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OLD AND NEW IN MOBIUS GROUPS

LARS V. AHLFORS*

1. Introduction

In recent years there has been strong activity in the area of Mdbius transforma-
tions in several dimensions. It all goes back to Poincaré who was the first to observe
that the action of the M&bius group in the complex plane can be lifted to the surround-
ing three-space, and specifically to the upper half-space which he recognized as a
model of three-dimensional noneuclidean geometry. At that time there was no serious
interest in more than three dimensions.

In due course the advances in Fuchsian groups and automorhpic functions pro-
vided a natural stepping stone to higher dimensions. Among the pioneers was Eber-
hard Hopf who generalized the ergodic theory of Fuchsian groups to n dimensions
as early as in the 1930s. A more recent factor was the increasing interest in Kleinian
groups and Teichmiiller spaces. The problems with the limit set of a Kleinian group
seemed to indicate that the methods based on conformal and quasiconformal map-
pings in the plane were insufficient, and that something new was needed. Although
many problems remain unsolved there is little doubt that the passage to » dimensions
has thrown light also on the classical case.

Progress has been made in several directions, but nothing has given a greater
impulse to the study of Mobius groups in several dimensions than the so-called rigi-
dity theorem of G. D. Mostow [Mo], published in 1968. Several rigidity theorems
for discontinuous groups were already known, but it was a complete surprise that
something as simple as Mostow’s theorem would be valid for M6bius groups.

My original plan for this talk was to make it a survey of the state of the art in
Mobius groups, but I soon realized that this would be impossible. Too much has
been done to be covered even superficially in a single lecture, and so much exists only
in preprints, not all available to me, that it is even difficult to know what has been
done and what not. Also, there are almost no expository papers, partly because the
leading journals are reluctant to accept them, and the research papers are mostly so
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complex that it takes years to study them adequately. I was therefore pleased to learn
that Acta Mathematica has accepted a very readable paper by Stephen Agard which
reviews what is known but unpublished and goes on to present a new and entirely
elementary approach to Mostow rigidity. Accordingly, I decided to devote a major
part of my talk to what I have learned from Agard’s paper. This may be unfair to
others, but I had to make a choice.

The rest of the talk will deal with a question that has occupied me lately, namely
the use of Clifford numbers in connection with Mobius transformations. Part of this
theory is very old, and practically forgotten, part is fairly new, but deserves to be
better known. I believe a revival of interest would be very timely.

2. Basic notions

One of the difficulties when speaking about Mobius groups is that terminology
and notations have not been standardized; everybody uses his own, and I shall have to
do the same. Because the ideas are easy to recognize it is never difficult to translate
from one language to another, but it is unquestionably a nuisance.

The basic Mdbius group is the one that acts on R", or more precisely on R"=
R"U{e}. 1 shall denote it by M (R") with an explicit warning that it is not restricted
to sense-preserving mappings. By definition, ge M(R") if g: R"—R" is a homeo-
morphism whose derivative g’(x) at each x7 < and g~'(ee) is a conformal matrix,
i.e. a positive multiple of a matrix in O(n). In analogy with the distinction between
O(n) and SO(n) it would be natural to let SM(R") refer to the subgroup of sense-
preserving mappings, but it will not be needed in this paper.

The subgroup that keeps the upper half space U" invariant will be denoted by
M (U™); the corresponding subgroup for the unit ball B" is called M(B"). The boun-
dary QU™ is identified with R"~*, and dB" is the unit sphere S" "

We shall use the standard notations x=(xy, ..., x,)€ R" and xy=(x, y)=x;y,+...
ot X Vs (x, x)=|x[2. M(R") is generated by all translations x—~x+b, be R", dila-
tions x—o0x, 0=0, and the inversion x—o(x)=x/|x>. For practical reasons it is
convenient to include the isometries x—kx, k€O (n), among the generators.

I prefer to use I, (or I) for the unit matrix (identity), and I have the personal
habit of writing Q(x) for the matrix with elements x;x,/|x[?. In this notation the
derivative of o(x) is o’(x)=|x|"2(/—2Q(x)). Note that (/—2Q(x))*=I and
I1-20(x)€O0(n).

By comparison, Agard [Ag 1, 2] uses id for the identity, #, for translation by b,
and h, for dilation by ¢. There are some advantages to the use of letters for map-
pings, but on the whole I find formulas which contain the variable, usually x, much
easier to read. I have accepted his ¢ for inversion, which I hope will stay, but for
typographical reasons I am apt to use x* as an alternate notation. For instance,
(x*—»™)* would be rather awkward in Agard’s notation.
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At the time of the Nevanlinna Colloquium I had not yet seen A. Beardon’s
new book on The Geometry of Discrete Groups [Be], a most welcome addition to the
literature of the subject. If I had, it would undoubtedly have influenced my exposi-
tion in important ways.

3. The matrix representation

In the case of complex Md&bius transformations it is natural and easy to express
M(C) by GL,(C) or SLy(C) reduced modulo C*=C\{0} or {+1}. For n>2
this matrix representation is not available, but it is almost obvious that the groups
M (R"~Y), M(U") and M (B") are mutually isomorphic. In connection with the projec-
tive theory of hyperbolic geometry developed by Cayley and Klein it also became
clear that these Mobius groups are isomorphic with a subgroup of the orthogonal
group O(n, 1) associated with the quadratic form xj+...+x2—x7 ;.

Personally, I must admit that I have been reluctant to make use of this isomor-
phism, mainly because the step from M(R"™') to O(n, 1) requires two more dimen-
sions and, as it seemed to me, a disproportionate complication of the formulas. For
instance, to replace M(C) by O(3, 1) makes little sense. I now realize that my judg-
ment may have been a little too rash, for when I took a second look I found that the
situation is much simpler and more manageable than I expected.

In my opinion the best approach is to emphasize the analogy with stereographic
projection. Let me start from the identity

(2 - (5

where x=(xq, ..., x,)ER". It can be rewritten either as

2x [ [1—[x\2]2_
G- l1+|x|2 e =1
or as
1—l—|x|2]2 | 2x |2
: (L)' | 2 F oy
(3:2) 1—|x) ~ I1—]x[?] !
Formula (3.1) shows that
B 2x 1—[x|2] ;
(y! yn+1) - []7+|x12’ 1+1X12 ES s

and one recognizes the familiar form of the stereographic projection from R" to S”,
except that the upper and lower hemispheres have been interchanged. Similarly, by
3.2)

( 2x 1+|x|2] ;
(J/: yn+1) - (1_|xl2 s 1_|x!2 ESh
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where S? is the hyperboloid y2,,— 3" , y;=1. S} can be regarded as the hyper-
bolic counterpart of S”. Observe that we have chosen the sign of y,,; so that B”
is mapped on the part of S in U"*" with 0 being mapped on (0, 1).

The mapping B"— S} is conformal provided that Sj is equipped with the metric
dsi=dy?,,— 2", dy?. Indeed, one verifies that ds;=4|dx[?/(1—|x[*)?* which makes
the mapping an isometry from the hyperbolic metric of B" to dsy. It follows that
M (B") is isomorphic to the matrix group SO(n, 1)* which preserves the metric ds,
and the sign of y,,.

I wish to be more explicit. As a standard conformal mapping of B" on itself

which carries a€B" to 0 I have advocated the use of the mapping

(I—laP)x—(1+|x]*—2ax)a
1—2ax+|x|?|al?

(3.3) x - T,(x) =

which is the analog of the complex mapping z—(z—a)/(1—az). The most general
conformal self-mapping of B" is x—~kT,(x) with k€O(n).

One finds, without too much computation, that the isometry between M (B")
and SO(n, 1)* makes the mapping 7, correspond to the matrix

2
(3'4) Ta = In+1+—_(

aa” ~a]
1—lal? ’

_ aT Ia |2
In this matrix a appears as a vertical vector with a” as its horizontal transpose, while
aa” is the n X n matrix |a;a ;|| The mapping kT, corresponds to [18 ?J T,with k€O (n).

The relatively simple form of these matrices is an encouraging sign.
My belated insight in these matters was prompted by reading N. J. Wielenberg’s
thesis [Wi].

4. Discrete subgroups

Before dealing with rigidity we shall assemble a few facts about discrete sub-
groups. Let I' be a discrete subgroup of either M(U") or M (B"); we shall feel free to
move from one to the other without further comment. It acts discontinuously on U”"
or B", and there exists a fundamental polyhedron P(I') representing the quotient
space U"/T" or B"/I". We shall disregard the fact that the quotient space need not be a
manifold in the strict sense.

If I is infinite, as we shall assume, the orbits I'x converge to the /imit set A on the
boundary R"~'or S"'. We consider only the case of non-elementary groups with
more than two and hence infinitely many limit points. The set A has also been called
the topological limit set and denoted by Ar. This is to distinguish it from the conical
limit set A ¢ and the horocyclical limit set Ay . These names refer to the ways the orbits
approach the limit points, but the precise definitions are not very relevant for this
exposition. We note only that A;DAcDAy.
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I is said to be of the first kind if A=R""' or S"~', of the second kind if not:
in the latter case A is a closed, nowhere dense subset of the boundary. Discrete sub-
groups are also classified according to the convergence or divergence of a series con-
nected with the orbits; for B" it is the series

“.1) Zyer (L=lyx|)",

convergence or divergence being the same for all x€B". A group of the second kind
is always of convergence type. More important, I is of convergence type if and only
if B"/T" has a Green’s function for the class of harmonic functions with respect to the
hyperbolic metric of B". In other words, I is of divergence type if and only if B"/I'¢
Og. Because OgcOpyp (no bounded harmonic functions other than constants)
it follows that any I' of divergence type acts ergodically on S"~%, i.e. every measurable
I'-invariant subset of $"~' has either zero measure or the full measure of $"~'.

Traditionally, groups with finite co-volume have played an important role. These
are the groups whose fundamental polyhedron has finite noneuclidean volume, and
itis to these groups that Mostow’s original theorem applies. Tsuji[Ts] has proved that
all groups with finite co-volume are of divergence type, while the converse is not true.
His proof is for B2, but the generalization to arbitrary B" is immediate.

D. Sullivan [Su] and Agard prove Mostow’s result under the weaker hypothesis
of divergence type. Agard’s proof is elementary, although not easy. Sullivan makes
essential use of ergodic theory and his style makes it difficult to follow all details. The
proofs are very different, and they are both important contributions to the present
state of knowledge.

5. Mostow rigidity

5.1. We come now to the topic of Mostow rigidity. I shall try to describe how
this whole complex of problems is viewed by S. Agard in his paper for Acta Mathe-
matica entitled ““A geometric proof of Mostow’s rigidity theorem for groups of diver-
gence type”. Naturally, I shall be able to give only a general outline of the underlying
ideas.

The basic situation is as follows: Let I' be a discrete subgroup of M(U"*%).
A homeomorphism f: U"+'—U"*+"is said to be compatible with T if fyf~'is a Mo-
bius map for all yeI'. Typically, this would be the case if I is another discrete sub-
group and f arises by lifting a map U"*'/I'~U"*'/I"" to U"*'. In his original paper
Mostow considers only the case n=2. He assumes that I' has finite co-volume, and
he proves that if f is quasiconformal and compatible with I', then f extends to a
conformal mapping f of R" so that I" and fI'f ~* are conjugate subgroups of M(R").
According to a terminology introduced by Sullivan I' is said to be Mostow-rigid as
soon as compatibility forces f to be conformal.

For n=2 a quasiconformal mapping of U"*! extends to a quasiconformal
mapping of the boundary R", and this plays a crucial role in Mostow’s proof. For
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n=1 this is no longer true, but the boundary mapping is still quasisymmetric on R*.
In a later paper Mostow has shown for this case, that f'is either M&bius or totally
singular on R, in a strong sense. This question has also been analyzed by T. Kuusalo
[Ku], but according to Agard the exact sense in which Mostow’s result is generally
valid remains to be clarified.

5.2. As indicated Sullivan and Agard both prove Mostow rigidity under the
weaker hypothesis of divergence type. I have been particularly impressed by Agard’s
proof because of its completely elementary nature. It is rather long, but only because
he includes all details and proves more than he needs. The main feature of the proof
is that it does not use any ergodic theory, even in the comparatively unsophisticated
sense of E. Hopf.

The novelty in Agard’s proof is that he has recognized a strong connection bet-
ween rigidity and certain half forgotten denseness theorems. The strongest previously
known result of this kind is in P. J. Myrberg’s paper of 1931 [My]. It has always been
recognized that this was an important paper, but few have had the tenacity to study
it in detail. The original paper dealt only with a special class of Fuchsian groups, but
Agard shows that Myrberg’s result is valid even in the most general case.

5.3. Agard’s starting point is an innocent looking lemma which nevertheless has
strong consequences. I shall refer to it as

Step 1. Suppose that geGL(n) and that y and gyg™ are both in M(R").
If, in addition, y(e=)# <o, then g is a conformal matrix.

The proof consists in showing that the symmetrized matrix g'g has only one
eigen-value (as before, g” is the transpose of g). It could be condensed to about half
a page, but Agard chooses a broader exposition.

5.4. In order to explain the idea of denseness I shall introduce some standard
notations, not exactly the same as Agard’s. Let p and ¢ be distinct points in R".
The geodesic in U"** which joins p to ¢ will be denoted by /(p, ¢). As a standard
Mobius transformation which maps /(p, g) on /(0, =) we choose

5.1 Ly(x) = (x* =g —(p*—q"*

which tends to the identity for p—0, g—oco (recall that x*=o(x)=x/|x[?). All
transformations with p as attractive and ¢ as repellent fixed point are of the form

(5.2) I5d okl

with 0<g<1, k€O(n). Agard denotes the whole set of mappings (5.2) by 4,,.

Instead of considering mappings f: U"*'—U"*" Agard focuses the attention on
homeomorphisms f: R"-R" which are compatible with I" on R". For the condition
of finite co-volume or divergence type it is of course still necessary to extend I' to
U+l
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Step II. Assume that f is quasiconformal and compatible with I' on R". If there
exist p and q€ R" such that I' A, is dense in M(R"), and if at the same time p is a non-
singular point of f, then f is a Mdbius transformation.

Here non-singular means that f”(p) exists and is 0. It may be assumed that
(p;9)=(0, =), forif I and f'satisfy the original hypothesis, then 1,,I'l;;* and fol,,
have the same property with respect to (0, «). Even more obviously it is also legiti-
mate to assume that f(0)=0, f(cc)=-co.

The gist of the argument is as follows: Because I' 4. is dense there exist sequen-
ces {y:i}, {0}, {k;} with y;eI, 0<g;<1, k;€O(n) such that

(5.3) vi0ik; > 1.
On the other hand, because f is compatible with I there exist f;€I" with
(5.9 Jri=Bif

By compactness of O (1) we may pass to a subsequence with k;—k,, and the discre-
teness of I' implies ©;—0.
From (5.3) and (5.4) one obtains

(5-5 B:[ (ki (x))] — f(%)

and, in particular, p;=p;(0)—0, g;=p;(e)—><. Since lp,q, Bi fixes 0 and o one has
lpl_qiﬁ,:iih,- for some 4;=0 and h;€0(n). We may assume that h;—~h,. The fact
that [, , ~I implies

(5.6) BiAt > hy.

The mappings f;(x)=4; f(¢;x) are quasiconformal with bounded maximal
dilatation. By a well known theorem [V4] there is a subsequence of the f; which con-
verges, uniformly on compact subsets of R™\ {0}, to a limit function ¢ which is
either a quasiconformal mapping or a constant.

For this subsequence it follows from (5.5) and (5.6) that

(5.7 J(x) = Tim B[ f(0ikox)] = lim h, [ 4;(f (i koX))] = ho(e (ko))

which shows, first of all, that ¢ is not constant. Moreover, because f”(0) exists and
is #0, we see from

0 () =1im 4,0, L@

that lim 4;0;=4 existsand ¢(x)=A2f"(0)x. Thus ¢ is linear, and by (5.7) the same is
true of f.

Step 1 is now applicable unless < is a fixed point of all y€r, a situation that
would be in conflict with the denseness requirement. Step II is thereby proved. I wish
to point out that the proof I have sketched is, up to notation, an almost verbatim
rendition of Agard’s own.
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6. Myrberg’s theorem

The stage is now set for an elementary proof of Mostow’s theorem. Only one
thing is still needed, namely to show the existence of points p and g with the proper-
ties required for Step II. A quasiconformal mapping has almost no critical points.
Therefore, when n=>1, it is sufficient to show that the set of points p for which there
is a ¢ with I'A,, dense in M(R") has positive measure, from which it follows by in-
variance that it has full measure when carried to B".

It is for this purpose that Agard has resuscitated and improved Myrberg’s theo-
rem. We give it the following setting:

Myrberg—Agard’s Theorem. Let I be a discrete subgroup of M(B"), n>1,
of divergence type. Then, for a.e. g¢S"™* and for any choice of p¢ S"NAq} and
a geodesic 1(s, t) there exists a sequence {y;}€I' such that the images v;l(p,q) con-
verge to (s, t) while at the same time 7;(p)—0.

Agard’s proof is elementary, but long. It is modelled on Thurston’s proof of
the fact, discovered by Sullivan, that the conical limit set of a group of divergence type
has full measure (for a detailed proof see [Ah 1]).

To show that I' 4, is dense for a.e. p and every g we shall use Agard’s own argu-
ment in spite of the fact that it involves an interchange of p and ¢ which could have
been avoided. Recall the definition (5.1) of /,, and observe that I (p) exists. Let
g€ M(B"), be arbitrary and choose g, p as in the theorem as well as s=g(p), t=g(q).
Let {y;} be the sequence whose existence is guaranteed by the theorem, and write
si=7:(p), i=7:(q) so that s;—s, t;~¢ and y;(0)~0.

The transformations lsi,iyilp‘q1 and ls,gl;l1 have 0 and < as fixed points. Hence

(61) ls,-ti yi l;ql = li ki’ lst gl;ql = /10 kO

with 2;, 2,=0 and k;, ko€ O(n). Differentiation of the first equation at x=0 yields

(6.2) Aiky = L, (5971 (D) g (D) 2.

Because l;i,i(s,-)»l;,(s) and y;(p)—0 it follows that A;~0.
On the other hand, (6.1) also implies

(6.3) g = 15 ko L, = im Iz} Aokolyy = lim y, 52 (i Aok ko) 1,

where we have used the fact that ;! and 4, commute with k; " and k,. As soon as
Ai<2, the multiplier 2;*Aqin [,,' (27 gk ko) l,y is =1 and we conclude that this
factor belongs to A4,,. We read off from (6.3) that the arbitrary transformation
g€M(B") is in the closure of I'4,,. With a change of notation this shows that Step

11 is applicable, and the proof of Mostow’s theorem is complete.
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7. The use of Clifford numbers

7.1. In a Comptes Rendus note of 1926 R. Fueter [Fu] showed that the tran-
sition from M(C) to M(U?) can be easily and elegantly expressed in terms of qua-
ternions. It seemed odd that this discovery should come so late, when quaternions
were already quite unpopular, and sure enough a search of the literature by D. Hejhal
turned up a paper from 1902 by K. Th. Vahlen [Va] where the same thing had been
done, not only with quaternions but more generally, in any dimension, with Clif-
ford numbers. It is strange that this paper passed almost unnoticed except for an
unfavorable mention in an encyclopedia article by E. Cartan and E. Study. Vahlen was
finally vindicated in 1949 when H. Maass [Ma] rediscovered and used his paper.
Meanwhile the theory of Clifford algebras had taken a different course due to appli-
cations in modern physics, and Vahlen was again forgotten.

I am indebted to the Finnish mathematician P. Lounesto for having made me
aware that there are two different ways in which Clifford numbers can be applied to
Moébius groups. One is more general in that it applies to the conformal group of
orthogonal spaces whose metric does not need to be positive definite, and there are
several recent papers on this topic, including one by Lounesto and Latvamaa [LoLa].
Vahlen’s method is more classical in that it uses two by two matrices, although with
complex numbers replaced by certain Clifford numbers. Without prejudice in either
direction, this is the method I shall talk about.

True to my background in complex analysis I shall follow Clifford’s origi-
nal definition and notation. The Clifford algebra C, shall be the associative algebra
over the reals generated by elements 7, ..., i, ; subject to the relations i,i,= —ii,
for h=k, i;=—1, and no others. C; can be identified with R, C, with C, and C,
with the quaternion algebra H. In the last case i, j, k are represented by iy, i, and i, i,.

Each element a€C, has a unique representation in the form a= > a,;I where
a;€ R and the summation is over all products 1=l'h1ih2---l'hp with O<h<...<h,<n.
The empty product 0 is included and identified with the real number 1. The coeffi-
cient of the empty product is denoted by g, and referred to as the real part Re a.

C, is a vector space of real dimension 2"~*. The Clifford numbers of the special
form x=x,+xi;+...+x,-10,-, are called vectors. They form an n-dimensional
subspace V" which we shall identify with R". In the newer literature it is more common
to single out the space X spanned by iy, ..., i,_,, but we follow the choice of Vahlen
and Maass which is in better agreement with the complex case.

7.2. There are several involutions in C,, similar to complex conjugation. The
main involution consists in replacing every i, by —i,. The image of a under the main
involution will be denoted by 4. It is an automorphism in the sense that (a+b) =
a +b', (aby =a’l’. The second involution a—a* is obtained by reversing the order of
the factors in each I=iy ...5, . It is an anti-isomorphism satisfying (ab)*=b*a*.
These involutions can be combined to a third a—a=a*=a".

All three involutions map V" on itself. In particular x*=x for x€¥V"; unfortu-
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nately this disagrees with our earlier use of the star, but the notation a* chosen by
Maass is so convenient that I would not change it. For vectors x’=X; I tend to pre-
fer X because of the complex case. One verifies that xX=x5+...+x5_,=|[x[* so that
|x| is the square norm. For two vectors xy+yX=2(x, y). The notion of square norm
carries over to all Clifford numbers: if a=_a;] we write |a[>=_a}, but it is not
always true that |a]*=aa.

The center of C, will be denoted by 3, . By definition a is in the center if it commu-
tes with all Clifford numbers, and this will be so as soon as it commutes with 7, ...,
i,—1. One shows easily that 3,=R if n is odd, but 3,=R+Ri,...i,_, if niseven.

7.3. Every non-zero vector x is invertible with x~*=|x|~2X. The product of
invertible elements is invertible, hence every product of vectors is invertible. These
products form a multiplicative group I', known as the Clifford group. The numbers
in I, are the “‘good” Clifford numbers. It must always be kept in mind that the sum
of two good numbers need not be good. If a€T',, then it is true that |a|*=aa=ada,
and if a,bel, then |ab|=|a||b|.

There is a more intrinsic characterization of the Clifford group: a€rl’, in and
only if @ is invertible and aV"a’~*=¥". In other words, if x is a vector so is axa, ™.
The mapping x—axa’ ™! is in fact a euclidean isometry, i.e. axa’~'=g¢(a)x where
0(a)€0(n). This way of expressing rotations through Clifford numbers seems to be
due to Lipschitz.

The following simple observation is in frequent use: If a, b€TI',, then ab~! and
a*b are simultaneously in V™.

7.4. After these preliminaries I am ready to pass to the connection between
Mobius transformations and Clifford numbers. As far as I can tell it is Vahlen’s
original idea to imitate the complex case and express an arbitrary Mobius transfor-

mation through a two by two matrix [Z 3) whose entries are Clifford numbers. It is

rather clear that arbitrary Clifford numbers will not do, and he imposes the a priori
condition that the coefficients a, b, ¢, d be either zero or in the Clifford group.

The matrix g:(? Z,) is made to act on vectors x€V" (or R") according to
the rule

(7.1) gx = (ax+Db)(cx+d)~™

Strictly speaking this would require c¢x-+d to be invertible, but one can avoid this
initial difficulty by declaring that y=(ax+b)(cx+d)~* shall mean the same as
y(ex+d)=ax+D.

We would like g to induce a mapping V"—~V" where V"=V"U{} with o
playing the same role as in R". In other words, if x is a vector or < the same should
be true of gx.

When does g induce the identity mapping? This ]means that ax+b=x(cx+d)
for all x. For x=0, oo, 1 it follows that b=c=0, a=d and hence ax=xa for all x.
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In other words a€ 3, and we see that the mapping (7.1) is not changed if g is multi-
plied with any a€ 3,\{0}.

The immediate task is to find necessary and sufficient conditions under which g
induces a bijective mapping V"—V". We remark first that if g; and g, have this
property, so does the matrix product g, g, formed with attention to the non-commuta-
tivity. Secondly, the inverse mapping can also be expressed in the form (7.1). In fact,
if y(cx+d)=ax+b then (a—yc)x=yd—b. Because x=x* and y=p* this is the
same as x(—c*y+a*)=d*y—b* which is of the desired form. It follows that the
matrices g which induce bijections form a group, although we have not yet shown that

their elements are in I',u{0}. We know nevertheless that the matrices [ ‘cz 2] and

* _ 1%
(_f* Z*] induce mappings inverse to each other. Therefore their product, in
either order, induces the identity. This implies the relations c*a=a*c, b*d=d"b,
ab*=ba*, cd* =dc* aswell as A=ad*—bc*c3,, 4,=d*a—b*c€3,. 4 is the pseudo-

determinant of [a b).
c d

Actually, the conditions c*a=a*c etc. are consequences of the fact that g0,
goo, g710, g7 1eo are all in V", For instance, g=ac *€V" implies c¢*ac V" and hence
c*a=a*c; similarly for the others. We note further that 4 and 4, are 0. This is so
because ad*—bc*=0 would give b~ la=c*"d*1=(d'c)*=d 'c or g70=g leo,
a contradiction; the case where b or d=0 is easily disposed of.

At this point we can also fill in the missing information that g, g, has entries in
I,u{0} whenever g;, g, induce bijective mappings and have their entries in the same
set. This becomes clear on writing, for instance, a,ay+b;co=>by(b; a;+c a; )a,
where the middle factor is a sum of two vectors: the case when b; or @,=0 is trivial.
The other coefficients of g;g, can be treated in the same manner.

Perhaps the most interesting observation is that 4 and 4, are not only in 3,,
but actually real, except in the complex case n=2 where the determinant can of
course be complex. Since there is nothing to prove when 7 is odd it is sufficient to
consider the case n=4, If ¢ and d are both 50 one can write A=ac ™' - cd* —bd ="' - dc*.
Each term is the product of two vectors and cannot contain any term with
iy...i,—1; 4 must therefore be real. If ¢=0 the image of x=1 is (al+b)d V"
and hence ad ~€V" and A,=d*acV". This implies d*a€R and also 4=ad*cR.
The case d=0 is similar. Thus 4 and 4, are always real except for n=2.

7.5. The necessary conditions given above are not independent. One shows, for
instance, that ab* and cd*€ V" together with A€ R imply a*c, b*deV" and 4,=A.
As a sample, |d[*=d*(ad*—bc*)d’=d*a|d|*—b*dc*d’=(d*a—b*c)|d|* and hence
A=4,. Similarly, Ac*a=c*(d’a—c'b)a=|al*(cd)’—|c[*bacV ™.

The main result is that these conditions are also sufficient. Vahlen does not quite
say so, but he essentially proves it. Maass is more explicit and more readable, forty-
seven years later. Nevertheless, I would say that Vahlen has all the ingredients for the
following theorem which I state in three parts:
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Theorem.

I. x>gx=(ax+Db)(cx+d)™* with a,b,c,deI',0{0} is a bijective mapping
V'=V" if and only if ac*,bd*cV" and A(g)=ad*—bc*c RU{0}.

II. This mapping extends to a bijection V"*'-V"*' by adjoining i, to C,.
If A(g)=0 the upper half-space U™+ is mapped on itself.

II1. All the mappings are conformal, hence given by Mdbius transformations in
M(R") and M(U"+Y), respectively. Conversely, every sense-preserving Mébius trans-
Sformation can be gxpressed in the form (7.1) with A(g)=0.

A few comments are in order. First of all, one can always normalize to 4(g)=1
or —1. Maass postulates 4(g)=1 and is not aware that 4(g) has to be real; neither
was I until quite recently. The passage from I to II is obvious from V"cV"+! and
I,crI',.,. The second part of III is almost obvious, for it is sufficient to express the
generators through matrices. The important part of the theorem, as I see it, is that it

gives an explicit rule for determining whether a given matrix [? 2,] does or does not

induce a Mobius transformation.
As for the proof, practically everything follows from the identity

(7.2) gx—(gy)* = 4(g)(yc* +d") 1 (x—y)(ex+d)~?

which is a direct consequence of a*c=c*a, b*d=d*b and A,=A4¢R. It implies
(gy)"=gy so that the left hand side of (7.2) can be replaced by gx—gy. If applied
with y=0 one obtains, after passing to the inverses,

(7.3) (gx—g0)™* = A(g) " (cd* +dx~1d*)

which does indeed show that (gx—g0)~*, gx—g0 and gx itself are vectors, thereby
proving the sufficiency. For more details I refer to a forthcoming article [Ah 2].
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