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SOME ESTIMATES OF HARMOMC MAJORAI\TS

KERSTI HALISTE

1. fntroduction

The problem of the harmonic majorization of a given subharmonic function in
an unbounded domain in Äd involves the Dirichlet problem with the given boundary
values and hence tle use of harmonic measure.

In the plane case there is the following connection with the theory of Hardy
spaces. Let F be a univalent analytic function from the unit disc onto a domain D in
the z'plane and let O=P<-. Then F€Hp+lzle has a harmonic majorant in D
(see e.g. [4, p. 28]). We note that the implicationeholds without F being univalent.
This classical result has been associated with the theory of Brownian exit times by
Burkholder, [2], [3].

Let r denote the exit time from D (an open connected set in Rd) of a Brownian
motion, starting atzero time from a point x in D. Burkholder proved (for 0=p< -)
that the expectation E*rPtz is finite if and only if lxle has a least harmonic majorant
u(x) in D.

In fact (see [2, p. 191 (3.3)]),

kr,alxle = ko,au(x) < dplzExxplz*lxle = Kr,au(x),

with constants kr,a and Ke,a depending only on p and. d.

Thus, one can ask the question whether tle order of magnitudeof u(x) andhence
tb4t of E*{tz canbe greater than that of lxle. One purpose of this paper is to consider
an estimate of the type

u(x) = Clxle log lxl, l*l = 1r = 1,

which can be shown to be sharp in suitable domains; see Section 3. The majorization
of some other subharmonic functions is also treated; see Section 4. A preliminary
version of the results was given in t8l.

koskenoj
Typewritten text
doi:10.5186/aasfm.1984.0907



118 Ksnsrr Hlrrsrn

2. Notation

Let Rd (where d=2) denote a d-dimensional Euclidean space with
x:(xt,x2,...,xa) and l*l:(Zl,=r*1)t/'. Ho*.uer, points in the complex plane are

also denoted by z.

Assuming that a given point xe belongs to the domain D,letD, denote the com-

ponent of Dn{x: lxl=r} containing xq. The following harmonic measures are con-

sidered:

3. Harmonic majorization of lxlP

In the complex plane the following result was given by Tsuji [9, p. 118].

Theorem 1 (Tsuji). 1/
(1) a,(z) = cot-Pr

for some pt-p-\, t>t1>0, c, depending on z, then there exists a least harmonic

majorant u(z) of lzle in D. If further

(2) a,(z) = c(rllz)-nr

for some pt>p, r=rolzl=0, c, pr; ro being constants, then for some constant C

lzl, = u(z) = Clzl' in D.

In order to estimate ar,(z) Tsuji used a well-known inequality of the type

,\ tl' on AD,n{x:lxl -r)^D ,,a'(x): t o on the rest of aD, lxl € r'

u,(x):{å :l 'f;:l:"[l =;l

(3)

(4)

o,(z) = s exp (- 
" fi"!-'(r)r-' d4 ,

where r0(r) denotes the maximum lengtl of the arcs occurring on åD,n {z: lzl:
rlnD (provided this set is *{z: lzl:v}, otherwise let 0(r):-). This type of
inequality corresponds to Ahlfors' First Distortion Inequality (for simply-connected

domains) and can also be proved by Carleman's classical method (irrespective of
connectivity). See e.g. [7] and 19, p. Il2l. Hence the condition (2) above is implied
by [9, p. 118]:

,/H.. 
z (log (rll'l))-' IioT-L(r)r-Ldr >p.

In order to generalize inequalities of the types (3) and (4)to Rd, d>3, one uses

Carleman's method with integrals n | |-r1r1r-tdr generalized to integrals

! a(r)r-tdr, where c(r) is tle so-called characteristic constant connected with the
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Laplace-Beltrami equation. Thus one obtains estimates from above of the following
type:
(s) ov(x) = sexp (- Ili x€D, l"l < rfz,

u(x) - p I; u,(x)rP-L dr

a(r)r-L dr),

(see [6, in particular pp. 136-138], cf. also [7]).
For the sake of simplicity one can consider domains D such that Dn{x: lxl:t}

is a spherical cap {x: lxl:r}n{x:Q=E<EQ)}, where E, Q=E=n, is defined by

fxl cos g:xt, Actually, ar, is increased by a spherical symmetrization fl, p. 2671,

while c(r) is decreased; cf. [6, p. 139].

Tsuji's result depends on the expression (assuming that 0€D)

(7)

with a

small).

(8)

for the least harmonic majorant u(x) of lxle, if it exists. Cf. [2, Theorem 3'1, Remark

3.1, p. 1911. Let a,(x):l when r=lxl. Of course, a,(x)=a,(x)' However, it
follows from Burkholder's probabilistic results [2, Theorem 2.2,p.189] (again assum-

ing that 0€D) that

fi r,1*1ro-r dr < c fi u,1x1rn-' Ar

constant depending on p and d (provided that the complement of D is not too

Hence, for some constant c,

t ff a,(x) rp -L dr = u (x) < p f ; c't,(x) rP -\ dr.

The difficult part of (7) to prove concerns two-dimensional domains D with
irregular boundaries. If åD meets every circle {x: lxl:1}, symmetrization and

simple estimates of harmonic measure are sufficient for the proof.
By altering Tsuji's conditions on ro,(x) one obtains a somewhat greater estimate

from above of a(x).

(6)

(e)

Theorem 2. Assume that

tant cs depending on x,
0=p< oo and a>1. If , for A constant y and o cons-

cor-n(logr)-", r>y>1,o4(x) =
thm there exists a least harmonic majorant u(x) of lxlp in D. If, further, for some cons-

tants c and y,

(10) ar,(x) = s(lxllio ((tog lxl)lLogr)', r > rolxl = l"l = y =- 7,

then for some constant C

(11) l*ln = utr(x) = Cl*ln log lxl, x€D, l"l > y > 1.
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Proof. Assume that 0€D. The existence part follows from (8) and (9). The
estimate from above in (11) follows from (8) and (10):

u(x) =- n [i a,1x1rp-r dr = n I?'.'rp-r dr

*cplxlt (tog lxl)"J";*1 r-1(log r)-" dr

= (rolxl)P*Crlxlelog lxl= Clxlelog lxl, lxl > ! > l, x(D.

Remark 1. The condition (10) is implied by tle following condition in the

complex plane, cf. (3) and (4):

,,F- (" I i,,e 
-' 91, -' dr - p tog (r I lzD)ltog (to g r ltog I'D = t.

Remark 2. lf acondition opposite to (9) with a=l is satisfied, itfollows by (8)

that lxlP does not have a least harmonic majorant in D.

Remark 3. In suitable domains it is possible to satisfy the condition (10)

as well as a similar estimatefrom below of ot,(x); see Example l. Thus, by (8) the least

harmonic majorant u(x) of lxj'can have tåe order of magnitude lxlelog lxl; cf.
Burkholder's result about Brownian exit times, mentioned in Section 1. In general it
is more diffcult to obtain good estimates from below of harmonic measures than
from above, especially ln Rd, d>3. Ahlfors' Second Distortion Inequality for simply
connected strip domains in the complex plane is based on assumptions about the

variation of the width of the domain. In Rd, d>3, few results from below are avail-
lable; see 17, p. 241 and [5].

Example 1. Let lxlcos (P:xto0=E=n, and let (for a given ö>0) T5,o@12)

denote the domain {x: lxl=1, O=E=nl2-arc tan (t11a tog lxl))} in rRd. Then the

conditions (9) and (10) of Theorem2 are satisfied n 75,6(nl2) for p-1 if and only
if ö-2oa-loa, whereoaistheareaof theunitsphere tnRd, d>2; or:2. More-
over, for such ö, by an inequality opposite to (10), on the x1-äxis,

u(x) =- c lxl log lxl, l*l = y = t, x : (xr,0, 0, ..., 0).

In general let T5,a(qs) denote a similar domain {x: lxl=1,0=q<E(lxl)}, where

ElxD:Eo-ll(ö1og lxD+O(U(tog lxl)') for large lxl (for details see [5]). Then the

conditions (9) and (10) of Theorem2 are satisfied in T5,a(Eö for p:q, if and only if
å= lail, ocs and lail being defined by (12), (13), (14), p. l2l. For such ä, by an inequa-

lity opposite to (10), on the x1-axis

u(x) = clxl"o log lxl, l"l = y = 1, x : (xt,g, 0, ..., 0).

Here, the characteristic constant as for the Laplace-Beltrami operator on a spherical

cap {x: lxl:t, O=E-.cpo} is defined by the first eigenvalue of the Legendre egua-
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tion:

(r2)

(13)

(r4)

./'"(E)+@-2) cot E f'(E)+lof(E) - 0, /(0) - 1, f'(0) - 0,

f@J-0, f(d>0, 0=E<eo,
do(do +d-2) - 10, do = 0,

In particular for eo:fi|2, the

, daua'u: ffi(EJ.
constant d,s equals I and a[: -2oo-rloo (see [5J).

Proof. a) The estimates (9) and (10) in Ta,a(Eö are obtained by Carleman's

method; see (5). Here for large r

a(r):*,-o; ,å;*o(ffi),
and hence in (9) and (10) p:ao and a: -ailö, which is >1 if and only if å= lail.

b) See Remark 2. An estimate opposite to (9) for a:-a!rlö=|, that is,

a=|":ol and p:an, implies the non-existence of the least harmonic majorant of
lxl''. Also an estimate opposite to (10) for p-uo and ö< la[l; on the x1-axis, implies

that u(x)>-clxl'"1o* 1*; for sufficiently large values of lxl, x:(xt,O,0,...,0).
Such estimates of harmonic measure are given in [5, Theorem 2 and Theorem 3].

In fact, by use of Harnack's inequality, we even obtain a pointwise inequality
o,(x)=car(x), x:(xt,0, ..., 0), x>k>|, x(Ta,a(EJ.

Remark 4. Iterated logaritlms. By suitable modifications of the conditions (9)

and (10) one obtains 
fulp = u(x) = clxle I[=rloge lxl

for lxl sufficiently large. For examplen instead of (10) the condition

o,,(x) =, (#)-' (nr::ffi)-' (#ä)-"
can be assumed to be satisfied for some a=t and r>rolxl=lxl sufficiently larye.

4. Harnonic majorization of other subharmonic functions

In Section 3 there is a natural connection between tle derivative of the subhar-

monic function rp, where v:lzl n the complex plane and 7: l-rl in Rd, and the

estimates of harmonic measures. Some generalizations to general subharmonic
functions itr(r) can be given. In Section l, Burkholder's inequalities between the least

harmonic majorants of lxle and expectations E"rPlz are referred to. For his generali-

zations to subharmonic functions @(lxl) see [2, Theorem 3.5 and Theorem 3.6, p.
t971.
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For notation see Section 2. Some assumptions about @ are introduced:

[@ continuously differentiable; non-decreasing with O(0):0, @(-)--,
(15) lapi1=rag7, t>0,

[otl"ll subharmonic in DcRd.

Tsuji's result in Theorem I can immediately be generalized in the following way.

Theorem 3. Let @ satisfy conditions (15). Assume that the estimate co,(xo)=
g(r), r>lxsl=0, holds for somefixed xo(D, and that

(16) I;^*'1r1r1r) ctr = -.
Thm @(lxl) has a least harmonic mnjorant u(x) in D. If,further, for some constants ro

and Ct,

(r7) o,(x) =r(#) fo, r > rslxl > o,

and
(18) lxl@'(lxl t) = CLo'(t) @(lrD, t >- ts,
then
(19) @(lxl) = u(x) = C@(lxl), x€D.

Remark 5. For convex ö satisfying (15) the inequality (18) is guaranteed by

(18a) o(tlxD = C,o(lxl)@(t).

Indeed, if @ is convex, it follows from (15) that @(lxl)=lxl@'(lxl)=(c-l)@(lxl).
Thus it follows from (18a) that @' satisfies the same type of condition as (18a). Hence

lxl aD' Qlxl) = 
c slxl.p' (t) @' (lxl)= c n a' Q) iD (lxl), which yields (1 8).

(If; for instance, o(lxl):leg lxl for large lxl, this deduction of (18) from (18a)

does not work; however, (18) and (18a) are satisfied.)

Proof of Theorem 3. Cf. the proof of The orem 2. In particular, the estimate from
above follows from

(20) u(x) : [; o'1r1o,1x1d.r = f'ot't @'O)dr+ I:*1il'1r|t(#)*
< @(rolxl)* [- o'1t1*11g(t)lxldt.

The term @(rolxl) is taken care of if we use (15). The desired estimate of the last inte-
gral in (20) follows from (16) and (18).

Remark 6. The assumptions of Theorem 3 are satisfied for large l"l if
@(lxl): lxle(log lxl)q, p>0, 4=0, and g(r):(7-no, Po>P. With the same g(r) but

4<0, (18) and (18a) are not satisfied, but the condition po>p is sufficient to guaran-

tee (19) for large lxl.
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Remark 7. Generalization of Theorem 2. Let @ satisfy the conditions (15).

Assume that the estimate a,(xr)=g(r)h(logr), r=lxol=l, holds for some fixed

xo€D, and that the function s Q', g, h and I are such that

f- o'1r1ge)h(losr)dr = Ii",r-'r(logr) dr =-'J l"ol

Then @(lxl) has a least harmonic majorant u(x) in D.

If, further, for some constants ro>1 and 1>1,

a,,(x)=r(#),(ffi), for t>_ folxl, l"l =lvl,
and

lxlo'qxtr)g(Dr[*#) = co(rxllt-'r(lre{ED), ror t z ts, lxl = lri,

then
o(lxD = u(x) = c@(lxD log lxl, lxl = lrl, x(D-

Proof. Cf. the proof of Theorem 2, in which h(r):l(7):t-o, a>1, @(r):7o,

and that of Theorem 3. Here the substitution (log(lxlt))/loglxl:logy is appro-

priate to round off the Proof.
Asan example onecan take Ö(r):re (log r)q, p=0, forlarge r and g(r):r-n,

h(r)-\-e-" and l(r):r-o with a=1. That the magnitude of the estimate of z

froir above can be attained for q>O can be seen by comparison with Example I'
with ä now depending also on 4'

We note that the condition on co,(x) in this remark, as in Theorem 2, contains

(log lxl)/log r rather than log (lxl/r) as in Theorem 3; and that this particular form

occurs in known estimates (cf. Example 1). As a constructed example containing

log(lxl/r) let us take @(lxl):lxlelloglxl for large lxl and s(r):r-pllogr for

large r in the setting ofTheorem 3. Then (18) is no longer satisfied and an evaluation

of the last integral in (20) yields the estimate u(x)=cib(lxl) log log lxl for large lxl'
Thus, on the whole, various results of the interplay between Q' and the estimates

of cD, are possible.
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