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ON THE LENGTH OF ASYMPTOTIC PATHS
OF MEROMORPHIC FUNCTIONS OF ORDER ZERO

SAKARI TOPPILA

1. Introduction

We use the usual notation of the Nevanlinna theory. We shall consider the follow-
ing problem of Erdgs (Clunie and Hayman [2, Problem 2.41]): Suppose that f'is an
entire function of finite order and I' is a locally rectifiable path on which f(z)— .
Let /(r, I') be the length of I' in |z|=r. Find a path for which /(r, I') grows as slowly
as possible and estimate /(r, I') in terms of M(r,f). If f has zero order, or, more
generally, finite order, can a path I' be found for which /(r,[)=0(r) as r—?

First we shall consider the case when we may choose a ray for I'. We denote by
U(a, r) the open disc |z—a|<r. Following Hayman [4], we say that the union of the
open discs Ul(a,, r,), n=1,2,..., is an eset if a,—~c as n—- and the series
ralla,| converges. We note that if f(z)—~a as z— oo outside an e-set, then a is a
radial asymptotic value of f; in fact, f(re”’)—~a as r— o for almost all §. Hayman [4]
has shown that if f'is an entire function satisfying 7'(r, /)= O((log r)2), then

log [f(2)] = (1+0(M)T (|2, /)

as z— oo outside an ¢-set. Anderson [1] proved that if /is a meromorphic function such
that (e, /)=0 and

TQr,f)=T(r, f) = o(T(r,f)) (loglog r) 7,

log|f(2)| _
Tz, /) —

as z-o outside an e-set. We shall prove the following theorem.

then
d(, f)

lim inf
Theorem 1. Suppose that fis meromorphic in the finite complex plane C and that
0(e0, f)=0=0. If there exists m, O<m=log2, such that

O TQr ) =T0,f) (“ Bén‘;oégr"]

£
for all large values of v, then f(z)— o> as z—oo outside an e-set.
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The growth condition (1) with m<log 2 is more or less the best possible. The
question whether m can be replaced by log 2 in (1) remains open, but we shall show
that m cannot be larger than log 2.

Theorem 2. Forany 6 and m, 0<6=1, m=log 2, there exists a transcendental
meromorphic function f (fentire if d=1) such that (=, f)=0, f has no radial asymp-
totic values, and

@) 10 = 70, 1+ 10

for all large values of r.

On the other hand, Goldberg and Eremenko [3] and the author [7] have proved
that if ¢(r)—o as r—oo, then there exists an entire function f satisfying

€) T(r, /) = O(p(r)(log r)?)
such that if I' is any asymptotic path of £, then /(r, I')#O(r). There arises the ques-

tion whether an entire function f satisfying (3) can be constructed such that

lim inf 1

I(r, I)
—
reeo r
for any asymptotic path I'. We shall give a negative answer to this question.
Theorem 3. If f is an entire function satisfying
4 T(r,f) = O((log ™)

for some M =0, then there exists an asymptotic path I such that

®) lim inf

r—oco

I(r, 1) -1
r

Furthermore, we prove the following two theorems.

Theorem 4. Let f be an entire function of order zero. Then there exists an
asymptotic path I' such that

(6) [(r,T) = o(r'™)

for any &=0.

Theorem 5. If fis an entire function of order zero satisfying
1+e 0
) lim inf 2200 _ g

for some =0, then there exists an asymptotic path I satisfying (5).
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2. Proof of Theorem 1

Let f'satisfy the hypotheses of Theorem 1. Following Anderson [1], we choose a
finite b such that

N(r,b) = T(r, /)+O((T(r, 1))
Then it follows from (1) that
(1) n(r, b)log2 = N(2r, b)— N(r, b)
=TQr,f)=T(r, )+O((T(r, /))**)
= (14+0(1))mdT(r, f)(log log r) .
Let k be a positive integer. We choose ¢ such that

(i) log [%): —Jloglog?2¥,

where A= ((log 2)/m)"?>1. From the proof of Theorem 2 of Anderson [1] it follows
that for 2¢=|z|<2k+!

(iii) log|f(2)—b| = (6+0(D)T(|z], /)+n(2**% b)log (¢/25*?)

outside a set of circles in 2*~'=|z|=2**? the sum of whose radii is at most 32¢.
Let z, 2¥=|z|<2¥*1, lie outside these discs. From (i) and (ii) it follows that

n(2¥*2 b)log (0/2¥*+3) = — (1 +o0 (1))/?._15T(2k+2,f),
and since T(8r,f)=(140(1))T(r,f), we conclude from (iii) that
log [£(2)| = (6(1=A"Y+0o(D))T(|z], /) = (1+0(1)) log |z].

Thus log |f(z)|=(1+0(1))log |z| outside a set of circles the sum of whose radii
taken over circles meeting the set 2*=|z|=2**' is at most

O(2*exp (—Aloglog 2¥)) = O (2*k=%).

These circles subtend angles at the origin whose sum is O(k~%). Since A=>1, the
series > k~* converges, and we conclude that f(z)—< as z—o outside an e-set.
This proves Theorem 1.

3. Proof of Theorem 2

Let m=log2 and J, 0<d=1, be given. Let M =10 be a positive integer such
that
@) m(l—e M)(1—-2-M) > log 2.
We denote
(ii) o =2M5"1(1—e~M)(1-2"M)2,
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and for k=1,2, ..., weset r,=k™ and a,=r.e'”, where the angles ¢, will be speci-
fied later. Let #,=2M and 7, =2M¥-2M*=D for k=2
We shall consider the function

- z \*
£@ = (1=
k
The sequence ¢, is chosen such that n(r, 0, f;)=2M* for r,=r<r,,.,, and we see
from the choice of r, that
N1, 0, )= N(ri., 0, f1) = 2M*log (ri44/mi) = (1+0(1))2Mk°‘108 k.
This implies that
(iii) N(ri4150, f) = (1+0(1)2M*alog k(1 +27M4272M 4 )
= (1+0(1))e2M*(1—2"M)"1log k.

Now we see that n(r,0,f,)=0(N(r,0,f)) and therefore N(2r,0,f;)=(1+o0(1))-
«N(r,0,f;). Using Lemma 1 of Anderson [1] we conclude that

log M(r, /) = (1+0(D)N(r, 0, /1) = (1+0(D)T(r, /).
Then f satisfies the condition
log M(2r, f) = (1+0(1)) log M(r. f1),
and it follows from Theorem 2 of Anderson [1] that
log|£1(2)] = (1+0(D)log M(r, /) = (1+0(D)N(r, 0, f1)

(r=|z|) outside the union of the discs U(a,, r,/4).
If =1, we set f,(z)=1, and if 0<d<1, then

£ = a1+

where the sequence s, of positive integers is chosen such that

n(re, 0, f) —(1—8)2Mk| = =
for any k. Then
in(r, 0, f)—(1—=36)n(r, 0, = %

and, as above, we see that

log |f2(2)| = (1+0(D)(1=0)N(|z], 0, f1)

outside the union of the discs U(—a,, r,/4).
We set f(z)=f1(2)/fo(z). Then fis entire if =1, and for any 6, 0<d=1, f
satisfies

@iv) log |f(2)| = (14+0(1))oN(|z], 0, )
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outside the union of the discs U(a,, ,/4), and on the boundary of these discs

(v) log |f(2)| = (1+0(1)6N(|z], 0, £).
We choose a finite b such that
(vi) N(r, b,f) = T(r, ))+O((T(r, /))**).

Using Rouche’s theorem, we see from (iv) that for all large values of k,
n(r, b, f) =n(r, 0, f) = 2M¢=D
if 5/4)r._1=r=3/4)r,, and
2ME=D = p(r, b, ) = 2M*

if 3/4)r,=r=3/4)ry .. Therefore we see from (iii) that if (5/4)r_.=r<(5/4)r,
then
NQ@r,b,f)—N(r, b, f) =n(2r, b, f)log2
2M(1—-2"M)]og?2
alogk ’

=(1+0())N(, 0, f)

This implies together with (vi) and (ii) that

T N=T0 ) = (LHoM)TE N _e—M)é(iof zz—M)look ’

and we see from (i) that f satisfies the condition (2) for all large values of r.
Comparing the growth of N(r, b, f) and N(r, 0, f) we see easily that

N(r, b, f) =(1+0(1))N(r,0,1).
Then we have N(r,0,f)=(14+0(1))T(r,f), and since
N(l", °°9f) = N(rs 0>f2) = (1 —I—O(l))N(}’, O’f)(l _5)’

we conclude that J(ee, f)=0.
The function h,(z)=f(z)(1 —z/a,)~" is analytic in |z—a,|=r,/4, and we see
from (v) that

(vii)  log|h,(2)] = (1+0(1))dN(r,, 0, f)+1,log4 = (14+0(1))IN(r,, 0, f)

on the boundary of U(a,, r,/4). Then it follows from the maximum principle that £,
satisfies (vii) in U(a,, r,/4). We define ¢, by the equation

(viii) log (r,/0,) = (1—e~*)logn.
We see from (vii) that if z lies on the boundary of U(a,, 0,), then
log |f(2)| = log |h,(2)|—1, log (ru/e,)
= (1+0(1))dN(r,, 0, 1) —t,1og (r./0,).
This implies together with (iii) and (viii) that
log|f(2)] =—(1+o(D)(e™™—e=*)2""(1-2"M)logn = —(1+0(1))logn
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in U(a,, 0,), and we see that if z tends to infinity through the union of the discs
U(a,, 0,), then f(z) tends to zero.

We assume now that the angles ¢, are chosen such that ¢;=0 and ¢,.;=
outore for k=1. If @,=p=¢,., and |z/<g,/8, then the ray z=z,+re'
meets at most one of the discs U(ay, 0,) and U(ay 11, 0r+1)- It follows from (viii)
that g,~ec as n—oo and that the series > o,/r, diverges. Therefore any ray z=
Zo+re'® meets infinitely many of the discs Ul(a,, ¢,) and so

lim inf | f(zy+re'?)| = 0

for any fixed complex z, and real ¢. On the other hand, it follows from (iv) that
lim sup | f(zo+re'®?)| = oo

for any fixed z, and ¢, and we conclude that f has no radial asymptotic values. This
completes the proof of Theorem 2.

4. Proof of Theorem 4

Let f be an entire function of order zero. We may suppose that f has no radial
asymptotic values because otherwise we could choose a ray for the desired path I'.
We choose a continuous path y: [0, 1)>~C such that y(0)=0, y(f)—>e as 7-1
and

@ log |f(2)| = 3 log |z|
on 7 for all large values of |z|. We denote
B = {z€C: log|f(2)| = log |z]}.

Using (i), we choose #,, O<t,<1, such that

(i) log|f(y(1)| = 3log [y()] > 9

for t=t,. We choose ¢,>0 such that U(y(t,), ¢,) is contained in the complement
of B and that the circle |z—y(#))|=0, contains at least one point of B. Inductively,
if #,_, and g,_; (k=1) are determined, we choose #, to be the greatest value of ¢
such that the open disc

U(Y @) ly@)—y (te-D)|— Qk—l)

does not contain any point of B and that the boundary of this disc contains at least
one point of B. The radius of this disc is denoted by ¢, and, for the sake of simplicity,
we write C,=U(y(t,), ¢)- Since oo is not a radial asymptotic value of f, we see that
our process gives a denumerable collection of discs Cy. From the continuity of f'we
conclude that the points y(#,) cannot have any finite point z as a limit point. Then
y(1,)—~ as k— and, using again the fact that o is not a radial asymptotic value
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of f, we note that
(iii) Jim (Jy (8] — @) ===

The open discs C;, are mutually disjoint and the boundary circles of Cy and Cy
have exactly one point in common. Since all the discs C, are contained in the comple-
ment of B, we deduce now that log |f(z)|=log |z| on that segment which joins the
points y(t,) and y(#, 1) Let I be the path consisting of these segments. It follows from
(iii) that I is a path going from y(Z,) to <, and since log |f(z)|=log |z| on I', we
deduce that f(z)—oo, as z—e along I'.

We denote by a,, n=1,2, ..., the zeros of f, and for any finite z we set w(z)=
min {|z—a,|: n=1,2,...}. Let r=4 and |z|<4r. Then the logarithmic derivative

of f satisfies
| f(2)
J@)
Since f is of order zero,

Z:n[>r4 Ianl-l = 2:;4 r_kn(rk+15 0) = 0(r—2):

and we deduce that
: /(@)
iv
) 7G)
in |z|=4r.

We denote by /(4) the length measure of A if 4 is a set consisting of a finite
number of rectifiable arcs. For k=1, the set I'nC, consists of two radii of C.

These radii are denoted by «, and f; then clearly [(o)=I(f,)=0¢; and I(I'nCy)=
2¢0,. We denote

- 1
e

| = 0@ 0423, el

IIA

o(2) tn(*, 0)+o(r 2

I'=Tn{z:r=|z| = 2r}.

If I',np#0 and g,=r/4, we choose an open disc D, with radius dy=r/8

such that
r.np,cD,cC.nUQ,3r).

Then I(I',nf,)=2d, and the area nd{ of D, satisfies the inequality
) 1671 d? = nrl(L, 0 fy).
The discs D, are mutually disjoint and all of them are contained in U(0, 3r). There-
fore the sum of the areas of D, is at most 9nr2, and we deduce from (v) that
D= l(T0 B) = 144r = O(r).
In the same manner, we get the estimate

Zak,%r/fl l(rrn“k) = O(T)
and conclude that
(vi) l (F,m U Ck) = 0(r).

o, =r/d
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Let C, contain at least one point of r=|z|=2r and let the radius g, satisfy
(vii) r[2k+? = o, < r[2k1
for some positive integer k. Then we have l(F,me)él(FnCp)=2Qp<r/2" and
(viii) 0} = I(I', N Cr[2¢F2,
On the boundary of C, there exists a point b such that log [f(b)|=log [b|. LetJ be
the segment joining b and the centre y(t,) of C,. Then it follows from (ii) and (iv)

that
log r = 3 log |y(t,)|—log |b| = log|f(7(z,))| —log | /(b)]

f(Z) n(rt, 0) —2
fJ f(2) 1 [w(y(tp))—gp+o(r )]

For large values of r this implies that w(y (t,))=(1/8) Qpn(r4, 0), and we conclude
from (vii) that there exists n, 1=n=n(r*,0), such that

C, < U(a,, n(r*, 0)r/25*1),

Since the discs C, are mutually disjoint, we see by comparing the areas from (viii)
that
r n@, 0)r)?
S5 3 U0 C) = %, 0) [—%k—ﬂ)—] ,
where the sum is taken over those p which satisfy (vii). This implies that

(ix) r,n U C)= 4r(n(rt, 0)) >, 27K
0p<1/4
for all large values of r.
Let ¢=0 be given. We choose o such that 1<a<1+z¢. Since fis of order zero,
we see from (vi) and (ix) that /(I',)=o0(r*). We choose r, such that /(I',)<r* for
r=r,. We get for r=r,

I(r,T) = l(2r0,1")+2k°°0[2k] = 1(Q2ry, )+ 21,

and therefore we have I(r, I)=o(r'*®). This completes the proof of Theorem 4.

5. Proof of Theorems 5 and 3

Let £ be an entire function of order zero, ¢=>0, and let there exist a sequence 7,
such that limr,=c and n(ri*®,0)=0(T(r,,f)). We choose « by the equality
o®=1+¢. The method used by Anderson [1] in the proofs of Theorems 1 and 2 is
directly applicable in the ring domains r?=|z|=r%", and we may conclude that
there exist circles C,: |z|=0,, ri=0,=2r%, C: |z|=R,, r*=R,=2r¥, and a path
y, joining the circles C, and C, with I(y,)=(1+0(1))R, such that log|f(z)|>
(124+0()T(|z],f) on C,uC,uy,. From Theorem 4 it follows that there exists
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an asymptotic path I'y such that /(r, [))=0(r*). Using C,, C, and y, we may modify
Iy into a new asymptotic path I' such that

I(R,—1,T) = I(Ty, ¢)+2m0,+1(3,) = o(2riy)+ O () +(1+0(D)R,.

Since R,=r%", we conclude now that /(R,—1, )= (1+o0(1))(R,—1). This proves
Theorem 5.

Let us suppose that f is an entire function satisfying (4). We choose =0
such that T'(r,f)=0((logr)’*"*) and T(r,f)#O((logr)’). Then n(r,0,[)=
O((log r)*~"*), and there exist arbitrarily large values of r such that T'(r,f)>
(log r)’. For these values of r we have

n(r% 0,f) _ O((logr)®~*1%)
7(r, ) (logr)?

and Theorem 3 follows from Theorem 5.

= O((log r)72) = o(1),

A

Remark. I thank Doctor J. M. Anderson for informing me that my Theorem 4 is
essentially contained in Theorem 1 of Chang Kuan-Heo [6].
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