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ON THE LENGTH OF ASYMPTOTIC PATHS
OF MEROMORPHIC FUNCTIONS OF ORDER ZERO

SAKARI TOPPILA

1. Introduction

We use the usual notation of the Nevanlinna theory. We shall consider the follow-
ing problem of Erdös (Clunie and Hayman [2, Problem 2.a\): Suppose that/is an

entire function of finite order and i- is a locally rectifiable path on which f(z)**.
Let I(r, f) be the length of .f in lrl=r. Find aparh for which l(r, f) grows as slowly
as possible and estimate I(r,f) in terms of M(r,f). If/has zero order, or, more
generally, finite order, can a path .l. be found for which l(r,f):g1v) as r*-?

First we shall consider the case when we may choose a ray for i-. We denote by
U(a, r) the open disc lz-al-r. Following Hayman [4], we say that the union of the
open discs U(aoorn), n:1,2,..., is an e-set if an** as n+@ and the series

Zr"lla"l converges. We note that if f(z)-a as z+@ outside an €-set, then a is a
radial asymptotic value of f; in fact, f(reie)*a as r+ @ for almost all g. Hayman [4]
has shown that if/is an entire function satisfying T(r,f):9(11og r)2), then

tog lf(z)l : (t a o 1t1) r (lrl, f)
as z+ - outside an e-set. Anderson [l] proved that if/is a meromorphic function such

that 6(*,7)=0 and

T(2r,f)-T(r,.f) : o(r1r,1) (og log r)-1,
then

,t^iotffi= ö(*,J)

as z+@ outside an €-set. We shall prove the following theorem.

Theorem 1. Suppose that /'is meromorphic in thefinite complex plane C and that
ö(-,;f):j20. If there exists m, O<m<log2, such that

(1)

fo, all large aalues of r, then f(t)+ oo as z+ @ outside an *set.
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The growth condition (1) with 7n=log2 is more or less the best possible. The
question whether m canbe replaced by log 2 in (l) remains open, but we shall show

that m cannot be larger than log2.

Theorem 2. For any ö and m, 0=ä< l, m>log2, there exists a transcendental

meromorphicfunctionf(f entireif ö:l) suchthat ö(-,f1:ö, f has no radial asymp-
totic aalues, and

(2) r(2r,fl = r(r,fl(t."ffi")
for all large tsalues of r.

On the other hand, Goldberg and Eremenko [3] and t]re author [7] have proved
that if q(r)-* as r+6, then there exists an entire function/satisfying

(3) T(r,.f): O(rp(r)(loer)\

such that if .f is any asymptotic path of f, then l(r, f)*O (r). There arises the ques-

tion whether an entire function / satisfying (3) can be constructed such that

I(r, r) =,tulllnr-

for any asymptotic path i-. We shall give a negative answer to this question.

Theorem 3. If f is an entire function satisfying

(4) r(r,f): o((log r)')

for some M=0, then there.exists an asymptotic path f such that

(5) li* inf /(t:'r) :1.
r+@ f

Furtåermore, we prove the following two theorems.

Theorem 4. Let f be an entire function of order zero. Then there exists an
asymptotic path f such that

(o l(r' D: o(r1+")

for any e>0.

Theorem 5. If f is an entire function of order zero satisfying

(7) riP^rw:o
for some r =0, then there exists on asymptotic path f satisfying (5).
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2. Proof of Theorem 1

Let/satisfy the hypotheses of Theorem 1. Following Anderson [1], we choose a
finite å such that

N(r, b) : T(r,J)*O(r1r,i1't1.
Then it follows from (1) that

(i) n(r, b)log2 = N(2r, b\- N(r, b)

= T Qr, f) - T (r, f) r O ((T (r, f))rr )
= (t + o 1t))måT (r, f)Qoglog r) -1.

Let k be a positive integer. We choose q such that

(ii) r"r(,ff*): -).togtos2k,

where 2: ((log2)lm)tt2>1. From the proof of Theorem 2 of Anderson [1] it follows
that for 2k=lsl<)t+r

(iir) loslf(z)-bl = (ä+o1t))r(lzl,.fl+n(2o+', b)tog(pl2k+s)

outside a set of circles in 2k-r<l"l=2o*', the sum of whose radii is at most 32q.
Let z, 2k=lrl-20+', lie outside these discs. From (i) and (ii) it follows that

n(2t'+2, b)log(pl2k+t) = - (1+o(1)),1-1 6T(2k+2,f),

and since T(8r,f):(1+o1t;)f1r,/), we conclude from (iii) that

toglf(z)l > (6(1-.1-) +oT))r(lzl,n = (r+o(1)) toglzl.

Thus log lf@)l=(1+o(t1)log lzl outside a set of circles the sum of whose radii
taken over circles meeting the set 2k=lzl=2*+1 is at most

O (2k exp (- ).loglog2k)) : O (21' k-^).

These circles subtend angles at the origin whose sum is O(k-^). Since 1=1, the
series)k-r converges, and we conclude that f(z)-- as z+@ outside an s-set.

This proves Theorem 1.

3. Proof of Theorem 2

Let m>log2 and ö, 0=ä< 1, be given. Let M>10 be a positive integer such

that
(r) m(I-e-M)(l-2-M) >log2.

We denote

(ii) o-2a5-t(l-e-M)G-2-M)2,
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andfor k:1,2,..., wo set ro-k"k and ao:rrsiou, wheretheanglesglwillbespeci-
fied later. Let tr:)M and tr:2Mk-2M(k-t) for k>2.

We shall consider the function
t t-Ll'*.fr(z): .[år I a*)

The sequence Q is chosen such that n(r,0,f1):2Mk for rh=r<rk+L, and we see

from the choice of ro that

N(ro*r,0, f)- N(r1,,0, fr) : 2Mk log(ro*rlr) : (l+ o(l))2Mk d.logk.

This implies that

(iii) N(ro*,., 0, -fr) : (1+o(1))2Me ulogk(I*2-M +2-M + ...)

: (t +o1t))a2Mk(l-2-M)-1log k.

Now we see that n(r, O,f1):o(N(r, 0,fi)) and therefore NQr, 0, fr):(l +o1t;) .

.N(r,O,ft). Using Lemma I of Anderson [1] we conclude that

lo s M (r, fr) : (1 a o (1))Ir @, 0,.f,) : (1 + o 1t))r 0, .fr).

Then / satisfies the condition

log M Qr, fr) : (1 + o (1)) log M (r, fr),

and it follows from Theorem 2 of Anderson [1] that

log lfr(z)l : (t + o (t) tos M (r, f,) : (t + o (1))n Q, o, f,)

(r:lzl) outside the union of the discs [I(an,r,l|).
If ö:1, we set fr(z)=t, and if 0=ö=1, then

.f,(z): II;=,(r+z)".,

where the sequence ^1 of positive integers is chosen such tåat

ln (r 1,, 0, fr\ - (1 - ö) 2Mkl <- +
for any k. Then

ln(r,0, f)-(-ö)n(r,0, fr)l = f,

and, as above, we see that

toe lfr(z\l : (t + o 1t) 1t - ö) N (lzl, 0, f,)

outside the union of the discs U(-ao,rnl4).
We set f("):fr@)lfr(z). Then/is entire if ä=1, and for any ö; 0<ö=1, f

satisfies

(iv) rselfk)l = (1+o(1))å N(lzl, 0, f)
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outside the union of the discs U(ao, rof 4), and on the boundary of these discs

(v) toglf(z)l: (t1o1t;)aN(lzl,o,f).

We choose a finite å such that

(vr) N(r, b,fl : T(r,f)+O((T(r, f))tt).
Using Rouche's theorem, we see from (iv) that for all large values of ft,

n (r, b, fl : n(r, 0, fl : zM(k-L)

if (5 14) r o-r= r =(3 | 4) ro, and,

2M(k-t, = n(r, b, f) = 2Mk

if (314)ro=r=(314)ro*r. Therefore we see from (iii) that if (5|4)ro-t=r<.(514)11,,
then

NQr,b,fl- N(r, b,J) = n(2r, b,f)log2

= (t +o1t)).rr e, o, fl !!44-!E2.
alogk

This implies together with (vi) and (ii) that

T (2r, fl - -r (r, fl 4 (1 + o 11)r1r, n ffi ,

and we see from Q) that f satisfies the condition (2) for all large values of r.
Comparing the growth of N(r, b,f) and N(r,0,f) we see easily that

N(r, b,f): (t+o1t))lf (r,0,J).

Then we have N(r,0,f):(l+o!))fQ,fl, and since

N (r, *, f) : If (r, o,.fr) : (t + o 1t),nf 1r, 0, f)(t - ö),

we conclude that ö(a,f):6.
The function h"(z):f (z)(l-zlan)-t" is analytic in lz-a,l=rol4, and we see

from (v) that

(vii) loglh"(z)l = (t+o1t;)A N(r,,O,f)*tolog4 = (1+o(1))ä N(r,,0,f)
on the boundary of U(ao, r,l4). Then it follows from the maximum principle thatho
satisfies (vii) in U(a,,r,14). We define qn by the equation

(viii) log(r,lq) : (l-e-zM)logn.

We see from (vii) that if z lies on the boundary of U(an, g,), then

loglf(z)l : loe lh"(z)l- tnlog (r,! e)

= (1 + o(l)) öN (r,, 0, f) - tnlog (r*l g).

This implies together with (iii) and (viii) that

toslf(z)l = - (1 + o (t))7e-u - " 
-za72u" 11 -2-u) log n = - (1 + o (1)) tog n
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in (J(an, qo), and we see that if z tends to infinity through the union of the discs

U(an, Qn), then f(z) tends to zero.

We assume now that the angles Ek arc chosen such that 9r:0 and Q*+t:
E**Q*frt for k=1. lf cpo=E=E *, and lzol<qpl8, then the ray z=zo+reie
meets at most one of the discs U(ae, go) and U(oo*r, Qr+r). It follows from (viii)
that qo*- as n+@ and that the series ZQnlr, diverges. Therefore an! ta]o z:
zs*reie meets infinitely many of the discs U(an, qn) and so

liminf lf(zo*reir)l: 0

for any fixed complex zo and real E. On the other hand, it follows from (iv) that

lim sup lf(zr+reio11 : *

for any fixed zo and E, and we conclude thatf has no radial asymptotic values. This

completes the proof of Theorem 2.

4. Proof of Theorem 4

Let f be an entire function of order zero. We may suppose that f has no radial
asymptotic values because otherwise we could choose a ray fot the desired path f.
We choose a continuous path y: [0,1)*C such that ?(0):0, y(t)*- as l*1
and

(D toslf(z)l = 3toelzl

on y for all large values of lzl. We denote

3: {z€C: loglf(z)l = log lzl}.

Using (i), we choose /e, 0<16<1, such that

ros lf0(4)l > 31os ly(r)l = e

for t>to. We choose go>0 such that U(y(t), eo) is contained in the complement

of .B and that the cfucle lz-y(/o)l:qo contains at least one point of B. Inductively,
if tr-, and gp-1 (k=l) are determinedo we choose toto be the greatest value of t
such that the open disc

u(v (t), lY Q) -Y (to)l - so- J

does not contain any point of B and that the boundary of this disc contains at least

one point of B. The radius of this disc is denoted by g, and, for the sake of simplicity,

we write Co:U(y(t*), cr). Since - is not a radial asymptotic value ofl we see that
our process gives a denumerable collection of discs C1 . From the continuity of/we
conclude that the points ),(le) cannot have any finite point z as a limit point. Then
y(t)- e a,g /s+e and, using again the factthat - is not a radial asymptotic value

(ii)
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Jg QvQ)l -sJ-oo
The open discs Co are mutually disjoint and the boundary circles of Cp and Cp..1

have exactly one point in common. Since all the discs Crare contained in the comple-

ment of B, we deduce now that log lf(z)l=log lzl on that segment which joins the

points y (to) and y (tr+J. Let f be the path consisting of these segments. It follows from
(iii) that l- is a path going from y(ro) f6 e, ånd since log lf(z)l>log lzl on i-, we

deduce that f(z)* -2 ts s+ a along f .

We denote by ao, n:1,2, ..., the zeros of f, and for any finite z we set o(z):
mn{lz-a,l: n:1,2,...}. Let r>4 and lzl=4r. Then the logarithmic derivative

of/ satisfies

l#l : lz 
z' fi| =- 

""' 
-' n ('n' o) + z z v ̂

t 
- t' la ll -L'

Since / is of order zero,

2io,1-,nlo,l-' = Zi:nr-k nTro*t, 0) : o (r-z),

and we deduce that

of f, we note that
(iii)

(iv)

in ltl= r.
We denote by l(A) the length measure of A if A is a set consisting of a finite

number of rectifiable arcs. For k>1, the set i-nCo consists of two radii of C*.

These radii are denoted by ae and fr*; then clearly l(u):l(f):go and I(f nC):
2q. We denote

l,--f n{z: r=lzl=2r}.
lf f ,nBr*0 and py>r14, we choose an open disc Do with radius dp>-rl8

such that 
f ,^ frn c Do c con{J(,,3r).

Then /(r',n B)=2do and the area ndl of Do satisfies the inequality

(v) I6nd7,=nrl(f,^f*).

The discs Do arc mutually disjoint and all of them are contained in U(0, 3r). There-

fore the sum of the areas of Do is at most 9nr2, and we deduce from (v) that

Zpu=,ttl(f ,a B) = l44r : O(r).

In the same manner, we get the estimate

)au=rlal(rrndr) -o(r)

t(r,n U cx)-o(r).
Qu=r 14

and conclude that
(vi)
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LetC, contain at least one point of r<lzl=2r and let the radius Q, satisfy

(vii) rl2o*2= Qp=rf2r+t

for some positive integer k. Then we have l(f,nC)=l(f aCr):2en=rl2k and

(viii) a7=I(r,^Cp)rf2k+3.

On the boundary of C, there exists a point b such that log l/(b)l:loglbl. LetJ be

the segment joining å and the centre y(t ) of Cr. Then it follows from (ii) and (iv)

that
log r = 3log ly(DI*log lbl =toglf(y(t,))l-tog Kall

=V, # a "l = e,(affih+, r"-))

For large values of r this implies that a(y(t))=(ll8)qrn(r4,0), and we conclude

from (vii) that there exists n, l=n=n(rq,0), such that

Co c (J(an, n(ra,0)rl2k+L).

Since the discs C, are mutually disjoint, we see by comparing the areas from (viii)

that

=,fo Z t(r,nco) = n(ra,o) (4;P)',
where the sum is taken over those p which satisfy (vii). This implies that

(ir) ,(r,.' U Cr) = 4r(n(rn, O!)a 2;'Z-k-r
ae<Ll4

for all large values of r.
Let e >0 be given. We choose q such that 1 < a< I *e' Since/is of order zero,

we see from (vi) and (ix) that /(i-,):a(r"). We choose rs such tlto;t l(f ,)<.r" for
r>ro. We get for r>ro

I(r, D =

and therefore we have I

I(2r0, r) + Z;--r(+)' = t(2r0, r) t2ro,

(r, f) - o(rt*'). This completes the proof of Theorem 4.

5. Proof of Theorems 5 anil 3

Letf be an entire function of order zero, 8>0, and let there exist a sequence ru

such that limrn:- and n(r!+",0):o(T(r,,f)). W" choose a by the equality

c5:1*e. The method used by Anderson [1] in the proofs of Theorems I and 2 is
directly applicable in the ring domains rl<lzl=rin, and we may conclude that
there exist circles Co: lzl:qn, rlr=qn=2rf;, C'": lzl:R,, t'=Rn€2å", and a path

y, joining the circles Cn and C',with l(y,):(1+o(1))& such that loglf(z)l=
(112+o(\)f(lzl,f) on C',vC,vyo. From Theorem 4 it follows that there exists
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an asymptotic path Io such that l(r,lo):o(r"). Using C,, Ci and?r we may modify
fo into a new asymptotic path i- such that

l (.Rn - 1, r) = t (r o, a) + ?:ft a, + t (y,) : o ((2rfi)) + o 1rX1 a1 1 + o (1))& .

Since R,>ri', w€ conclude now that I(R -1,f;:(t+o(t)X&-1). This proves

Theorem 5.

Let us suppose that f is an entire function satisfying (a). We choose ä =0
such that T(r,fl:g(1log r;t+riz; and T(r,fl+O((logr)ö). Then n(r,0,f):
O((log r)ö-uz), and there exist arbitrarily large values of r such that T(r,f)>
(log r)6. For these values of r we have

n(r', o,L= o(l?e r)1, u') : o((loe r)-uz) : o(!),
-Gn- = -_-(tor6--

and Theorem 3 follows from Theorem 5.

Remark. I thank Doctor J. M. Anderson for informing me that my Theorem 4 is

essentially contained in Theorem 1 of Chang Kuan-Heo [6].
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