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SOME ESTIMATES OF HARMONIC MAJORANTS

KERSTI HALISTE

1. Introduction

The problem of the harmonic majorization of a given subharmonic function in
an unbounded domain in R? involves the Dirichlet problem with the given boundary
values and hence the use of harmonic measure.

In the plane case there is the following connection with the theory of Hardy
spaces. Let F be a univalent analytic function from the unit disc onto a domain D in
the z-plane and let O<p<woo. Then FEHP<« |z|P has a harmonic majorant in D
(see e.g. [4, p. 28]). We note that the implication<holds without F being univalent.
This classical result has been associated with the theory of Brownian exit times by
Burkholder, [2], [3].

Let 7 denote the exit time from D (an open connected set in R?%) of a Brownian
motion, starting at zero time from a point x in D. Burkholder proved (for 0<p< o)
that the expectation E,7?/* is finite if and only if |x|” has a least harmonic majorant
u(x) in D.

In fact (see [2, p. 191 (3.3)]),

kpalX[P = ky,qu(x) = d"PE PP+ |xP = K, qu(x),

with constants k, ; and K, ; depending only on p and d.

Thus, one can ask the question whether the order of magnitude of u(x) and hence
that of E,7?/? can be greater than that of |x|?. One purpose of this paper is to consider
an estimate of the type

u(x) = ClxPlog x|, [x|=y=>1,
which can be shown to be sharp in suitable domains; see Section 3. The majorization

of some other subharmonic functions is also treated; see Section 4. A preliminary
version of the results was given in [8].
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2. Notation

Let R, (where d=2) denote a d-dimensional Euclidean space with
x=(%1, Xz, .-, X) and |x|=(Z¢_, xi)"/*. However, points in the complex plane are
also denoted by z.

Assuming that a given point x, belongs to the domain D, let D, denote the com-
ponent of Dn{x: |x|<r} containing x,. The following harmonic measures are con-
sidered:

1 on dD,n{x: |x|=r}nD
0,09 ={
0 on the rest of 0D,

x| =r.
1 on dDn{x: |x|>r}

v,(x)={0 on 0Dn{x: |x|=r}

3. Harmonic majorization of |x|”

In the complex plane the following result was given by Tsuji [9, p. 118].

Theorem 1 (Tsuji). If
€)) w,(2) = ¢yr P
for some p;=p=0, r=r,>0, c, depending on z, then there exists a least harmonic
majorant u(z) of |z|” in D. If further

) o,(2) = c(r/|z) ™"

for some p;=>p, r=r,|z|=0, c, pi,r, being constants, then for some constant C
|z]P =u(z) = C|z|? in D.

In order to estimate w,(z) Tsuji used a well-known inequality of the type

3) w,(2) = cexp (—nf['zl()'l(r)r"ld )

where r0(r) denotes the maximum length of the arcs occurring on dD,n{z: |z|=
rYnD (provided this set is #{z: |z|=r}, otherwise let 6(r)=-<o). This type of
inequality corresponds to Ahlfors’ First Distortion Inequality (for simply-connected
domains) and can also be proved by Carleman’s classical method (irrespective of
connectivity). See e.g. [7] and [9, p. 112]. Hence the condition (2) above is implied
by [9, p. 118]:

4 lim 7 (log(r/|z]))~} flrzl 0-1(r)r=1dr=p.

iz e
In order to generalize inequalities of the types (3) and (4) to R?, d=3, one uses

Carleman’s method with integrals = f 0~1(r)r~'dr generalized to integrals
J a(r)r=*dr, where a(r) is the so-called characteristic constant connected with the
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Laplace—Beltrami equation. Thus one obtains estimates from above of the following

type:
®) w,(x) = cexp (—fl'ja(r)r‘l dr), x€D, |x| <r/2,

(see [6, in particular pp. 136—138], cf. also [7]).

For the sake of simplicity one can consider domains D such that Dn{x: |x|=r}
is a spherical cap {x: |x|=r}n{x: 0=9p<¢(r)}, where ¢, 0=¢=mn, is defined by
|x| cos p=x;. Actually, w, is increased by a spherical symmetrization [1, p. 267],
while a(r) is decreased; cf. [6, p. 139].

Tsuji’s result depends on the expression (assuming that 0€D)

(6) u(x) = pf: v, (x)r?~dr

for the least harmonic majorant u(x) of |x|?, if it exists. Cf. [2, Theorem 3.1, Remark
3.1, p. 191]. Let o,(x)=1 when r<|x|. Of course, v,(x)=w,(x). However, it
follows from Burkholder’s probabilistic results [2, Theorem 2.2, p. 189] (again assum-
ing that 0€D) that

7 f: w,(x)r?"1dr = Cf;o v, (x)rP L dr

with a constant depending on p and d (provided that the complement of D is not too
small). Hence, for some constant c,

® ¢ [7o,rtdr = u@ = p [T o, dr.

The difficult part of (7) to prove concerns two-dimensional domains D with
irregular boundaries. If dD meets every circle {x: |x|=r}, symmetrization and
simple estimates of harmonic measure are sufficient for the proof.

By altering Tsuji’s conditions on w,(x) one obtains a somewhat greater estimate
from above of u(x).

Theorem 2. Assume that O<p<eo and a=1. If, for a constant y and a cons-
tant ¢, depending on X,

©) w,(x) = cer P(logr)™¢, r=y=1,

then there exists a least harmonic majorant u(x) of |x|” in D. If, further, for some cons-
tants ¢ and 7y,

(10) o, (x) = c(x|/r)? ((log [x)/logr)?, 1 =rolx| = Ix[ =y =1,
then for some constant C

(11) x” = u(x) = Clx”log x|, xeD, |x|=y=>1.
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Proof. Assume that 0€D. The existence part follows from (8) and (9). The
estimate from above in (11) follows from (8) and (10):

= ° p—1 = rolxl p—1
u(x)_p‘/‘O w,(x)r dr_pf0 r?P=ldr
+cplx|? (log |x|)“f°° r~t(logr)y=@dr

"o!xl

= (ro|x)P+Cy|xPlog|x| = C|x[Plog |x|, |x] =y =1, x€D.

X

Remark 1. The condition (10) is implied by the following condition in the
complex plane, cf. (3) and (4):

lim [’ZI 0=1(r)r~dr—plog (r/|z]))/log (log r/log |z)> 1.

r/|z| e

Remark 2. Ifa condition opposite to (9) with a=1 is satisfied, it follows by (8)
that |x|” does not have a least harmonic majorant in D.

Remark 3. In suitable domains it is possible to satisfy the condition (10)
as well as a similar estimate from below of w,(x); see Example 1. Thus, by (8) the least
harmonic majorant u(x) of |x|” can have the order of magnitude |x|?log |x|; cf.
Burkholder’s result about Brownian exit times, mentioned in Section 1. In general it
is more difficult to obtain good estimates from below of harmonic measures than
from above, especially in R, d=3. Ahlfors’ Second Distortion Inequality for simply
connected strip domains in the complex plane is based on assumptions about the
variation of the width of the domain. In RY, d=3, few results from below are avail-

lable; see [7, p. 24] and [5].

Example 1. Let |x|cos o=x;, 0=¢p=m, and let (for a given 6=>0) T} ,(n/2)
denote the domain {x: |x|>1, 0=¢=<n/2—arc tan (1/(5 log |x|))} in R%. Then the
conditions (9) and (10) of Theorem 2 are satisfied in T} ,(n/2) for p=1 if and only
if 6<20,_,/0,, where g, is the area of the unit sphere in R, d=2; ¢;=2. More-
over, for such 4, by an inequality opposite to (10), on the x;-axis,

u(x) =clx|log x|, |x|=zy=1, x=(x,0,0,...,0).

In general let T 4(¢p,) denote a similar domain {x: [x|>1,0=¢<¢(|x|)}, where
o(Ix))=po—1/(8log |x))+ O (1/(og |x|)?) for large |x| (for details see [5]). Then the
conditions (9) and (10) of Theorem 2 are satisfied in T} 4(¢,) for p=a, if and only if
8<|og|, ot and |org| being defined by (12), (13), (14), p. 121. For such 4, by an inequa-
lity opposite to (10), on the x;-axis

u(x) = clx|*log x|, |x=y=1, x=(x,0,0,...,0).

Here, the characteristic constant o, for the Laplace—Beltrami operator on a spherical
cap {x: |x|=r, 0=@<g,} is defined by the first eigenvalue of the Legendre equa-
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tion:
17(@)+(d—=2)cot @ f(@)+4f(p) =0, f(0)=1, f'(0)=0,
(12) fl@o) =0, f(9)=0, 0=0¢<aq,,
(13) a0 (g +d—=2) = 1o, >0,
’ daO
(14) Ay = m(‘ﬂo)-

In particular for @,=n/2, the constant «, equals 1 and og=—20,_,/0, (see [5]).

Proof. a) The estimates (9) and (10) in T} 4(¢,) are obtained by Carleman’s
method; see (5). Here for large r

) |
(1) = % =% dlogr +0((log r)zJ’

and hence in (9) and (10) p=0, and a= —a«g/5, whichis >1 if and only if &< |og|.

b) See Remark 2. An estimate opposite to (9) for a=—ag/6=1, that is,
6=|ag| and p=a,, implies the non-existence of the least harmonic majorant of
[x|*. Also an estimate opposite to (10) for p=0, and d<|ag|, on the x;-axis, implies
that u(x)=c|x|™log |x| for sufficiently large values of |x|, x=(x;,0,0,...,0).
Such estimates of harmonic measure are given in [5, Theorem 2 and Theorem 3].

In fact, by use of Harnack’s inequality, we even obtain a pointwise inequality
v, (X)=cw,(x), x=(x1,0,...,0), x=k=1, x€T; 4(p,).

Remark 4. Iterated logarithms. By suitable modifications of the conditions (9)

and (10) one obtains
lxlp = u(x) = Clx]pﬂkn=110gk Ix'

for |x| sufficiently large. For example, instead of (10) the condition

w,(x) = C[LI]_I,( n-1_loger ]—1[ log, r )—”

|x k=1 log |x| log, |x|

can be assumed to be satisfied for some a=1 and r=r,|x|>|x| sufficiently large.

4. Harmonic majorization of other subharmonic functions

In Section 3 there is a natural connection between the derivative of the subhar-
monic function r?, where r=|z| in the complex plane and r=|x| in R% and the
estimates of harmonic measures. Some generalizations to general subharmonic
functions @ (r) can be given. In Section 1, Burkholder’s inequalities between the least
harmonic majorants of |x|? and expectations E,t?/* are referred to. For his generali-
zations to subharmonic functions @(|x|) see [2, Theorem 3.5 and Theorem 3.6, p.
197].
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For notation see Section 2. Some assumptions about @ are introduced:

@ continuously differentiable;, non-decreasing with @(0)=0, @ (co)=co,
(15) {2@2t)=cP(t), t=0,
®(|x|) subharmonic in DcR%

Tsuji’s result in Theorem 1 can immediately be generalized in the following way.

Theorem 3. Let @ satisfy conditions (15). Assume that the estimate ®,(x,)=
g(r), r=|xo|=0, holds for some fixed x,€D, and that

(16) [‘:Ol ' (r) g(r)dr <o,

Then ®(|x|) has a least harmonic majorant u(x) in D. If, further, for some constants r,
and C] .

a7 w,(x) = g[i&]) for r=rglx| =0,
and

(18) x| @' (x| 5) = C, ¥ () D(x]), =1,
then

(19) & (x]) = u(x) = CP(|x]), x€D.

Remark 5. For convex @ satisfying (15) the inequality (18) is guaranteed by
(18a) P (tlx]) = Co@ (IxNP ().

Indeed, if @ is convex, it follows from (15) that @ (|x|)=|x| &’ (|x])=(c—1) D (|x]).
Thus it follows from (18a) that &’ satisfies the same type of condition as (18a). Hence
x| @ (t|x|)=Cs|x|®’ (1) D'(|x)=C, ?"(¢t) @(|x|), which yields (18).

(If, for instance, ®(|x|)=log |x| for large |x|, this deduction of (18) from (18a)
does not work; however, (18) and (18a) are satisfied.)

Proof of Theorem 3. Cf. the proof of Theorem 2. In particular, the estimate from
above follows from

Y — [rolxl g e ’ L
(20) u(x) = fo (v, (x) dr = fo '(r) dr+fr0]xl ® (r)g( le]dr
= B(rolx)+ [~ &t |x) g (1) x| dr.
The term @ (r,|x|) is taken care of if we use (15). The desired estimate of the last inte-

gral in (20) follows from (16) and (18).

Remark 6. The assumptions of Theorem 3 are satisfied for large |x| if
& (|x))=|x|"(log |x])%, p=0, ¢=0, and g(r)=Cr~7, p,>p. With the same g(r) but
g=<0, (18) and (18a) are not satisfied, but the condition p,>p is sufficient to guaran-
tee (19) for large |x|.
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Remark 7. Generalization of Theorem 2. Let @ satisfy the conditions (15).
Assume that the estimate ,(x,)=g(r)h (logr), r=|x,|>1, holds for some fixed
xo€D, and that the functions @', g, h and [ are such that

f:iqy(r)g(r)h(logr)drgfr"]r—ll(log r) dr <oo.

Then ®(|x|) has a least harmonic majorant u(x) in D.
If, further, for some constants ry>1 and y=1,

o, (x) = g[ r )h[ O2¢ ] for r=rolxl, x| = Iyl

o) " Tog ¥
and
1o (1sOn(SED0) = o (B, for 1= n, el =
then

®(|x) = u(x) = CO(|x) log x|, x| =1y[, x€D.

Proof. Cf. the proof of Theorem 2, in which h(r)=I(r)=r=% a=1, ®(r)=r?,
and that of Theorem 3. Here the substitution (log (|x[¢))/log |x|=logy is appro-
priate to round off the proof.

As an example one can take @ (r)=r? (logr)?, p=0, forlargerand g(r)=r",
h(r)=r=%° and [(r)=r"" with a=>1. That the magnitude of the estimate of u
from above can be attained for ¢=0 can be seen by comparison with Example 1,
with 6 now depending also on g.

We note that the condition on w,(x) in this remark, as in Theorem 2, contains
(log |x|)/log r rather than log (|x|/r) as in Theorem 3, and that this particular form
occurs in known estimates (cf. Example 1). As a constructed example containing
log (|x|/r) let us take @(|x|)=|x|"/log |x| for large |x| and g(r)=r="/logr for
large r in the setting of Theorem 3. Then (18) is no longer satisfied and an evaluation
of the last integral in (20) yields the estimate u(x)=C®(|x]) log log |x| for large |x].

Thus, on the whole, various results of the interplay between @ and the estimates
of w, are possible.
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