Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 9, 1984, 79–87

ON THE LENGTH OF ASYMPTOTIC PATHS OF MEROMORPHIC FUNCTIONS OF ORDER ZERO

SAKARI TOPPILA

1. Introduction

We use the usual notation of the Nevanlinna theory. We shall consider the following problem of Erdös (Clunie and Hayman [2, Problem 2.41]): Suppose that f is an entire function of finite order and Γ is a locally rectifiable path on which $f(z) \rightarrow \infty$. Let $l(r, \Gamma)$ be the length of Γ in $|z| \leq r$. Find a path for which $l(r, \Gamma)$ grows as slowly as possible and estimate $l(r, \Gamma)$ in terms of M(r, f). If f has zero order, or, more generally, finite order, can a path Γ be found for which $l(r, \Gamma)=O(r)$ as $r \rightarrow \infty$?

First we shall consider the case when we may choose a ray for Γ . We denote by U(a, r) the open disc |z-a| < r. Following Hayman [4], we say that the union of the open discs $U(a_n, r_n)$, n=1, 2, ..., is an ε -set if $a_n \to \infty$ as $n \to \infty$ and the series $\sum r_n/|a_n|$ converges. We note that if $f(z) \to a$ as $z \to \infty$ outside an ε -set, then a is a radial asymptotic value of f; in fact, $f(re^{i\theta}) \to a$ as $r \to \infty$ for almost all θ . Hayman [4] has shown that if f is an entire function satisfying $T(r, f) = O((\log r)^2)$, then

$$\log |f(z)| = (1 + o(1))T(|z|, f)$$

as $z \to \infty$ outside an ε -set. And erson [1] proved that if f is a meromorphic function such that $\delta(\infty, f) > 0$ and

then

$$T(2r, f) - T(r, f) = o(T(r, f))(\log \log r)^{-1}$$

$$\liminf \frac{\log |f(z)|}{T(|z|, f)} \ge \delta(\infty, f)$$

as $z \rightarrow \infty$ outside an ε -set. We shall prove the following theorem.

Theorem 1. Suppose that f is meromorphic in the finite complex plane C and that $\delta(\infty, f) = \delta > 0$. If there exists m, $0 < m < \log 2$, such that

(1)
$$T(2r,f) \leq T(r,f) \left(1 + \frac{m\delta}{\log\log r} \right)$$

for all large values of r, then $f(z) \rightarrow \infty$ as $z \rightarrow \infty$ outside an ε -set.

doi:10.5186/aasfm.1984.0912

The growth condition (1) with $m < \log 2$ is more or less the best possible. The question whether *m* can be replaced by $\log 2$ in (1) remains open, but we shall show that *m* cannot be larger than $\log 2$.

Theorem 2. For any δ and m, $0 < \delta \le 1$, $m > \log 2$, there exists a transcendental meromorphic function $f(fentire if \delta = 1)$ such that $\delta(\infty, f) = \delta$, f has no radial asymptotic values, and

(2)
$$T(2r, f) \leq T(r, f) \left(1 + \frac{m\delta}{\log \log r} \right)$$

for all large values of r.

On the other hand, Goldberg and Eremenko [3] and the author [7] have proved that if $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, then there exists an entire function f satisfying

(3)
$$T(r,f) = O(\varphi(r)(\log r)^2)$$

such that if Γ is any asymptotic path of f, then $l(r, \Gamma) \neq O(r)$. There arises the question whether an entire function f satisfying (3) can be constructed such that

$$\liminf_{r \to \infty} \frac{l(r, \Gamma)}{r} > 1$$

for any asymptotic path Γ . We shall give a negative answer to this question.

Theorem 3. If f is an entire function satisfying

(4)
$$T(r,f) = O\left((\log r)^M\right)$$

for some M>0, then there exists an asymptotic path Γ such that

(5)
$$\liminf_{r \to \infty} \frac{l(r, \Gamma)}{r} = 1.$$

Furthermore, we prove the following two theorems.

Theorem 4. Let f be an entire function of order zero. Then there exists an asymptotic path Γ such that

(6)
$$l(r, \Gamma) = o(r^{1+\varepsilon})$$

for any $\varepsilon > 0$.

Theorem 5. If f is an entire function of order zero satisfying

(7)
$$\liminf_{r \to \infty} \frac{n(r^{1+\varepsilon}, 0, f)}{T(r, f)} = 0$$

for some $\varepsilon > 0$, then there exists an asymptotic path Γ satisfying (5).

2. Proof of Theorem 1

Let f satisfy the hypotheses of Theorem 1. Following Anderson [1], we choose a finite b such that

$$N(r, b) = T(r, f) + O((T(r, f))^{3/4}).$$

Then it follows from (1) that

(i)
$$n(r, b) \log 2 \leq N(2r, b) - N(r, b)$$

 $\leq T(2r, f) - T(r, f) + O((T(r, f))^{3/4})$
 $\leq (1 + o(1))m\delta T(r, f)(\log \log r)^{-1}.$

Let k be a positive integer. We choose ρ such that

(ii)
$$\log\left(\frac{\varrho}{2^{k+3}}\right) = -\lambda \log \log 2^k,$$

where $\lambda = ((\log 2)/m)^{1/2} > 1$. From the proof of Theorem 2 of Anderson [1] it follows that for $2^{k} \leq |z| < 2^{k+1}$

(iii)
$$\log |f(z) - b| \ge (\delta + o(1))T(|z|, f) + n(2^{k+2}, b)\log(\varrho/2^{k+3})$$

outside a set of circles in $2^{k-1} \leq |z| \leq 2^{k+2}$, the sum of whose radii is at most 32ϱ . Let z, $2^k \leq |z| < 2^{k+1}$, lie outside these discs. From (i) and (ii) it follows that

$$n(2^{k+2}, b) \log (\varrho/2^{k+3}) \ge -(1+o(1))\lambda^{-1}\delta T(2^{k+2}, f),$$

and since T(8r, f) = (1 + o(1))T(r, f), we conclude from (iii) that

$$\log |f(z)| > (\delta(1-\lambda^{-1})+o(1))T(|z|,f) > (1+o(1))\log |z|.$$

Thus $\log |f(z)| \ge (1+o(1)) \log |z|$ outside a set of circles the sum of whose radii taken over circles meeting the set $2^k \leq |z| \leq 2^{k+1}$ is at most

$$O(2^k \exp(-\lambda \log \log 2^k)) = O(2^k k^{-\lambda}).$$

These circles subtend angles at the origin whose sum is $O(k^{-\lambda})$. Since $\lambda > 1$, the series $\sum k^{-\lambda}$ converges, and we conclude that $f(z) \to \infty$ as $z \to \infty$ outside an ε -set. This proves Theorem 1.

3. Proof of Theorem 2

Let $m > \log 2$ and δ , $0 < \delta \le 1$, be given. Let M > 10 be a positive integer such that $m(1-e^{-M})(1-2^{-M}) > \log 2.$

(i)

We denote

$$\alpha = 2^M \delta^{-1} (1 - e^{-M}) (1 - 2^{-M})^2,$$

(ii)

and for k=1, 2, ..., we set $r_k = k^{\alpha k}$ and $a_k = r_k e^{i\varphi_k}$, where the angles φ_k will be specified later. Let $t_1 = 2^M$ and $t_k = 2^{Mk} - 2^{M(k-1)}$ for $k \ge 2$.

We shall consider the function

$$f_1(z) = \prod_{k=1}^{\infty} \left(1 - \frac{z}{a_k} \right)^{\iota_k}.$$

The sequence t_k is chosen such that $n(r, 0, f_1) = 2^{Mk}$ for $r_k \leq r < r_{k+1}$, and we see from the choice of r_k that

$$N(r_{k+1}, 0, f_1) - N(r_k, 0, f_1) = 2^{Mk} \log(r_{k+1}/r_k) = (1 + o(1)) 2^{Mk} \alpha \log k.$$

This implies that

(iii)

$$N(r_{k+1}, 0, f_1) = (1+o(1))2^{Mk} \alpha \log k(1+2^{-M}+2^{-2M}+...)$$
$$= (1+o(1))\alpha 2^{Mk}(1-2^{-M})^{-1}\log k.$$

Now we see that $n(r, 0, f_1) = o(N(r, 0, f_1))$ and therefore $N(2r, 0, f_1) = (1+o(1)) \cdot N(r, 0, f_1)$. Using Lemma 1 of Anderson [1] we conclude that

$$\log M(r, f_1) = (1 + o(1))N(r, 0, f_1) = (1 + o(1))T(r, f_1).$$

Then f satisfies the condition

$$\log M(2r, f_1) = (1 + o(1)) \log M(r, f_1),$$

and it follows from Theorem 2 of Anderson [1] that

$$\log |f_1(z)| = (1 + o(1)) \log M(r, f_1) = (1 + o(1))N(r, 0, f_1)$$

(r=|z|) outside the union of the discs $U(a_n, r_n/4)$. If $\delta=1$, we set $f_2(z)\equiv 1$, and if $0 < \delta < 1$, then

$$f_2(z) = \prod_{k=1}^{\infty} \left(1 + \frac{z}{a_k} \right)^{s_k},$$

where the sequence s_k of positive integers is chosen such that

$$|n(r_k, 0, f_2) - (1 - \delta)2^{Mk}| \leq \frac{1}{2}$$

for any k. Then

$$|n(r, 0, f_2) - (1 - \delta)n(r, 0, f_1)| \le \frac{1}{2}$$

and, as above, we see that

$$\log |f_2(z)| = (1 + o(1))(1 - \delta)N(|z|, 0, f_1)$$

outside the union of the discs $U(-a_n, r_n/4)$.

We set $f(z)=f_1(z)/f_2(z)$. Then f is entire if $\delta=1$, and for any δ , $0 < \delta \le 1$, f satisfies

(iv)
$$\log |f(z)| \ge (1+o(1))\delta N(|z|, 0, f)$$

outside the union of the discs $U(a_n, r_n/4)$, and on the boundary of these discs

(v)
$$\log |f(z)| = (1+o(1))\delta N(|z|, 0, f).$$

We choose a finite b such that

(vi)
$$N(r, b, f) = T(r, f) + O((T(r, f))^{3/4}).$$

Using Rouche's theorem, we see from (iv) that for all large values of k,

$$n(r, b, f) = n(r, 0, f) = 2^{M(k-1)}$$

if $(5/4)r_{k-1} \leq r \leq (3/4)r_k$, and

$$2^{M(k-1)} \le n(r, b, f) \le 2^{Mk}$$

if $(3/4)r_k \le r \le (3/4)r_{k+1}$. Therefore we see from (iii) that if $(5/4)r_{k-1} \le r < (5/4)r_k$, then

$$N(2r, b, f) - N(r, b, f) \le n(2r, b, f) \log 2$$

$$\leq (1+o(1))N(r, 0, f) \frac{2^{M}(1-2^{-M})\log 2}{\alpha \log k}$$

This implies together with (vi) and (ii) that

$$T(2r,f) - T(r,f) \leq (1+o(1))T(r,f) \frac{\partial \log 2}{(1-e^{-M})(1-2^{-M})\log k},$$

and we see from (i) that f satisfies the condition (2) for all large values of r.

Comparing the growth of N(r, b, f) and N(r, 0, f) we see easily that

$$N(r, b, f) = (1 + o(1))N(r, 0, f).$$

Then we have N(r, 0, f) = (1+o(1))T(r, f), and since

$$N(r, \infty, f) = N(r, 0, f_2) = (1 + o(1))N(r, 0, f)(1 - \delta),$$

we conclude that $\delta(\infty, f) = \delta$.

The function $h_n(z)=f(z)(1-z/a_n)^{-t_n}$ is analytic in $|z-a_n| \le r_n/4$, and we see from (v) that

(vii)
$$\log |h_n(z)| \le (1+o(1))\delta N(r_n, 0, f) + t_n \log 4 \le (1+o(1))\delta N(r_n, 0, f)$$

on the boundary of $U(a_n, r_n/4)$. Then it follows from the maximum principle that h_n satisfies (vii) in $U(a_n, r_n/4)$. We define ϱ_n by the equation

(viii)
$$\log (r_n/\varrho_n) = (1 - e^{-2M}) \log n.$$

We see from (vii) that if z lies on the boundary of $U(a_n, \rho_n)$, then

$$\log |f(z)| = \log |h_n(z)| - t_n \log (r_n/\varrho_n)$$

$$\leq (1 + o(1)) \delta N(r_n, 0, f) - t_n \log (r_n/\varrho_n).$$

This implies together with (iii) and (viii) that

$$\log |f(z)| \le -(1+o(1))(e^{-M}-e^{-2M})2^{Mn}(1-2^{-M})\log n \le -(1+o(1))\log n$$

in $U(a_n, \varrho_n)$, and we see that if z tends to infinity through the union of the discs $U(a_n, \varrho_n)$, then f(z) tends to zero.

We assume now that the angles φ_k are chosen such that $\varphi_1=0$ and $\varphi_{k+1}=\varphi_k+\varrho_k/r_k$ for $k\geq 1$. If $\varphi_k\leq \varphi\leq \varphi_{k+1}$ and $|z_0|<\varrho_k/8$, then the ray $z=z_0+re^{i\varphi}$ meets at most one of the discs $U(a_k, \varrho_k)$ and $U(a_{k+1}, \varrho_{k+1})$. It follows from (viii) that $\varrho_n \rightarrow \infty$ as $n \rightarrow \infty$ and that the series $\sum \varrho_n/r_n$ diverges. Therefore any ray $z=z_0+re^{i\varphi}$ meets infinitely many of the discs $U(a_n, \varrho_n)$ and so

$$\liminf_{r \to \infty} |f(z_0 + re^{i\varphi})| = 0$$

for any fixed complex z_0 and real φ . On the other hand, it follows from (iv) that

$$\limsup_{r \to \infty} |f(z_0 + re^{i\varphi})| = \infty$$

for any fixed z_0 and φ , and we conclude that f has no radial asymptotic values. This completes the proof of Theorem 2.

4. Proof of Theorem 4

Let f be an entire function of order zero. We may suppose that f has no radial asymptotic values because otherwise we could choose a ray for the desired path Γ . We choose a continuous path $\gamma: [0, 1) \rightarrow C$ such that $\gamma(0)=0, \gamma(t) \rightarrow \infty$ as $t \rightarrow 1$ and

(i)
$$\log |f(z)| \ge 3 \log |z|$$

on γ for all large values of |z|. We denote

 $B = \{z \in C: \log |f(z)| \le \log |z|\}.$

Using (i), we choose t_0 , $0 < t_0 < 1$, such that

(ii)
$$\log |f(\gamma(t))| \ge 3 \log |\gamma(t)| > 9$$

for $t \ge t_0$. We choose $\varrho_0 > 0$ such that $U(\gamma(t_0), \varrho_0)$ is contained in the complement of *B* and that the circle $|z - \gamma(t_0)| = \varrho_0$ contains at least one point of *B*. Inductively, if t_{k-1} and ϱ_{k-1} ($k \ge 1$) are determined, we choose t_k to be the greatest value of *t* such that the open disc

$$U(\gamma(t_k), |\gamma(t_k) - \gamma(t_{k-1})| - \varrho_{k-1})$$

does not contain any point of B and that the boundary of this disc contains at least one point of B. The radius of this disc is denoted by ϱ_n and, for the sake of simplicity, we write $C_k = U(\gamma(t_k), \varrho_k)$. Since ∞ is not a radial asymptotic value of f, we see that our process gives a denumerable collection of discs C_k . From the continuity of f we conclude that the points $\gamma(t_k)$ cannot have any finite point z as a limit point. Then $\gamma(t_k) \to \infty$ as $k \to \infty$ and, using again the fact that ∞ is not a radial asymptotic value of *f*, we note that (iii)

$$\lim_{k \to \infty} \left(|\gamma(t_k)| - \varrho_k \right) = \infty.$$

The open discs C_k are mutually disjoint and the boundary circles of C_k and C_{k+1} have exactly one point in common. Since all the discs C_k are contained in the complement of B, we deduce now that $\log |f(z)| \ge \log |z|$ on that segment which joins the points $\gamma(t_k)$ and $\gamma(t_{k+1})$. Let Γ be the path consisting of these segments. It follows from (iii) that Γ is a path going from $\gamma(t_0)$ to ∞ , and since $\log |f(z)| \ge \log |z|$ on Γ , we deduce that $f(z) \to \infty$, as $z \to \infty$ along Γ .

We denote by a_n , n=1, 2, ..., the zeros of f, and for any finite z we set $\omega(z) = \min\{|z-a_n|: n=1, 2, ...\}$. Let r>4 and |z|<4r. Then the logarithmic derivative of f satisfies

$$\left|\frac{f'(z)}{f(z)}\right| = \left|\sum_{n=1}^{\infty} \frac{1}{z - a_n}\right| \le \omega(z)^{-1} n(r^4, 0) + 2\sum_{|a_n| > r^4} |a_n|^{-1}.$$

Since f is of order zero,

$$\sum_{|a_n|>r^4}^{\infty} |a_n|^{-1} \leq \sum_{k=4}^{\infty} r^{-k} n(r^{k+1}, 0) = o(r^{-2}),$$

and we deduce that

$$\left|\frac{f'(z)}{f(z)}\right| \le \omega(z)^{-1} n(r^4, 0) + o(r^{-2})$$

in $|z| \leq 4r$.

(iv)

We denote by l(A) the length measure of A if A is a set consisting of a finite number of rectifiable arcs. For $k \ge 1$, the set $\Gamma \cap C_k$ consists of two radii of C_k . These radii are denoted by α_k and β_k ; then clearly $l(\alpha_k) = l(\beta_k) = \varrho_k$ and $l(\Gamma \cap C_k) = 2\varrho_k$. We denote

$$\Gamma_r = \Gamma \cap \{z \colon r \le |z| \le 2r\}.$$

If $\Gamma_r \cap \beta_k \neq \emptyset$ and $\varrho_k \geq r/4$, we choose an open disc D_k with radius $d_k \geq r/8$ such that

$$\Gamma_r \cap \beta_k \subset D_k \subset C_k \cap U(0, 3r).$$

Then $l(\Gamma_k \cap \beta_k) \leq 2d_k$ and the area πd_k^2 of D_k satisfies the inequality

(v)
$$16\pi d_k^2 \ge \pi r l(\Gamma_r \cap \beta_k)$$

l

The discs D_k are mutually disjoint and all of them are contained in U(0, 3r). Therefore the sum of the areas of D_k is at most $9\pi r^2$, and we deduce from (v) that

$$\sum_{\beta_k \ge r/4} l(\Gamma_r \cap \beta_k) \le 144r = O(r).$$

In the same manner, we get the estimate

$$\sum_{\alpha_{r} \geq r/4} l(\Gamma_{r} \cap \alpha_{k}) = O(r)$$

and conclude that (vi)

$$(\Gamma_r \cap \bigcup_{\varrho_k \ge r/4} C_k) = O(r).$$

Let C_p contain at least one point of $r \le |z| \le 2r$ and let the radius ϱ_p satisfy (vii) $r/2^{k+2} \le \varrho_p < r/2^{k+1}$

for some positive integer k. Then we have $l(\Gamma_r \cap C_p) \leq l(\Gamma \cap C_p) = 2\varrho_p < r/2^k$ and (viii) $\varrho_p^2 \geq l(\Gamma_r \cap C_p)r/2^{k+3}$.

On the boundary of C_p there exists a point b such that $\log |f(b)| = \log |b|$. Let J be the segment joining b and the centre $\gamma(t_p)$ of C_p . Then it follows from (ii) and (iv) that

$$\log r \leq 3 \log |\gamma(t_p)| - \log |b| \leq \log |f(\gamma(t_p))| - \log |f(b)|$$
$$\leq \left| \int_J \frac{f'(z)}{f(z)} dz \right| \leq \varrho_p \left(\frac{n(r^4, 0)}{\omega(\gamma(t_p)) - \varrho_p} + o(r^{-2}) \right).$$

For large values of r this implies that $\omega(\gamma(t_p)) \leq (1/8) \varrho_p n(r^4, 0)$, and we conclude from (vii) that there exists n, $1 \leq n \leq n(r^4, 0)$, such that

$$C_p \subset U(a_n, n(r^4, 0)r/2^{k+1}).$$

Since the discs C_p are mutually disjoint, we see by comparing the areas from (viii) that

$$\frac{r}{2^{k+3}} \sum l(\Gamma_r \cap C_p) \le n(r^4, 0) \left(\frac{n(r^4, 0)r}{2^{k+1}}\right)^2,$$

1

where the sum is taken over those p which satisfy (vii). This implies that

(ix)
$$l(\Gamma_r \cap \bigcup_{\varrho_p < 1/4} C_p) \le 4r(n(r^4, 0))^3 \sum_{k=1}^{\infty} 2^{-k-1}$$

for all large values of r.

Let $\varepsilon > 0$ be given. We choose α such that $1 < \alpha < 1 + \varepsilon$. Since f is of order zero, we see from (vi) and (ix) that $l(\Gamma_r) = o(r^{\alpha})$. We choose r_0 such that $l(\Gamma_r) < r^{\alpha}$ for $r \ge r_0$. We get for $r > r_0$

$$l(r,\Gamma) \leq l(2r_0,\Gamma) + \sum_{k=0}^{\infty} \left(\frac{r}{2^k}\right)^{\alpha} \leq l(2r_0,\Gamma) + 2r^{\alpha},$$

and therefore we have $l(r, \Gamma) = o(r^{1+\varepsilon})$. This completes the proof of Theorem 4.

5. Proof of Theorems 5 and 3

Let f be an entire function of order zero, $\varepsilon > 0$, and let there exist a sequence r_n such that $\lim r_n = \infty$ and $n(r_n^{1+\varepsilon}, 0) = o(T(r_n, f))$. We choose α by the equality $\alpha^5 = 1 + \varepsilon$. The method used by Anderson [1] in the proofs of Theorems 1 and 2 is directly applicable in the ring domains $r_n^{\alpha} \le |z| \le r_n^{\alpha^4}$, and we may conclude that there exist circles C_n : $|z| = \varrho_n$, $r_n^{\alpha} \le \varrho_n \le 2r_n^{\alpha}$, C'_n : $|z| = R_n$, $r_n^{\alpha^3} \le R_n \le 2r_n^{\alpha^3}$, and a path γ_n joining the circles C_n and C'_n with $l(\gamma_n) = (1+o(1))R_n$ such that $\log |f(z)| > (1/2+o(1))T(|z|,f)$ on $C'_n \cup \gamma_n$. From Theorem 4 it follows that there exists an asymptotic path Γ_0 such that $l(r, \Gamma_0) = o(r^{\alpha})$. Using C_n, C'_n and γ_n we may modify Γ_0 into a new asymptotic path Γ such that

$$l(R_n-1,\Gamma) \leq l(\Gamma_0,\varrho_n) + 2\pi\varrho_n + l(\gamma_n) = o((2r_n^{\alpha})^{\alpha}) + O(r_n^{\alpha}) + (1+o(1))R_n.$$

Since $R_n \ge r_n^{\alpha^3}$, we conclude now that $l(R_n-1, \Gamma) = (1+o(1))(R_n-1)$. This proves Theorem 5.

Let us suppose that f is an entire function satisfying (4). We choose $\delta > 0$ such that $T(r,f) = O((\log r)^{\delta+1/2})$ and $T(r,f) \neq O((\log r)^{\delta})$. Then $n(r,0,f) = O((\log r)^{\delta-1/2})$, and there exist arbitrarily large values of r such that $T(r,f) > (\log r)^{\delta}$. For these values of r we have

$$\frac{n(r^2, 0, f)}{T(r, f)} \le \frac{O((\log r)^{\delta - 1/2})}{(\log r)^{\delta}} = O((\log r)^{-1/2}) = o(1),$$

and Theorem 3 follows from Theorem 5.

Remark. I thank Doctor J. M. Anderson for informing me that my Theorem 4 is essentially contained in Theorem 1 of Chang Kuan-Heo [6].

References

- ANDERSON, J. M.: Asymptotic values of meromorphic functions of smooth growth. Glasgow Math. J. 20, 1979, 155—162.
- [2] CLUNIE, J., and W. K. HAYMAN: Proceedings of the symposium on complex analysis, Canterbury, 1973. - London Mathematical Society Lecture Note Series 12, Cambridge University Press, Cambridge, 1974.
- [3] GOL'DBERG, A. A., and A. È. EREMENKO: On asymptotic curves of entire functions of finite order.
 Math. USSR-Sb. 37: 4, 1980, 509-533.
- [4] HAYMAN, W. K.: Slowly growing integral and subharmonic functions. Comment. Math. Helv. 34, 1960, 75-84.
- [5] HAYMAN, W. K.: On Iversen's theorem for meromorphic functions with few poles. Acta Math. 141, 1978, 115—145.
- [6] KUAN-HEO, CHANG: Asymptotic values of entire and meromorphic functions. Sci. Sinica 20: 6, 1977, 720-739.
- [7] TOPPILA, S.: On the length of asymptotic paths of entire functions of order zero. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5, 1980, 13—15.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 28 September 1983