in the boundaries of the Dn

and such that any arc of any \Do contains a non-countable dense subset in S.

We also determine all cases when C (e") is connected and give some account of
the iteration theory for the whole class eo'.

It may be noted tlat our work has many parallels with that of Douady and Hub-
bardfl2l,who examine the iteration of the family g(z):22+c, where c is a complex

parameter. The main cause of this similarity is that the classes z2*c and eo" eachhave

inverse functions with precisely one (finite) singularity and thus form the rational or
transcendental classes which we may expect to have the simplest iteration theory.
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There are of course many differences between the cases; for example the iterative
behaviour of zz+c is essentially the same for all large values of c.

The authors would like to thank Aimo Hinkkanen and Terry Lyons for many
helpful discussions and in particular for providing the proof of Lemma 8.14.

2. Results from iteration theory

We need a number of properties of the Fatou-Julia set defined in the introduc-
tion. Where not otherwise stated they are proved for entire functions in Fatou U5l.
It is assumed throughout that/is a nen-linear entire function.

l. C(f) is open. F(f) is perfect and non-empty.

lI. C(f) and F(fl are completely irwariant under f in the sense that if z€C(fl
thm f(z)eC(f), and if, further, f(w):t, then w(C(f).

lll. For any positiue integer p, FU):F(fn).

IY. An attractiaefixed point of any order belongs to C(f); afixed point whose

multiplier m satisfies lml=t or m: a root of unity,belongs to F(f).

Y. In l0,2nl there is a class K of "centrum numbers" such that for any f, if f has

afixedpointzroforderpandmultiplier m:eiq, where 0(K, then zr(C(f). Moreoaer
in this case there is afunction S(z) analytic fi€ar 21 with S'(zt):l,S(21):Q susfu

that SofeoS-t(2):ei0z near 0, and fe isuniaalentinthecomponentof C(f) which
contains zt. The class K has measure 2n.

C. L. Siegel [21] showed that K includes all0 such that |ln is not a Liouville num-
ber. H. Riissmann [20] showed that Kln also includes certain Liouville numbers.

Yl. The repulsiaefixed points are dense in F(flp1.

There exists at most one value a such thatthe setof equations fo(z):q,,71€N,
has in all a finite set of solutions. If such an a exists it is called Fatou-exceptional and

/ hasthe form f(z):u*(z*a)kso?), where ft>Q and g is entire.

YlI. Giuen any z(F(f) and any w different from the Fatou exceptional point if
this exists, there is a sequence z,*, np€N, such that fo(rnu):w, znu-z, ny+o.

YIll. Gfuien z€F(fl, N an open neighbourhood of z, K any compqct p,lqne set

which does not contain the Fatou exceptional point if there is one, thm there exists ns

such that for all fl>no w€ hat;e f (N)=K.

IX. If in a component D of C (f) some subsequence o!'(f") cotwerges to a finite
limit function, then D is simply-connected.

51



52 I. N. Barcn and P. J. RppoN

X. If u is an attractioefixed point (of order 1) of f, then the component D of C(f)
which contains a also contains a singularity of the irwersefunctionf-t. The sequmce

fn*u in D.

If a has multiplier I so that f has an expansion

f(") : a*(z-a)*a*+t(z-q)^+t*..., a^a1 * 0,

then a€F(f) is on the boundary of m components of C(fl, in which f *q and each

component contains a singularity of f-t.
If a has a multiplier which is a primitiue q-th root of unity thm a is on the boundary

of one or more cycles of q-domains D1, ..., Dn, which are permuted cyclically by f and

in which f"*u; each such cycle contatns a singularity of f-t.
Similarly if dr, . . ., an are the points of an attractiue cycle, then each äi belongs to

a dffirent component D1 of C(fl and at least one of the components contains a singu-

larity of f-1.
This was proved by Fatou [4] for rational functions and his proof applies

also to the entire case.

Xl. Let S be the set of finite singularities of the iruerse of the non-linear entire

function.f and let E:U|of'(S). Ser L:Ev{-}.
IJ' L has an empty interior and connected complement, thm no sequence (f"\

has a non-constant limit function in any component of C(f) 16).

Xll. If L is defined as inXI, then any constant limit function of an (f") in a com'
ponent of C(f) belongs to L 16l.

3. Simple convergence of /'(0). The domain Dt

Suppose that eo'has an attractive fixed point z1 of order l. Then z1:sazt.
Putting t:a21, we have zr:d and a:te-ti the multipliet of z, is 4sszt:47r:1.
Thus we have shown that

Or9{a;eo' has an attractive fixed point of order 1}

may also be described by

Dt:{gia:te-t for some complex t with ltl=l}.

Thus D1 is the interior of a cardioid. See Figure l.
We may note that the case a:0 is included, corresponding to the constant func-

tron 1 and has multiplier 0. No other fixed point of any order can have multiplier 0.
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Conaergence of (I) w":f"(0).

If wn is constant for n=no we call the convergence terminating. This does indeed
occur for a countable set of values of a, as described in detail in [9]. It will follow from
Theorem 2 below that terminating convergence of wn cannot occur for any a in the
closure Drof D. Using this remark we may state Theorems I and 3 of [9] in the slightly
stronger form

Theorem 1. If a:te-t, lr l= 1 or t:
aerges to et . If t: s2ni0 where 0 is a centtrum

aille number, then (1) diaerges.

If(l) conuerges then either a€D, or ais one ofthe countable set ofualues, all of
which lie outside D1, which lead to terminating cowergence.

The centrum case is of measure 2n on the circle. It will follow from Theorem 7,

Corollary 1, that (l) cannot satisfy limwo:- in the centrum case.

Remark. The convergence of (1) in the case lrl=l is an easy consequence of
Section 2, property X and the fact; that t is the multiplier of the fixed point.

Next generalize the notion of terminating convergence: The sequence (l) has

terminating convergence of period q=l if there is some /c such that w*:wk+q.

Theorem 2. Suppose that the sequence (l) has the property oJ'terminating con-

aergence of period q>l for some al0, l. Thenfor eaery p€N eaeryfixed point
of order p of f is repulsioe.

Lemma 3.1. (See e.C. [6].) The finite singularities of the iruserses (f')-t of f"
are all transcendental and are 0,w1, ...twn-1,

Proof of the theorem. Suppose that for some 4=1, k>l one has w1,:wo4n.
Then the different members of (1) are wL, ...,wk, ...,wt +q-r (all non-zero) of which
wk,...,w*+q-t are fixed points of order q. We take p>I and B such that fe(P):P
and have to show that l(fe)'(B)l=1. Note that B#0.

We remark that in the special case when a:2lni, I a non-zero integer, we have
terminating convergence with q:1, k:1, wr:1. If also p:1, f :1 we have

lf (ill:zllln>l so the result holds in this special case by direct calculation. Consi-
der any other case.

There is a disc D of centre p and positive radius d such that D contains neither
0 nor any member of the sequence (1), except that in the special case when f :wo*r,
O=i<q the centre p belongs to (1). We have the expansion

(2) -fo (t) - p + A(z - fr) + B (r-B)'* ...,

a root of unity then the sequence (1) con-

number, in particular if 0 is e non-Liou-

AB#0, s=2.
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There is thus a branch z: F(w) of the inverse function of w:fo@) which is analytic
in a neigbbourhood of B and satisfies

(3i F(w) -= p + A-'(w - p) + b(w -f)'* ...,

b - -BlA

For any positive integ er n the n-th iterate F" (w) is given by

(4) F" (w) - p + A-" (w - p)+ ...

which is an analytic branch of the inverse of w:fuo(z) near B. Since the only
possible singularities of Fn are 0 and members of (1) it follows that Fn is analytic in D
for all n.

The next stage is to sho-w that (F") is a normal family in D. Suppose that
F"(w):g for some w in D,Then w:fe(O):w,n(D so that wnpcan only be B. But
F"(fi:B+O and so Fn never takes the value 0 in D. Suppose next that Fn(w):I
for w in D so that \!:\r,oat(D, and again w: f . If q:I then B is a fixed point of
order I whichmeans that P-eoq andalso I:F"(f):F:eoq. Thence F:l,a:2lni;
but this case has been excluded by our preliminary discussion. Thus if {:1 the func-

tions Fn omit 0, I in D and form a normal family.
lf 'q>I we again have F"(w)*I in D except in the case when w:f :1. But

in this case we have B-vat, and further f(f):w, is a different member of (1). If
F*(w):wr,w(D, then w:f^o(wr)--f^'*'(o):w^r*, so that vt:fl. But F-(fl):
f *wr. Thus in all cases (F') omits two values {0, l} or {O,f(P)} in D and forms a
normal family in D.

It remains to show that lAl=1 holds in (2), by eliminating the other possibili-

ties. If lAl=t tn" non-normality of (4) is obvious. If Ais a root of unity, say Aq:|,
then (4) gives

Fs(w): B*(w-D+y(w-r)'+..., t >I, y *0.

Then for all positive integers n

Fnq(w) - fi +(w- f) +yn(w - P)'* ...,

so that Fnq $) - P but (il ldw')F"n - t ! yn

of F' in D.
at w: fr, which contradicts the normality

We therefore suppose that lAl - I but that A
select a sequence (n) of integers such that nk* *,
there is a subsequence, which we may assume to be

locally uniformly in D to a function

is not a root of unity. We
Anu* 1. By (4) and normality
frk, such that F'u converges

(5) t (w) : p+ (lu - p) + Z;=zen(w - p)".
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In a neighbourhood of B, which we may take to be independent of nr, we have
F(Fnx):pn*1F), and hence F(ry'):{t(F).

Suppose that / is the smallest value of z such that ao is non-zero in (5). Equating
coefficients of (w-B)t in the expansion of FQID:V(F) shows that A-t:A-t,
which is impossible, since I is not a root of unity. Thus all a,:0 and ,lt(w):w.

If / is the disc lw- Bl=dl2 inside D then for some fixed d'=0 and all large no

the set F'"(Å) contains the disc /': lw-Bl=f,'. Hence fe"k(Å)c./. Thus the
functions/Pnt are normal in /' and fe"*(B):f , (J''"u)'(fr):fnr,*1. We may select
a subsequence of the fe"n locally uniformly convergent in /' to a non-constant limit
function g such that q(B):F, E'(f):l. From Section 2, property VIII it fol.
lows that /'cC(f). Now the set Z of Section 2,property XI is by our assump-
tions and Lemma 3.1 a finite set, so that by the property XI there are no non-constant
limit functions in C(/), which contradicts the result just proved about E. We conclude
that A cannot have the form assumed and the proof that ll | 

> I holds is complete.

4. Domains Dntangent to D,

Theorem 3. For each integer p=2 andfor each primitiae p-th root 4 of unity
there is a domain D, which lies outside Drbut is tangent to D1 at ao:4e-q, such that

for a in D, the function eo' has.an attractiae fixed point of order p.

Proof. lf as:4e-a then (:sn is a fixed point of/with multiplier f (t):n.
A calculation (see e.g. [3, Theorem 2]) shows that

"fo(r) - €+ (z-()+Z;=kp*LAn(r-C)", Ar,p+L # 0.

C (f) contains kp domains each with (
property X each contains a singularity of
p singularities. Thus k:|.

It is convenient to work with the parameter I such that a:te-t, rather than
with a itself. We have to find a region D'in ltl=l and tangent to the unit
circumference at t:q, such that, for tCD', a:te-', eo" has an attractive fixed point
of order p.

Now for any t near 4 we have

J'Q): €+t1z- 0+2; a"(t)(z-O

/'e(z) : 1 + te (z - o * z; A"(t)(z - c),

wherc (:st and Ar(r):...:ApQD:0, An+r(4)+0. Writing F(t,z):fe(z) we

as a boundary point and by Section 2,

f-0, which by Lemma 3.1 has at most
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find that when t:q, z-€:

(6)

(7)

and

(8) E: o.
Dt

We examine those fixed points of/which "coincide" as a multiple (p+l)-fold
solution z:eq of fp(z)*z:Q when a:qe-n, that is we consider the solutions of

F(t, z)-z:O for z as a function of t near l:r7, z:€4. Putting z-e4:2, t-n:T
we have

F(t, z)-z: Zi,,=oA-,,Z-T' : 0,

where
Ao,o : At,o :,..: Ao,o : O, Apa\s # 0

Ar,r: pnP-L # 0, Ar,o:0.

Thus the Newton polygon for the problem has 2 sides, one of which joins (1, 1)

with (p*1,0), with slope -llp.There is an expansion

(9) Z:ctTrll*crTzlP*..., c, 10,

which representsp of the desired solutions near T:0. The coefficient c1 is determined

from

(10) Ar,rc1*Ap+r,ocf +1 : 0.

For the p fixed points given by (9) the multiplier is

{ r ut 

:',i=f; :,,';,:,. :: ;,', "'r;: ̂:^: 
;:; :,:, ", "

after substituting (9). Using (10) we see that

(p * l) Ap+t,ocl * At,t : - PAvJ - - p24t -t.
Thus

\fn(z\_, pz(t-q),_T_l_-T...

and there is a region D' of the t-plane outside lt l= 1 and bounded by a curve which
istangenttothecircle |tl:1 at 1:4 suchthatfor t€D'allthepfixedpointsdeter-

eq we have

02F

ffi - PrtP-t #o'

njF [- !' j -t'
wt;3; ',-:'o'*|,0'
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mined by (9) have multiplier less than one in modulus. These fixed points must then

form a single attractive cycle. The theorem is proved.

At t:tt there are (p+1) coincident fixed points ea. The remaining one is of
course the fixed point which has been attractive for ltl=l and becomes repulsive

as t passes outside the unit disc.

5. General properties of Do

Theorem 3 shows that for eaclt pthe set {a; f(z):s" has an attractive cycle of
order p\+0. Henceforth D, shall denote a component of this set, whetåer or,not it
is tangent tn Dt.

It follows from Section 2, property X that rf a(Do, for some p>1, then
far .k:1,2,...,p each of the sequences/re+k(O) is convergent,as n**. In parti-
cular

DraDu:0, if p+q.

Lemma 5.I. In D, the sequence (f*(O)), n(N, conaerges locally unifurmly to

one of the attractitse fixed points z(a), which is analytic in a.

Proof. Take a fixed ao(D, and denote eoo' by fi(z). Since 0 is in the component
of C (fr) which contains one of the points zo: z (a6) of the attractive p-cycle we have

by Section 2, propefiy X limlfe(0):Zo zs n*"o' Put o:l(f{)'(z)l=1. Take

a fixed g such that o<Q<l. Choose a disc A:{z;lz-zol<d}, d=0, such that

ljil'(/)|=e, so that f{(/)c/':k; lz-zol=gd}. There is a positive integer 4
such that ffs(O)(/'. By continuity there is a neighbourhood U of a, such that

(i) UcDn,
(it fesp)4, a€U,
(iii) fe(/)cÅ, a((J.

Thus for aQU and any n€N we have t<"+dn(0)€/ by (ii) and (iii). Hence

t1n+ilt(0) is a normal farnily of analytic functions of a in U, convergent pointwise to
some value z(a) of the attractive p-cycle for a by (i). The convergence must then be

locally uniform.
Since /"(0) is an entire function of a we have:

Corollary. D, is simply-connected. l

Lemma 5.2. Suppose that the.fxed point z(a) of order p of e"' remains analytic
on the open arc y in the a-plane ending at aslo. Then proaided (fn)'("(a)) remains

bounded on y one cannot haae z(a)*å as a*ao on l.
Proof. lf z(a):fe(z(a)1:7n-k(fk1z(a)))*- as Q*ao then fk(z(a))**,

k=1,2;...,p; But then (19'Q@)):dfe(z(a))f'-'(r(o))...f(z(a))'>-, against

assumption.
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From Lemma 5.2 it follows that not only is the z(a) of Lemma 5.1 analytic in

D", but further that as a approaches a finite boundary point å of Dn the relation

fiåsup l7ryQ@Dl=l implies z(a) does not have a transcendental singularity at

b.1;nialtz(a) remains analytic at b unless (0102)(fe(z)-z):(fe)'(z)-l becomes

zero,in which case z(a) may have a branch point.

Define the function M(a):747p,a) given by

(1 1) M (a) - (i o)'(r (o)),

which is thus analytic rn Do andwhich remains analytic at the finite boundary points

of D, except for at most algebraic singularities where M(a):\. The boundary

consists of arcs of level curves lU1a11:1.

Lemma 5.3. For p>l any D, is unbounded.

we note that M (a)in (l l) never takes t}le value 0 for any a( D p. If D, is bounded

it is a compact simply-connected domain bounded by arcs of lM(a)l:\. Now

0 M (D ) c M (0 D r) c {M ; lM l:1 }. This implies tbat 0€ M (Dp), aSainst assumption,

and the lemma is proved'

Finally we note that in general the boundary curves of D, have cusps at points

where M (a):1 . We carry out the calculations for D2, remarking that it will be shown

in the next section that there is only one D2,namely the one found in Section 4, which

is tangent to D1 at a:-e,

Lemma 5.4. Suppose that ao.t\Dt2, os*-.€, M(ao):\. Then LDrhas a. cusp

at a:Qo,

proof.Let z(a)be one of the trvo attractive fixed points of f2.Thenf(z(a)):7r1a1
is the other and as a+as wa have z(a)-( Gay) and z1(a)*q:f(O. Further

(fr),(€):\. If for a:ao we have (:r1, then f (0:t1. In either case then ao

is on the boundary of D1' The case f'(E):l corresponds to ao:s-1' t:1 in the

notation of Section 3. Two first order fixed points of/coincide at (:t7- e but there

is no cycle of period 2 neat these' The case f (():-1 corresponds to t:-l'
ao:-e, which has been excluded by hypothesis.

Thus in the above argument we have t*q and also as(* - l; since ao(: -l
implies ao7: -! and (:4.

At a:ao we have, neat z:4,

.fr (z) : E + Q - 0 + ar(z - O, t ...,

and a similar expansion neat z:q. Since (/2)-1 has only two singUlarities, there is

by Section 2, property X just one component of C(f) near ( in which 7b*( and

containing one singularity of f,-z, and another similar component near 4' This implies

that az#0.
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If F (a, z):.f '(r) - t we have at a: oo, z: € that

^F: o, E- 0, # -2o2, # - .rt(1 + ao} - p #0.

Putting z - (- Z, a- oo: A this gives an expansion

0 - F(a, z) : pA+azZz+bAZ*...,

which has a local solution near A:0 of

This leads to

where ).:2ar(- plar)'/'. Thus tle boundary of D, near as has the same form as-the
level set ll+).(a-aötttl:1, that is a curve with'a cusp at aoa.nd D2 fills out the
angle of 2z bounded on one side by this cusp.

Remark. A calculation similar to that of Theorem 3 shows that at a point a
of DDo where the M(a) of (11) is a primitive q-throot of unity, q=1, there is a Do,
tangent to Do.

The situation is illustrated for p=6 by Figure 1. Note for instance the
regions Dz,Ds,Dn,Da tangent to D1,the Du tangent to D2and the Du tangent to
D2 or to the Du. Various cusps on 0D, and the 0D, also show up clearly.

These figures were obtained by testing for tåe various cases witl a computer, and
not all parts of the regions Do, p:4,5, 6, were plotted. In the missing parts, which
are in any case too slender to plot accurately, the terms/"(0) become too large for the
computer to handle.

6. The single domain D,

Theorem 4. There is a single D, which is an unbounded domsin tangent to D1
at a: -e and lying in the left half-plane. The boundary of D1i; a single curae which

for large a:X*iY has the asymptotic form Y:X"-*/'(l*o(1)), as -X-**
Proof. Consider a fixed D2and denote by (:4(a), q:zz(a) the attractive

fixed points of f(z):s'" in D2. Write M(a):(fr)'(€) as in (11). Each boundary
componentisanunboundedlevelcurve lM(a)l :1 and two of these curves cannot
intersect (see Lemmas 5.1 (Corollary) and 5.3).

Writing s=a(, t-ar1 gives sd:td; st:M(a). For any a in D2 we have

lslf =1 so that one of s,t, say t, satisfies lrl=1. Since ue'.is univalent in lwl=1
wetlenhave lsl>1. Bycontinuityof 4, trnDronehas l/l=1,lsl=1 for allainD2.

z - (- plar)tlz Arl' + z"*=2 cnAnlz.

(.f')'(, (o))_ t *# : 1' + l(a - ao)'t'+ .. .
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Now observe that for a in Drwe have l(l:letl>-s-1 and thus I = lstl: la'full=-

lqa'11", l71l-.ellalz and ltl:lql<ella| For large a in Drthen

lse"l : Vdl=!.
Now from the series inversion of tet:w (see e.g. [16, p. 141]) one obtains

e-t : ->.: (-112-r (1 *n)r-l 1

./-Jo \ nf-w"' lwl = Z.

Since fet:sd and a:se-t we obtain

o: Zf et) ('*:1. 
s(se")n, lse"l = 1,

and

(12) st: s(tet)e-': (se)a :2; (-t)" ('*;i)" s(se")o+l, lse"l = 
I 

.

Notice that the map a+s+a:se-t is one-to-one and conformal between D2

andaregion-Eofthes-planewhichliesintheset.E,where lse"l-1, lsl=1, whichis
part of the left half-plane. We may define sr (a) : (p (s), s in .E'. For all large a in D,
we have lse"l<.11s and E(s) is given by (12). On the boundary of .E one has

lE(s)l: l.
By (12) lE(s)/s,e'l=ll2 if l.re"l:5 where ä is some constant such that 0=ö=

1/e. Now the unbounded component E2of lse"l=i belongs to Er' Moreover (12)

gives an analytic extension of E to E2 which contains all large points of E. The boundary

of E2 is a simple arcs(t):x(r)*iy(r), -@<t<€, such that y(t)*f - as

?*t-. For large y(r) we have lE("("))l=(ö/2)ls(c)l=1 while 9(s)*0 as

s:xliy, y constant, x+ - @, since 9:@1s2e"). Thus for any latge r there is a
point x1(t)*iy(r) in Erwhich lies on a curve lql:t. Thus there is a level curve

lEl:t on which Ims**- and one on which Imst--. Further 9(s)*Q
as ReJ+-€.

Since g(s):O(lsl) as r*- in Erthe Phragmön-Lindelöf principle implies

that if l9(s)l=K on a simple curve .f in Ez which approaches - at both its ends,

then l9(s)l=K holds in the component of the complement of .f which lies in .E's.

If .E', contains two distinct level curves lEl:1 then there is a region {s; lg(s)l=1}
which is necessarily unbounded, which lies in E, for large s and in which lE(s)l*-
as r+6. This is impossible by the preceding remarks. Thus there is a unique level

curve l, on which lE(")l: l, in E, whose ends have been described above. E is the

domain bounded on tlre right by 7. The conformal mapping back to D gives finite a

for finite s so that the image of y is a single boundary component. Thus the uniqueness

of y shows that there is a unique D2 whose boundary is a single curve.

On the boundary of ,E we have from (12)

lE(s)l - lsze'-sB e"...1 _ 1'
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As r*- on 0E, re"*0 so that we have ls'ze'l(1*o(1)):1, which for large

s:X*iY gives X2+Y2:e-"(t+o1t;). As r'+@ we thus have X*--,
Xzex*O and so Yz:e-x(l+o(l)). The map between a and.r satisfies a:s-
s(.re")*... -J as r+@ on åE so that the equation of lDrhas a similar form.

7. Dorp-2

The distribution of the components Dn, p=2, is extremely complicated and we

shall be able to give only a partial description.
Denote by a strip:a region which is bounded by a single Jordan arc receding to -

in both directions and lying entirely in a set of the form {x*iy; a-y=p, x=ö\
where oc, B, ö arc real.

Any family of disjoint strips has a natural ordering, one strip being "less than"
another if it lies below the other in some right half-plane'

The figures suggest that the D, have the following structure.
(a) Each Dn, p=2, is a strip.
(b) For each p>2 the components D, form themselves into families (which we

call p-families) in such a way that there is an order-preserving bijection between each

p-family and the integers. Moreover, between each adjacent pair of components in a
given p-family there is to be found a single (p*1)-family.

Some confirmation of these properties is given by the following result.

Theorem 5. There exists afamily of strips An, p=2, whichformp-families as

described by (b) aboae, such that the restriction of each strip Å, to some right half-
plane lies in a single componmt Do.

We first give a criterion which guarantees that the complex number a lies in one

of the components D, p=2.

Lemma 7.1. Suppose that lal=lle. Set fQ):sa' and g(z)-sl'l'' suppose

that, for some p>2,

elf'Q)l

Then f 
p has on attractiue fixed point.

[r,r 
,'-'(#)]-'

Proof. Let 0<8= lllol. Then, for lrl=q,

I %l = exp lt: % dcl =exp (n,,**r, 
I ffin| "f,
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since max;6pr1p1lfi(€)l=gi1t1lal1, and lal=lle implies g(x)=x, si1t11a11=-

Sn-'(lllaD for j=p-|. Choosing q, as we may, so that

elJ'v (0)l < q < (lal ge -L (1 I lal))-e,

we deduce that, for l"l=9,
lf,G)l - elfp(o)l -< p.

Hence fe maps {lrl=S} into itself properly, and so has an attractive fixed point.
To apply the lemma set a:x*iy and, for k:1,2,...,p, define l*:)'n(a)

and 0o:0o1a) by 1r:0t-0 and

1*+r: sx"(xcos0o-ysin0), k:1,2, ..., p-1,
0*+r: s^,,(xsin01,+ycos0o), k: 1,2, ..., p-1.

Thus /k10;: s^r*iou, k:1,...,p.
Next put, for p=2,

Qo : {o 
: x+iy; x > 4lyl, coslo(a) = +, k : I,2, ..., p-2, cos0r-r(c) =-+}.

For a in On we have ltan0rl-.1/i, k:1,2,...,p-1, and so

xcos0o-ysin go = f xcos 0o = !x, k: !,2, ..., p-2,
and

x cos |o-r-!sin 0r-r = f x cos 0o-, = -f x.
Hence

l*+t- f,xex*, k:1,2, ..., p-2,
and

)"0 = -! xeln-r.
Because lz:x we obtain

.1l4xex

l-fn(0)l : exp Q') = exp(-lxe'rn*" ),
where the expression on the rigbt contains the term x exactly (p - l) times. Thus for
x=4 we have

l/'(0)l = lf ee-L(x), where e(x) : sxpt.

We wish to show/e(0) satisfies the inequality of Lemma 7.1. Since for all sufficienfly
large a in Oo we have x=lall2 and go-rllllal):ge-2(e) the desired result will follow
if we can show that

*'(W) = "(lqlse-ziu1)e

holds for all sufficiently large a. This is easily done by induction. Thus we have shown

that there is a constant Ko such that all points of

rie in components De. 
oon {Re a > Ko].
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We now show that the sets d)o, p=2, have the kind of structure described in
(b) above. First put

.(2n4n)n:lor 3 =aWa<jJ,

^lnnlB:Iat-T=arya<.il
and

Thus 
c:{a:x+iy; x>4lyl}.

Qo: {a; a(c, fk(0)€8, k : 2, ..., p-2, "f'-'(O)eA).
The set

Q": {a(C; e"€A)

is evidently a sequence of strips, which we label Sn, n(2, by writing 
^gn 

for the com-
ponent of Or such that 2nn<y:Qr(a)<.Qn*2)2. These form the required family of
strips referred to as /, in Theorem 5.

Between the S" are the components of

{a 
: x*iy; x > 4lyl, cos Tr(a) = +} : {a€C; e"(B}.

These are also strips which we label Tn, n€2, one between each adjacent pair of S,,
S"+t'

Now apply the following lemma repeatedly.

Lemma 7.2. Suppose that TcC is a strip and that E maps T conformally onto
Bn{lzl>R} for some R>0. If *(a):aE@), a€T, then T contains a strip T'
such that rlr maps T' conformally onto Cn{lxl>R'} for some R'>0.

Proof. Since

largal= tan-1(aJ =nll, a&-{O}
and

latgal : v13, a(08- {O}'

the boundary of rlQ) does not intersect Ca{lzl=R'} when R' is large enough.
Therefore this set is covered exactly once by {t and we can take

7' : r|t -t (C n {lrl = R' }).

Applying Lemma 7.2to each of the strips 7,, n€2, defined above we obtain a
strip Ti,lying in Tn,whichis mapped by r!(a):aso conformally onto Cn{lzl>R"}
for some Ro=0. We can then define, for m,n€Z,

and 
S, : {a(Ti; aeo(C n {lzl > lR"}n S-}

T, : {a(Ti; a.e"€.C 
^ {ltl = R,\ aT^}.

Evidently, for a(So^ we have a€C, e"€B and e"""€A. Thus the strips ^S,- form
themselves into the 4-families of strips referred to as Ån. On the other hand for



66 I. N. BarEn and P. J. RrppoN

a€Tn we have a€C, fk(0)(8, k:2,3, and by another application of Lemma7.2
we can find 5-families / u inside the strips To*.ln this way the proof of Theorem 5 may

be completed by induction.
We can push this approach a little further and show for example that there are

components D3 having width z at - and components Dn asymptotic to the lines

lm a: L2kn (from below in the cases in the upper half-plane). Also it can be shown

that the lines Im a:0, X2n, i.4n meet no component Ds, but we omit the details.

The figures suggest that the union of the components Dn, p-1, is dense in the
complex plane, but we have not been able to prove tlis.

8. Wanilering domains

Lemma 8.1. If f(z):eo', a*0, then any component of C(f) is simply-connected.

Proof. Consider a component D*0 of C(f). By Section 2, property IX
we need consider only the case when .fn * * in D. Since allf" onit the value 0, the

reciprocals llf" are entire and converge to 0 uniformly in D. It then follows that D
is simplyconnected.

Definition 8.2. A component U of C(f) is a wandering d'omain of f if
f^(U)nf'(U):0 for all non-negatirse integers m,n such that mln' (Here f0(z)=2.)

We shall prove

Theorem 6. If f (z):eo', a;:l, then f has no wandering domain.

Remark. If U is a wandering domain then there is at most one inteler 7>0
such that O<fi(q. We may replace U by fi+L(u) and assume O{fi(U) for all

7>0. For any ft=O there is then a branch of 7-t which is analytic in fk+r1Lr1
and (by Section 2, property II) maps .fo*t((l) univalently onto fk((J). Thus /
is a one-to-one conformal map between 1'k(U) and fk+L(U).

We shall prove Theorem 6 by following Sullivan's method 122, 231which uses

quasiconformal maps.

Definition 8.3. A function u(x, y) is ACL (absolutely continuous on lines) in
a plane domain D if, for et:ery closed rectangle Rin D with sides parallel to the x and y
axes, u(x,y) is absolutely continuous on almost eaery horizontal and almost eaery

aertical line in R.

Definition 8.4. ([], IlSl). A topological mop E of the ptane domain D into

e is called quasiconformal if
(i) 9 rs ACL,
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(ii) there is a constant k such that 0=k-l and lgrl<-klE"l holds almost euery-

where, where

e,: !kp"-irp), E, : |(E,* ivr).

The quantity p(z):EulE", which exists almost everywhere, is called the

complex dilatation of the map.
In the above definition the map E is conformal if and only if FG):O almost

everywhere. We shall often use the following formulae. (See e.g. [18, p' 191].)

Lemma 8.5. If E;G-H,rlt: H-K are quasiconformal thenrltE:tl(dis also,

and the dilatations satisf))
(i) if ,L is conformal pvr("):ttq(z) a.e.

(ri) if E is conformal p,trQ):tt(E@)(E'@)lE'Q)) a.e.

If E,,lt are onto then we can reuerse the implication in (i):
(nD if F,!,q:ltq a.e. in G then { is conformal.

Lemma 8.6. Suppose that .f is a one-to-one conformal map from a domain D to
a domain D1, and that <p is a quasiconformal map defined on D and D1 and whose com-

plex dilatation F: F,p satisftes

(13) p(f(r)) : p(z)f'(z)l.f() a.e. in D.

Then EfE-t is conformal in E(D).

For by 8.5 (ii) ttrÅz):pr(f)Wlf:ttrQ) a.e. in D, thatis p6yr-tyr:F* a.e.

in D and the result follows from Lemma 8.5.

The existence of a large family of quasiconformal maps is guaranteed by an

existence theorem for solutions of the Beltrami differential equation Qz:lt(P".

Lemma 8.? (e.g. [], [18]). Giaen any measurable function p on the plane such

that llpll-:ess sup lpl<l, there exists a unique sense'preseraing quasiconformal

homeomorphism E:Eu of e onto e such that Er:pE, (a.".) and cp fixes 0, 1, -'
Clearly we can use a different normalisation by replacing <p by LoE, where Z

is an arbitrary Moebius transformation. For a fixed normalisation, for example that
chosen in 8.7, L. Ahlfors and L. Bers [2] proved that if pl depends continuously and

differentiably on parameters, the same is trae of EP. Their result includes the following.

Lemma 8.8. Write t:(tr,...,t,) and J:(sr,...,Jn). Suppose that for all t
in some opm set ÅcR" one has for the trt of Lemma 8.7 that p(t, z)(L* as a function
of z with llpll-=t and that (suppressing z)

p(t*s) - p(t)+Zi=rai(t)s;* Irlo(r, s)(14)

with lla(t,,v)ll-=c, c constant, and u(t,s)-O a.e. in z as s-0. Suppose that

llar0+s)ll- are bounded and that ai(t+s)-ai(t) a.e. for s-0.
Then Eu{'t is in Ct(A) as afunction of t for fixed z.
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Remark. Ahlfors and Bers prove much more, namely that Ep has an expansion

Et'G+s) 
_ cpu(t) 1|n_rgu(t),o{t)si* l"ly(t, s),

with lly(1, r)lla-0 for ,r*0, where for a certain integer p>2 and an arbitrary
(fixed) Ä=0 one has

lwltr : ,:y!_Jffi#*+(llr,=^t,)o d* dy)'tn.
lzrl=K lzl -zl

Theyalso showthat as t'*t under these assumptions then llfltt(t')"{fl-gu(t)'at(t)11u-
0. Since y and, ?p'o vanish for z:0 it follows that for fixed z, 7(r, s)12;*g ut
.r*0 and that |P",(z) is continuous in f.

First stage of the proof of Theorem 6. Preliminaries

Suppose thatfhas the wandering domain U.By an earlier remark we may assume

that U is simply-connected and/maps every fk(tl), k=0,1-l conformally onto

fo*'(u).
Define the equivalence relation - on C: a -y rf and only if there exist positive

integers m andn such that f^(x):f'(y). If t-y and !-z then there are positive

integers m,n,k,p such that f (x):.f"(y), fo(y):fn(z) and so f^k(x):fo(z),
which gives x-2.

A class of equivalence [;c] meets U in at most one point, for if x, y€U, f- (x):
f"(y), then m:n by the definition of wandering domain and then ls:y since

J'* is a homeomorphism.

Lemma 8.9. Giaen a measurable function trt on U such that lpl=n-l on U,
there is an extension of p to afunctionin L-(C) which is "f-inuariant" in the sense that

p(f (r)) - p@)l''@)lf'@) a.e- in c-

Further llpll-:supu Ipl.

Proof. Givenpon Uset F@):0 if lzlnU:0. If lzlnU:{x}, x€U, thenthere
exist positive integers m,n sttch that f*(x):f"(z). In this case define .

(r4)

(1 s)

The derivatives involved never vanish. The equation (15) gives a well-defined and

indeed unique extension of p to the set [U] of classes which contain a representative in
U.lul is a countable union of components of C(/) and thus open. The function p
thus extended is measurable on each component ;f 

*'(U) and thus measurable in the
plane. The function p defined in this way satisfies all the conditions asserted in the

lemma.
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Lemma 8.10. If the measurable .function p satisfies llpll-= I and the condition

(14) of Lemma 8.9 denote by q:E' the quasiconformal homeomorphism of e which
satisfies ez:lte" a.e. and whichfxes 0,1 and -. Thenfor f(z):eo' thefunction

fr:efe-L is an entire function of the form eb' where b:bp is a constant.

Proof. By constructionf maps C to C, f*(z)*O and fP is a local homeomor-
phism. By Lemma 8.6.,.f* is locally conformal and thus is an entire function whose
derivative never vanishes.

Now by for example [18, p. 74] there are positive constants C and K such that
for all large lzl we have

lvQll - Cl'l*, lE-'Q)l < clrl"

For large ltl:, this leads to lfE-L(z)l<exp(lalcrK) ana ltuQ)l=c exp(ArK)
for A:lalCK. Thusfl, has finite order and so fr- es where g is a polynomial. Since

/'i+0, g is linear, fu(z):"u'*d. But q(1):1 implies fr(g):sd:1 and we have the
form claimed above.

Second stage. The main quasiconformal construction

Following Sullivan we construct a family of dilatations ,a which satisfy (14) and
depend in a Cr manner on N>3 real parameters lj. The associated br of Lemma
8.10 is a single complex parameter (equivalent to two real ones) which depends Cl
on the lr. This implies the existence of a non-constant continuous arc in the f-space

along which å, is constant. A contradiction is derived from this in the final part of
the proof.

The construction begins in the unit disc and is carried over by conformal mapping
first to the wandering domain and then by extension to the plane.

Notation. Henceforth ry' denotes a fixed conformal map from the unit disc D
onto the simply-connected wandering domain U, while d,6 and d are three distinct
points of 0D.

l[ is a fixed integer such t]rat N>3. Set

T: {(tr, ..., t*); tieR, lt,l = l, 1 = ; 
< N}.

On the arc (d,6; pict values sie,, ,u:1,2, ...,2N such that arg öi<0r<02<...
...=02y=argE.

Let ö, be a real continuously differentiable function, I=j=N, such that

(1 6)

ö, :0, 04f i:l?zi-t,?zif) ö; = 0, |€.Ii)
ö;(0) +0 - ?rj, 0 -ä;(0) = 1rj-, for 0€Ii)

lö3(0)l <*.
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For any t€T the function e+Z{ tr61(0) is monotone and gives a map of

l0,2nl to itself. This extends to

(l'7\ E(t,reio) - rexp(t(O+>i ttö1@))),

which is a homeomorphism of the disc D onto itself. Different choices of t give dif-

ferent maps E, all of which fix d,6, ä. In particulat t#0 implies ElId'
Each EQ,z) is quasiconformal in D, for E(CL(D) and

(18) Lr,p: ezle,: r''u(E,+1rr)f(r,-irr)

: -(ezie )i ttai@)lQ+Z{ ttöi(o)).

Thus in D, ;r, satisfies lp*l= ll3 by (16). Further pr(z) is continuous in z.

Observe that x:ryEry'-l, with g given by (17)' is quasiconformal in U and

maps U onto itself. The dilatation of X is, by Lemma 8.5., given by

(19) ttx : F,p(*-')(rl,-Y l(lt-')',

which is continuous and thus measurable in z in U' Further lprl=lp n a.
Use the construction of Le mma 8.9 to extend lrto an f-invariant complex dila-

tation in the plane, which we still denote by the same symbol, and which satisfies

lprl-llZ in the Plane.
Denote by @:@, the quasiconformal map of C to itself which has complex

dilatation 74 and fixes 0, 1, -. By Lemma 8.10

(20) (D,f(D;t : sb"

where å is a constant which depends on l.
We now check that 1r, satisfies the differentiability conditions of Lemma 8.8.

For z such thatlzl meets U there is Sorl€ 21 in U and positive integers m andn such

that f"(z):f*(21) and by (15)

pz(z) : @"Y @ (f^)' (r r) p,(d) I (U T k) W)\" r)).

Using (18), (19) we have

Qr) pxQ) : ,"(4 (2!=,ttBt)lQ+ )i=,tif i),
where 7@) is real and B,:61(argt-l(z')) is constant in I and satisfies lf il=U2n
by (16). For other values of z we have trrr:g and can retain the formula (21) if we

set 7:B;-0.
Calculation gives

ai(t) : e't 2\tl Q+ Zl r.J)'z

and
a(s, r) : : "t'(Zl Bts')'z(2+/{ B;(s;*r;))-1(2 +Z{ f.It)-'z
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which satisfy the requirements of Lemma 8.8. Thus we have proved the first part of
the following

Lemma 8.11. The quasi-conformal maps (0, constructed aboae depend on t in a
CL manner for t€T andfixed z. Further iLlf @;L:sb', where b is a constant in z and

is in CL(T).

7l

To prove the
observe that Qr(tt)

(22)

last part of the lemma take a fixed point z1 of f: eo":zl and

is a fixed point of eb'-(Drf Q;t. Thus

$ - (tlo,(tr)) los Q,(tr).

Now t:0 makes X:0 and thus @o is analytic and with the given normalisation

must be the identity map. Then for /:0 we have b:a. @o(zt):zt and we can

choose the value of log zy to make q:(llz)logz1. But, as I varies in T, itrt(zt)

is continuous in / and never zero so that the right hand side of (22) is locally well-

defined and continuously differentiable in r. Thus b€Cr(T).

Lemma 8.12. Take N:3. Then there is a non-constant arc a in T'such that

b(t) is constant on q..

Proof. P:ut b:Xr*ixz. If rank(0X1l0tt), l=i=2,l=-i=3, has its maximum

value of 2 at t:r(.T, we can assume that say A(XL, X)l|(tr, tr)+O at r and hence

in a neighbourhood of r. The inverse function theorem applied to the map X1:X1(t),
X2:X2(t), Z:ts naar t gives C1 solutions t1:F1(X1'Xr,Z), t2:F2(X1,Xz,Z),
t'r: Fs(X1, X2, Z):Z near Xt(t), Xr(t), rr. Holding Xr, X, constant we obtain the

atcu: Xr:sonst, Xr:sonst, ts:Z which is in Tfor lZ-zrl small.

If the maximal rank of (|Xtl|tj) is 1, occurring at l:r, we can assume

\Xrl|tr+O near t:r and apply the inverse function theorem to Xr:ft(t), Y:tz,
Z:tz near r to obtain C1 solutions t:F(Xr,Y,Z) neat X1(r),rr,rr, such that
xL(F(&,Y,2)):x1, Y(F(xr,Y,z)):Y, z(F(xa,Y,Z)):7. Then for I on

the arc a: t:F(Xt,r2,Z) where X1:Xy(r),X2:X2(t) and lZ-Trl is small we

have l€ T and a is the required arc.

If rank (Axtl\+) is always zero then any arc will do.

Conclusion of the proof

The last stage is to derive a contradiction from the result of Lemma 8.12. Suppose

that t:t(o),0<o=oo, is the equation of the arcq in that lemma. Write Oo:
@,<öQ,ro. Since t(0) and t(o) give the same b in Q0) it follows that Q"f:fQ".
From this we deduce

Lemma 8.13. p" leaues eoery point of F(fl fixed; Qo maps U onto U, for
0=o=oo,
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Proof. Suppose lhat zo is a fixed point of some order p ofl. Then go commutes
withfe and so Q.(zs):Q,(fo("i):/r(O"(z)).Thus O"(zo) is one of the discrete
set of fixed points of orderp of f, Q,(z) is continuous in o and Qo(zs):zr. Hence Oo
fixes every fixed point ofevery order off, These points are dense ]n F(f) by section
2, property VI and the first statement follows. Consequently O" maps each compo-
nent of C(/) into a component of C (f). Again it follows by continuity from the case
o:0 that U is mapped to U.

Lemma 8.14. 8" is a hameamorphism of U onto U which leaaes each prime end

fixed.

For the definition of prime ends see e.g. [10]. The point of Lemma 8.14'is that
different prime ends may have the same o'impression", that is correspond to the same
point sets on the boundary. Lemma 8.13 asserts only that Oo is the identity as a point
mapping on 0U. The res.ult of Lemma 8.14 is asserted inl23l. The following proof is
due to T. A. Lyons.

Proof. Fix any owith 0<o<oo and write Qo:Q, a:tL-,Qot. Then al is an
orientation-preserving homeomorphilm of the unit disc D to itself and the boundary
points of D correspond 1-1 to the prime ends of Uunder the map tlt.The map a)

extends to an orientation-preserving homeomorphism of ,S:åD to itself. It is enough
to prove lhat o is the identity on S. If this is not the case we may choose 0r+0,
inl0,2nl so that a(eio,)-eio, and ry' has radial limits a.r,u.ratsiq,,sie,.

Now O is the identity on AU and as r*l- we have rlta(reiet):Q111(ysi0t)*
Q(at) since O is continuous and O(at):ct. But by assumption a(rei9''1*
a(eiq,)-sig, so that we must have' ar:ar. The image of the radii {reie';0=r=l}
under ry', together with ct, therefore constitutes a Jordan curve,I in U.

We now choose a small positive ä such that 0r+6=0, and co(Or*ä)€
(02,0t*2n). Then for 0'r((0r,0iö) we have a(0i)E(0r,0r+2TE). For almost
alll'rin(0r,0r*ö) theradiallimita'of rlr existsatet0i andalso ateilL,wherc0i:a1Oi1.
Thus we obtain a second Jordan curve /' formed by the image under ry' of the radii
from 0 to eiT'r, eiTL iogether with the value q' , J and J' cut at r/ (0) and are otherwise
disjointexceptperhaps ata',a,if d,:d'. Butthecurvesmustcutmorethanonceif at
all, so we do have a:a'.

Thus 1im,-1-rlt(reie'1:q for almost all 0'in (et,|L+ö). But this is impos-
sible since ry' is univalent. Thus the lemma is established.

By Lemma 8.14 all ilrlol map U onto the same domain 0 and. induce the same
map of the prime ends of U to the prime ends of O. Denoteby 0 some conformal
map of D onto O.Then h,:$-LQtG) ry' is a quasiconformal map of D onto D.

The dilatation of h" is, by Lemma 8.5 (i) and noting that p6:1t, in (J,

X:tEt-I, the same as the dilatation of tEt-tt, that is tq, where E:q(t(o),2)
is given by (17).
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By Lemma 8.5 (iii) applied to h,os-t(t(o)) and E(t(o)) it follows that ho:
L,E(t(o)), where Io is a conformal self-mapping of D, that is a Moebius trans-
formation, which may of course depend on o. By our remarks on prime ends all å"
have tlre same boundary values for 0=o<oo, which shows that on 0D Loq(t101):
L.q(t(o)), these expressions being continuous on D. Since A(t(o)) is the identity
map on the boundary arc 60 onehas Lo:7o for all o. But this implies that E(t(o)):
g(t(0)) on 0D for an arc of values l(o) not all zero. This contradicts the construc-
tion of E in (17). The proof is complete.

9. Limit functions and domains of normality

We shall give a few results about the iterative behaviour of the functions eo".

Some previous contributions in the case a:l are ll9l andl24l.
Theorem 6 shows that any component D of C(f), f:eo', is preperiodic in the

sense that there exist integers k>O,p>O, such that Do:fk(D) and fe(D)cDo.
By an extension of the Wolff-Denjoy theorem one sees (cf. [8]) that only the following
two possibilities can arise:

(1) (f'o), n€N, converges in Doto a constant limit,t. Either ,1.:- or 2 is
a finite solution of fe ()'):). In the latter case we have either l€Do andl. is an attac-
tive fixed point of order p, or ).E\Do and in this case (f')'(1) must be a root of unity
(see [14, Section 54] where Fatou proves for the rational case that we cannot have

convergence of f"e to ,2' in such a domain Do if (fe)'(1) has modulus I but is not a root
of unity. The proof remains valid for entire functions.).

(ii) Do contains in its interior a "centrum", that is a fixed point ,l such tåat
(fp)'(I):exp(2ni0), where 0 is irrational. In this case there is a subsequence of fe
which converges to the identity in Do.

Remark. Case (ii) will occur only if a is in the boundary of some D' since
(fn)'(I) varies analytically with a. Thus (i) and (ii) are mutually exclusive by the re-
mark preceding Lemma 5.1.

These are the cases found by Sullivan l22l for the corresponding iteration of
rational functions, except that our domains D, Ds arc simply-connected and thus the
case of the Herman rings, which may arise for rational functions, cannot occur here.

As a further simplification the case 1: - in (i) cannot in fact occur.

Theorem 7. For f(z):eo",a*0, thereisnocomporrcnt D ofc(flandsequence
of integers ni such that nit- and f'(z)** in D.

Proof. It is enough to show that if fe(D)cD for some positive integer p, then

f"e does not have limit - in D. Suppose that on the contrary f' * * in D as n- *.
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Then 7"n-t-7-,(f"\ also has limit - in D and similarly for fn?-i for any fixed i.
Thus the whole sequence f^ has limit - in D as m+@.

Consider any disc A of centre zr such that ZcD. Snce (f')'(zr):df'@r).
.f"-'(zt)...f(21), while f(z)+0 and a+0, f^(21)-* implies that (f")'(zr)**
as n+€. By Bloch's theorem there is an integer no such that for n>nn the domain

f"(/) contains a disc of arbitrarily large radius and hence a segment y such that ay

is vertical and has length at least 2n. Then f"*t(/) contains/(7) which is a circum-
ference surrounding 0, and for large n this circumference has arbitrarily large radius
since f+1(/)*-. But /(y) belongs to some simply-connected component D'of
C(/).Thus C(f)containstheinterior of f(y),whichimplies F(f):0, againstSection
2, property I.

Corollary l. If f(0)*- then F(f):C.
This follows from Theorem 7 and Section 2, property XI. It occurs at least

for real a such that a>lle. This extends the result of Misiurewicz ll9l for a:1.

Corollary 2. C(e*)*$ implies that a€Dn for some p.

Thus in particular for any of the countable set of values a such that the sequence

(l) has terminating convergence of some period q, that is for a such that l(0):
t"+e(0) holds for some positive integers n,q, Theorem 2 shows that F(e"'):Q.

Further examples of these maximal Fatou-Julia sets are given by

Theorem 8. The set S:{a; F(e""):(} is dense in eaery \Do. Indeed, each

arc oJ' a |Do contains a non-countable subset of S.

Proof. Observe that two different Dp, Dqcan touch at most at one point of their
boundaries, since at a dense subset of \Dothe region Do is tangent to other unbounded
disjoint Dr,. Thus the set I of points a which belong to two boundaries \Dn is

countable.
Fix a region Dr. Denote by M(a) the multiplier of the attractive cycle of fixed

points of eo".Then M(a) is analytic in Doand lM(a)l:l on ilDn. Take an arc y
of 0D* on which M(a) is analytic and maps y to an arc of the unit circumference.

Take a€y-l such that M(a):exp(i0n), 0 irrational. We note that eo" has just
one cycle whose multiplier has modulus one, since a is not on two \Do's, and tåat
there are no attractive cycles. Thus if C(e*)+0, then there are no admissible cons-

tant limit functions by (i) and there is therefore a centrum of fe with multiplier etd".

If we choose 0 appropriately the centrum case can also be ruled out.

Lemma 9.1. Cremer ll\. ff
(i) g(z):sto2a.-. is a non-linear entire function,
(ii) ,F(r) is a positiae function of r such that

M(g,r) - F(r), r = ro,
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(iii) liminf,-- leine-llulocF"1'):0, r>to, whete F" is the n-th iterate of F,

then O is a non-centrum of g. For fixed F there is in any neighbourhood of any angle

Eo an uncountable subset of rp which satisfy (iii).

We continue the proof of Theorem 8. There is a constant ,B such that lal=B,
lz(a)l=B holds for a(y and z(a) apoint of thep-cycle whose multiplier has modu-
lus 1. Apply Cremer's lemma to g(z):fnQ*z(a))-z(a). For a€y we have for
r>ro(a) that

M(g,r) = MUp,r+B)+B = M(.fn,2r) < hp(2r),

where å(x): eB*. Take F(r):hp(2r) and we see that for 9n:E in a dense un-

countable set and hence for a in a dense uncountable subset of 7 we do not have a

centrum. Thus F(eo'):C. The theorem is proved.

Turning to the cases when C(e"')*0 the simplest situation occurs when C(e"")

has a single component, which is then a completely invariant domain.

The o r e m 9. C (e'") has a single non-empty component if and only if a( Dtv {e-t}.
In all other cases when C(e*) is non-empty it has an infinity of components.

Proof.If a(Dp{e-1} then a:te-t for lrl=l or t:1. Thusthe fixedpoint
(:d of multiplier t is in a component G of C (f),where f:s"' (or in the case l:1
we have te0e1. Since 0€G and f(G):6-{0} we may take Zlnlät 0 in G and

have for some branch of f-r that f-L(z)€G. By continuation of/-l around a circle

centred at 0, which we may suppose to stay in G,it follows from the complete in-

variance of C (f) that every branch of f -'(tr.)<G. By analytic continuation f -L (z)€G

for all z€G, z*0, and all branches/-l. Thus G is completely invariant. But for
any component G1 of C@we must have/k7ct1cc for some ft by the basic classifi-

cation (i) and (ii). Thus C(f):G has a single component.
Conversely, if C(f) has a single component G then G is completely invariant.

Since /(G) c G there must, by the above analysis of cases, be a first order fixed point

4 whose multiplier has modulus not exceeding 1 Since/cannot be a univalent map

of G to G the centrum case is ruled out and f"(z)-rt in G as n *-. Thus either

a(Dt or the multiplier of 4 must be some p-throot of unity p>1. lt remains to
show that p:1.

Suppose that p>1. An examination of the local iteration of/near 4 shows that
thep components G1, ...,Gn of C(/) whose.boundaries contain 4, as mentioned in
Section 2, property X, are necessarily different. For (see e.g.[3]) there is an angle

I of directions at n such that for any small segment o which approaches q in A, if
o' is the rotation of o through 2nlp, then f"(r)-q uniformly on a and o'. If we sup-

pose that o, d are in the same G; we can join their ends in G; to obtain a Jordan curve

y on which f"(")-rt uniformly. It follows that the interior of y belongs to G; and so to
C(fl. Buttt is a point of FQfi whichisinvariantunder 2*f andthusunder(approxi-
mate) rotations about q by 2nklp, for some integer k prime top. This is incompa-

tible with the existence of y. Hence if p=l there are at least p components of C (f).
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Finally, if there are finitely many, say N, components of C(fl, they are permuted
among themselves by the map f. Hence each is invariant, and completely invariant
underlf'where m:N !. By [5] the entire transcendental function/'can have at most
one completely invariant component of C(f^):g(f) and so N:1.

Most other cases are covered by

Theorem 10. For a(Dn, p>1, or for a(LDn such that the multiplier of the

non-repulsiae p-cycle for .f-sa' is l, there is a cycle Gr,...,Go of components of
C (f), such that f (G):Gr*t, Gp4r:Gr, and f"e conaerges to a fxed point in each Gi.
Further, eaery component G of C(f) satisfies f*(6.Gt for some N, i.

All this is obvious. Further, since 0 belongs to one of the cycles G;, it follows
first that Gi-r:f -L(G;) is unbounded and, by repetition of maps by f-1, thatevery
component of C(f) is unbounded.

Theorems 8,9 and 10 cover all except the centrum cases. If f(z):eo' has a
centrum then 0 and hence all f (O)(F(f).

We sketch the proof in the case when, in addition, a<|Dr, so that there is

among the components of C(f) a centrum domain G which contains a first-order
fixed point (. G is mapped univalently onto itself by/. Further there is a sequence

no such that no* - and f"x(z)-2, f-nr(z)*z in G, whete f-"x is the branch of the
inverse of ;fnn trr"1t that f-nx(():(.

We show that every point 4 of 0G belongs to the set I of Section 2, property
XI. If not there is a neighbourhood K of 4 which does not meet Z. Then by [6, Lemma 1]

any set of branches of .f-" which are analytic in a domain are also normal there. We
take a simply-connected subset K of H such that K meets G andK contains a point
lt of F (f). The branche s J'-"u are analytic and normal in K and so have limit z there.

lf K':{z: lz-al=q}cK and K":ki lz-41=pl2}, thenforlargenowehave
f-"*(K')=K", f'u(K")cK'. But this contradicts Section 2, property VIII since

4€F(9.. Thus 4€2.
If 0€C(/) then for some k,p we have .fk(O)€H, where H is a component of

C(/) such that fe(H)cH. If H is not a centrum domain then L has only p limit
points, while if ä is a centrum domain the limit points of L are all in C(/). This
contradicts 0GcL.

While this article was in the press we learned of forthcoming work by R. L.
Devaney and (independently) A. E. Eremenko and M. Yu. Lyubich which seems to
have points in common with some of our results.
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