Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 9, 1984, 125–131

ON THE BOUNDARY BEHAVIOUR OF A ROTATION AUTOMORPHIC FUNCTION WITH FINITE SPHERICAL DIRICHLET INTEGRAL

RAUNO AULASKARI

In the paper [4] we defined a rotation automorphic function f with respect to some Fuchsian group Γ . The function f, meromorphic in the unit disc D, was said to be rotation automorphic with respect to Γ acting on D if it satisfies the equation

(1)
$$f(T(z)) = S_T(f(z)),$$

where $T \in \Gamma$ and S_T is a rotation of the Riemann sphere \hat{C} .

In [1]—[4] we supposed the rotation automorphic function f to satisfy in a fundamental domain F of Γ the condition

(2)
$$\int\!\!\int_F f^*(z)^2 \, d\sigma_z < \infty,$$

where $f^*(z) = |f'(z)|/(1+|f(z)|^2)$ is the spherical derivative of f and $d\sigma_z$ the euclidean area element. Further, in [1], [2] and [4], we showed that, by suitable restrictions related to F, f is a normal function in D, that is, $\sup_{z \in D} (1-|z|^2) f^*(z) < \infty$ (cf. [8]), while in [3] we constructed a non-normal rotation automorphic function f satisfying the condition (2).

In this paper we shall consider the boundary behaviour of a rotation automorphic function f satisfying (2). In fact, this work will be a continuation of the above-mentioned papers.

1. Let *D* and ∂D be the unit disc and the unit circle, respectively. We shall denote the hyperbolic distance by $d(z_1, z_2)(z_1, z_2 \in D)$ and the hyperbolic disc $\{z | d(z, z_0) < r\}$ by $U(z_0, r)$. Let $\chi(w_1, w_2)$ be the chordal distance between $w_1, w_2 \in \hat{C}$. We denote by Γ a Fuchsian group acting on *D* and by Ω the group of all Möbius transformations from *D* onto itself.

The points $z, z' \in \overline{D} = D \cup \partial D$ are called Γ -equivalent if there exists a mapping $T \in \Gamma$ such that z' = T(z). A domain $F \subset D$ is called a fundamental domain of Γ if it does not contain two Γ -equivalent points and if every point in D is Γ -equivalent to some point in the closure \overline{F} of F. We fix the fundamental domain F of Γ to be a normal polygon in D. The point $\zeta \in \partial D$ is called a limit point of Γ provided there is a point $z \in D$ and a sequence (T_n) of different transformations of Γ such that $T_n(z) \rightarrow \zeta$.

doi:10.5186/aasfm.1984.0902

All fixed points of parabolic transformations of Γ are limit points and the number of such limit points is at most countable. Other limit points are called non-parabolic. By a hyperbolic ray we mean an arc $z\zeta$ of a circle orthogonal to ∂D with an initial point $z\in D$ and $\zeta\in\partial D$. Let λ be a hyperbolic ray. Each point of λ has a Γ -equivalent point in \overline{F} . If the set of these points is everywhere dense in F, then λ is said to be transitive (under Γ). A point $\zeta\in\partial D$ is called transitive if every hyperbolic ray through ζ is transitive.

1.1. Definition. The fundamental domain F is called thick if there are positive constants r, r' such that for any sequence of points $(z_n) \subset F$ there is a sequence of points (z'_n) for which $d(z_n, z'_n) \leq r$ and $U(z'_n, r') \subset F$ for each n=1, 2, ...

1.2. Remark. Suppose that the fundamental domain F is thick. Let s>0 be fixed. Then, by the thickness of fundamental domains T(F), $T\in\Gamma$, there is a positive integer n(s), independent of z, such that U(z, s) has common points with at most n(s) sets $T(\overline{F})$, $T\in\Gamma$.

We now suppose that f is a rotation automorphic function in D. Let $K_0(f)$ be the set of points $\zeta \in \partial D$ such that

$$\lim_{z \to t} (1 - |z|^2) f^*(z) = 0$$

along each angular domain at ζ (cf. [10]). By an angular domain at ζ we mean a triangular domain whose vertices are ζ and two points of *D*. Let $K_+(f)$ be the set of points $\zeta \in \partial D$ such that

$$\limsup_{z \to \zeta} (1 - |z|^2) f^*(z) > 0$$

along each angular domain at ζ . Plainly, $K_0(f) \cap K_+(f) = \emptyset$. Let F(f) be the set of all Fatou points [5, p. 21] of f.

1.3. Theorem. Let Γ be a finitely generated Fuchsian group and f a non-constant rotation automorphic function with respect to Γ satisfying the condition (2). If L is the set of all non-parabolic limit points of Γ on ∂D , then $K_0(f) = \partial D \setminus L$ and $K_+(f) = L$.

Proof. Let $\zeta \in L$ and let Δ be an arbitrary angular domain at ζ . Then, by [7, p. 181], we find a sequence of transformations $(T_n) \subset \Gamma$ and a sequence of points (z_n) on the radius 0ζ tending to ζ such that $z'_n = T_n(z_n) \in D(0, r) = \{z \mid |z| < r\}, r < 1$, for each $n=1, 2, \ldots$. Since f is non-constant, it is possible to choose a sequence of points $(w_k) \subset \Delta$ such that $w_k \rightarrow \zeta$, $(z_k) \subset (z_n), d(z_k, w_k) \leq R < \infty, w'_k = T_k(w_k) \rightarrow w'_0$ and $(1-|w'_0|^2)f^*(w'_0) > 0$. By the continuity of $f^*(z)$ we have

$$\lim_{k \to \infty} (1 - |w_k|^2) f^*(w_k) = \lim_{k \to \infty} (1 - |w_k'|^2) f^*(w_k') = (1 - |w_0'|^2) f^*(w_0').$$

Hence $\zeta \in K_+(f)$ and thus $L \subset K_+(f)$.

By [1, 1.4. Theorem] f is a normal function in D. Further, by a theorem of Pommerenke (cf. [9, Theorem 4]), f has an angular limit at parabolic vertices. Let P be the

126

set of parabolic vertices. Since $F(f) \subset K_0(f)$ (cf. [10, Lemma 3]), $K_0(f) \supset P$. We denote by C the set $\bigcup_{T \in \Gamma} \bigcup_{i=1}^n T(\bar{c}_i)$, where \bar{c}_i , i=1, ..., n, are the closures of all free sides of F. Then, by [1, 1.2. Lemma], $(1-|z_m|^2)f^*(z_m) \rightarrow 0$ as $z_m \rightarrow \zeta \in T(\bar{c}_i)$, i=1, ..., n; $T \in \Gamma$. Hence $C \subset K_0(f)$. For the disjoint sets C, L and P $\partial D = C \cup L \cup P$ holds. The equation $K_0(f) \cap K_+(f) = \emptyset$ implies that $K_0(f) \subset \partial D \setminus K_+(f) \subset \partial D \setminus L = C \cup P$ and $K_+(f) \subset \partial D \setminus K_0(f) \subset \partial D \setminus P \cup C = L$. The theorem follows.

1.4. Remark. If Γ is of the first kind, then $C = \emptyset$. Since P is at most countable, the linear Lebesgue measure of $K_0(f)$ is zero. Thus the linear Lebesgue measure of $K_+(f)$ is 2π (cf. [10, Theorem 2]).

1.5. Remark. Let Γ be an arbitrary Fuchsian group (finitely or infinitely generated). We shall show that if the rotation automorphic function f satisfies the condition (2), then f has an angular limit at every parabolic vertex $p \in P$, that is, $K_0(f) \supset P$. Therefore let P be a parabolic generator transformation fixing p and let $f(P(z)) = S_p(f(z))$. Let S be a rotation of the Riemann sphere such that $(S \circ S_p)(z) =$ $e^{i\varphi}S(z)$, where $\varphi \in \mathbf{R}$. We choose the transformations $T_n \in \Gamma$, $n=0, 1, ..., n_0$, $T_0 = id$, as follows: The fundamental domains $F, T_1(F), ..., T_{n_0}(F)$, which have the common vertex p, are adjacent and P maps a side s of F beginning at p on a side s'of $T_{n_0}(F)$. There is a fixed circle of P passing through p and cutting s and s'. If D_p denotes its interior, the set $\tau = \left(\bigcup_{n=0}^{n_0} T_n(\overline{F})\right) \cap D_p$ is called a parabolic sector at p. Let 1/(P(z)-p)=1/(z-p)+c and let the parameter mapping $t=e^{2\pi i/c(z-p)}$. If $g = S \circ f$, then $g(z(t)) = t^{\alpha} h(z(t))$, where h(z(t)) is a meromorphic function in a parameter disc $\{t \mid |t| < \delta\}$ and $\alpha = \varphi/2\pi$. This follows from the condition (2) as shown in [1, 1.3. Lemma]. This implies g to be continuous in the closure $\bar{\tau}$ where $\bar{\tau}$ has been taken in the closed unit disc $\overline{D} = \{z | |z| \le 1\}$. As $z \to p$ belonging to s', we have $g(z) \rightarrow a$. On the other hand, $g(z) = g(P(w)) = e^{i\varphi}g(w) \rightarrow e^{i\varphi}a$. Let (z_n) be a sequence of points in an arbitrary angular domain Δ at p tending to p. Then we can find the transformations P^{m_n} , $m_n \in \mathbb{Z}$, such that $P^{m_n}(z_n) = z'_n \in \overline{\tau}$ and $z'_n \to p$ for $n \rightarrow \infty$. Hence

$$\chi(g(z_n), a) = \chi(e^{im_n\varphi}g(z_n), e^{im_n\varphi}a) = \chi(g(P^{m_n}(z_n)), a) = \chi(g(z'_n), a) \to 0$$

as $n \to \infty$. This implies that g has an angular limit a at p. Since $f = S^{-1} \circ g$, f has an angular limit $S^{-1}(a)$ at p.

Next we shall prove the following lemma:

1.6. Lemma. Let f be a rotation automorphic function with respect to a Fuchsian group Γ . Suppose that the fundamental domain F is thick and $\iint_F f^*(z)^2 d\sigma_z < \infty$. If $G_R = \{z | d(z, F) < R\}$ is any hull of F, then

$$\iint_{G_R} f^*(z)^2 \, d\sigma_z < \infty.$$

Proof. Since the fundamental domain F is thick, there is, for every hyperbolic disc $U(z, R), z \in \overline{F}$, an integer n(R), depending only on the radius R, such that U(z, R)

intersects at most n(R) fundamental domains T(F), $T \in \Gamma$. Let $G_R = \{z | d(z, F) < R\}$ be any hull of F. We show that every point of F has at most n(R) Γ -equivalent points in G_R . Suppose, on the contrary, that there is a point $z_0 \in F$ such that it has $n_1 > n(R)$ Γ -equivalent points $z_i = T_i(z_0)$, $i = 1, ..., n_1$, in G_R . Then $U(z_0, R)$ intersects the fundamental domains $T_i^{-1}(F)$, $i = 1, ..., n_1$. Since $n_1 > n(R)$, this is a contradiction and the assertion follows. Thus

$$\iint_{G_R} f^*(z)^2 \, d\sigma_z \leq n(R) \iint_F f^*(z)^2 \, d\sigma_z < \infty,$$

and the lemma is proved.

By using the above lemma we obtain

1.7. Theorem. Let f be a rotation automorphic function with respect to Γ . Suppose that the fundamental domain F is thick and $\iint_F f^*(z)^2 d\sigma_z < \infty$. Then, for each sequence of points $(z_n) \subset G_R = \{z | d(z, F) < R\}$ converging to ∂D ,

$$\lim_{n \to \infty} (1 - |z_n|^2) f^*(z_n) = 0$$

holds.

Proof. We choose a sequence of points $(z_n) \subset G_R$ tending to ∂D and the hyperbolic discs $U(z_n, R) \subset G_{2R}$, $n=1, 2, \ldots$ By 1.6. Lemma

(1.1)
$$S_n(R) = \frac{1}{\pi} \iint_{U(z_n, R)} f^*(z)^2 \, d\sigma_z \to 0$$

as $n \rightarrow \infty$. Define the transformations

$$z = V_n(\zeta) = \frac{\zeta + z_n}{1 + \bar{z}_n \zeta}$$

and the functions

$$f_n(\zeta) = f(V_n(\zeta)).$$

By [6, Theorem 6.1] we have

(1.2)
$$f_n^*(0)^2 \leq \frac{1}{x^2} \frac{S_n(R)}{1 - S_n(R)},$$

where $x=(e^{2R}-1)/(e^{2R}+1)$. On the other hand,

(1.3)
$$f_n^*(0) = (1 - |z_n|^2) f^*(z_n).$$

By (1.1), (1.2) and (1.3),

$$\lim_{n \to \infty} (1 - |z_n|^2) f^*(z_n) = 0,$$

which is the assertion.

1.8. Remark. This result improves Theorem 5 of [4] according to which f, satisfying (2), is a normal function in D.

In what follows \overline{G}_R denotes the closure of G_R taken in the closed unit disc $\overline{D} = \{z \mid |z| \leq 1\}$.

1.9. Corollary. By the assumptions of 1.7. Theorem every point $\zeta \in \overline{G}_R \cap \partial D$ belongs to $K_0(f)$.

Proof. Let $\zeta \in \overline{G}_R \cap \partial D$ be any point and Δ an arbitrary angular domain at ζ . We find a positive real number R such that $G_R \supset \Delta$. Hence $\zeta \in K_0(f)$.

1.10. Remark. In the proof of 1.3. Theorem we obtained $K_+(f) \supset L$ supposing that f is only a rotation automorphic function, that is, f need not satisfy the integral condition (2). This result, which is valid for a finitely generated Fuchsian group, generalizes 2.4. Theorem in [2].

Again we assume that f is a non-constant rotation automorphic function satisfying (2). Let F be the Riemannian image of D by f covering \hat{C} . Let $\gamma(z, f)$ be the maximum of q, $0 < q \leq 1$, such that F contains the schlicht disk $\{w \in \hat{C} | \chi(w, f(z)) < q\}$ of centre $f(z) \in F$; if $f^*(z) = 0$, we set $\gamma(z, f) = 0$ (cf. [10, p. 143]). Let $Q_0(f)$ be the set of points $\zeta \in \partial D$ such that

$$\lim_{z \to \zeta} \gamma(z, f) = 0$$

along each angular domain at ζ . Let $Q_+(f)$ be the set of points $\zeta \in \partial D$ such that

$$\limsup_{z \to \zeta} \gamma(z, f) > 0$$

along each angular domain at ζ . By applying [10, Lemma 4] in Theorem 1.3 we obtain $Q_0(f) = \partial D \setminus L$ and $Q_+(f) = L$ provided, Γ is finitely generated.

2. In what follows we shall get rid of the assumption that a rotation automorphic function satisfies the integral condition (2). Let f be a non-constant rotation automorphic function with respect to Γ , ζ a hyperbolic fixed point of Γ and ξ a transitive point of Γ . In [2, 2.3. Theorem, 2.7. Theorem] we proved that $\zeta \notin F(f)$ and $\xi \notin F(f)$. We now show that $\zeta \in K_+(f)$ and $\xi \in K_+(f)$.

We shall first prove $\zeta \in K_+(f)$, where ζ is a hyperbolic fixed point of $T, T \in \Gamma$. Choose a circle through ζ and the other fixed point ζ' of T and denote its arc lying in D by C. Further, we choose a point z_0 on C such that $f^*(z_0) > 0$. Now ζ is an attractive fixed point of either T or T^{-1} and we suppose that ζ is an attractive fixed point, then $z_n = T^n(z_0) \rightarrow \zeta$ as $n \rightarrow \infty$. Since $(1 - |z_0|^2)f^*(z_0) = (1 - |z_n|^2)f^*(z_n)$ and an arbitrary angular domain Δ contains the end of some circle $C, \zeta \in K_+(f)$.

The reasoning in the case of a transitive point ξ is the following: If Δ is any angular domain at ξ , we find a sequence of $(T_n) \subset \Gamma$ and a point $z_0 \in D$ such that $(z_n) = (T_n(z_0)) \subset \Delta$, $z_n \rightarrow \xi$ and $f^*(z_0) > 0$. Since $(1 - |z_0|^2) f^*(z_0) = (1 - |z_n|^2) f^*(z_n)$, $\xi \in K_+(f)$.

2.1. Remark. Let Γ be of divergence type, that is, $\sum_{T \in \Gamma} (1 - |T(z)|^2) = \infty$, $z \in D$. Then the set of all transitive points has the linear Lebesgue measure equal to 2π . Since, by the above, the set of all transitive points belongs to $K_+(f)$, the linear Lebes-

gue measure of $K_+(f)$ is 2π . This implies that the linear Lebesgue measure of $K_0(f)$ is zero (cf. 1.4. Remark).

A rotation automorphic function f is said to be of the second kind if there exists a sequence of points (z_n) in the closure \overline{F} such that the sequence of functions

$$f_n(\zeta) = f\left(\frac{\zeta + z_n}{1 + \bar{z}_n \zeta}\right)$$

tends uniformly to a constant limit in some neighbourhood of $\zeta = 0$.

We proved in [2, 2.2. Theorem] the following theorem: Let f be a rotation automorphic function with respect to Γ . If $F(f) \neq \emptyset$, then f is of the second kind.

Now we shall improve this result as follows:

2.2. Theorem. Let f be a rotation automorphic function with respect to Γ . If $K_0(f) \neq \emptyset$, then f is of the second kind.

Proof. Suppose that $\xi_0 \in K_0(f)$. Let $(z_n) \subset \Delta$ (Δ an angular domain at ξ_0) be a sequence of points converging to ξ_0 . We choose the transformations $L_n \in \Omega$, $T_n \in \Gamma$ such that $L_n(0) = z_n$, $T_n(z_n) = z'_n \in \overline{F}$ and $(T_n \circ L_n)(\zeta) = (\zeta + z'_n)/(1 + \overline{z}'_n \zeta)$ for each $\zeta \in D$ and n = 1, 2, ...

Define the functions

$$g_n(\zeta) = f(L_n(\zeta)).$$

By a small computation we obtain

$$g_n^*(\zeta) = \frac{1}{1-|\zeta|^2} \cdot (1-|L_n(\zeta)|^2) f^*(L_n(\zeta)).$$

Then $(L_n(\zeta))$ belongs to an angular domain Δ' at ξ_0 and converges to ξ_0 for all $\zeta \in U(0, r), r < \infty$, as $n \to \infty$. Hence, by the assumption, $(1 - |L_n(\zeta)|^2) f^*(L_n(\zeta)) \to 0$ and thus $g_n^*(\zeta) \to 0$ as $n \to \infty$. This implies that

$$g_n^*(\zeta) \leq M < \infty$$

for each $\zeta \in U(0, r)$ and n=1, 2, ... Therefore $\{g_n\}$ is a normal family in D by Marty's criterion. Now we find a subsequence (g_k) of (g_n) converging to g_0 uniformly on every compact part of D. Thus

$$g_0^*(\zeta) = \lim_{k \to \infty} g_k^*(\zeta) = 0$$

uniformly in U(0, r). As a meromorphic function $g_0(\zeta) \equiv c$ (a constant). By continuing in the same way as in [2, the proof of 2.2.Theorem] we find a subsequence (h_m) of $(h_k)=(f \circ T_k \circ L_k)$ converging uniformly to a constant in U(0, r). The theorem follows.

References

- [1] AULASKARI, R.: On rotation-automorphic functions with respect to a finitely generated Fuchsian group. J. London Math. Soc. (2) (to appear).
- [2] AULASKARI, R.: Rotation-automorphic functions near the boundary. Math. Scand. 53, 1983, 207-215.
- [3] AULASKARI, R., and P. LAPPAN: On additive automorphic and rotation automorphic functions. -Ark. Mat. 22, 1984, 83–89.
- [4] AULASKARI, R., and T. SORVALI: On rotation-automorphic functions. Math. Scand. 49, 1981, 222-228.
- [5] COLLINGWOOD, E. F., and A. J. LOHWATER: The theory of cluster sets. Cambridge University Press, Cambridge, 1966.
- [6] HAYMAN, W. K.: Meromorphic functions. Clarendon Press, Oxford, 1964.
- [7] LEHNER, J.: Discontinuous groups and automorphic functions. American Mathematical Society, Providence, Rhode Island, 1964.
- [8] LEHTO, O., and K. I. VIRTANEN: Boundary behaviour and normal meromorphic functions. -Acta Math. 97, 1957, 47-65.
- [9] POMMERENKE, CH.: On normal and automorphic functions. Michigan Math. J. 21, 1974, 193-202.
- [10] YAMASHITA, S.: On normal meromorphic functions. Math. Z. 141, 1975, 139-145.

University of Joensuu Department of Mathematics SF—80101 Joensuu 10 Finland

Received 16 January 1984