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ON THE BOUNDARY BEHAVIOUR OF A ROTATION
AUTOMORPHIC FUNCTION WITH FINITE SPHERICAL
DIRICHLET INTEGRAL

RAUNO AULASKARI

In the paper [4] we defined a rotation automorphic function f with respect to
some Fuchsian group I'. The function f, meromorphic in the unit disc D, was said to
be rotation automorphic with respect to I" acting on D if it satisfies the equation

M H(T(2) = Sr(f(2),

where TE€I and Sy is a rotation of the Riemann sphere C.
In [1]—[4] we supposed the rotation automorphic function f to satisfy in a funda-
mental domain F of I' the condition

) [f @2 do. <<,

where f*(z)=|f"(2)|/(1+|f(2)]?) is the spherical derivative of fand do, the euclidean
area element. Further, in [1], [2] and [4], we showed that, by suitable restrictions related
to F, fis a normal function in D, that is, sup,cp (1—|z[>)f*(z)<< (cf. [8]), while in
[3] we constructed a non-normal rotation automorphic function f satisfying the con-
dition (2).

In this paper we shall consider the boundary behaviour of a rotation automorphic
function fsatisfying (2). In fact, this work will be a continuation of the above-mention-
ed papers.

1. Let D and @D be the unit disc and the unit circle, respectively. We shall denote
the hyperbolic distance by d(z, z,)(z1, 2.6 D) and the hyperbolic disc {z|d(z, z))<r}
by Ul(z,, r). Let y(wy, wy) be the chordal distance between wy, wy€ C. Wedenote by I’
a Fuchsian group acting on D and by Q the group of all M&bius transformations
from D onto itself.

The points z,z’€ D=DudD are called I'-equivalent if there exists a mapping
Tel such that z=T(z). A domain FcD is called a fundamental domain of I'
if it does not contain two I'-equivalent points and if every point in D is I'-equivalent
to some point in the closure F of F. We fix the fundamental domain F of I' to be
a normal polygon in D. The point (€dD is called a limit point of I" provided there is
apoint z€D and a sequence (T,) of different transformations of I such that T,,(z) (.
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All fixed points of parabolic transformations of I' are limit points and the number of
such limit points is at most countable. Other limit points are called non-parabolic.
By a hyperbolic ray we mean an arc z{ of a circle orthogonal to D with an initial
point z€D and {€dD. Let A be a hyperbolic ray. Each point of 2 has a I'-equivalent
point in F. If the set of these points is everywhere dense in F, then A is said to be tran-
sitive (under I'). A point (€D is called transitive if every hyperbolic ray through {
is transitive.

1.1. Definition. The fundamental domain F is called thick if there are positive
constants r, ¥’ such that for any sequence of points (z,)CF there is a sequence of
points (z,) for which d(z,, z;)=r and U(z,,r")cF for each n=1,2, ....

1.2. Remark. Suppose that the fundamental domain F is thick. Let s=0
be fixed. Then, by the thickness of fundamental domains T'(F), T€I', there is a po-
sitive integer n(s), independent ot z, such that U(z, s) has common points with at
most n(s) sets T(F), T€rl.

We now suppose that f is a rotation automorphic function in D. Let Ko(f) be
the set of points (€dD such that

lim (1—[2[2)/*(2) = 0

along each angular domain at { (cf. [10]). By an angular domain at { we mean a trian-
gular domain whose vertices are { and two points of D. Let K, (f) be the set of
points (€dD such that

lim sup (1 - 1z f*(2) =0

along each angular domain at {. Plainly, K,(f)nK,(f)=0. Let F(f) be the set of
all Fatou points [5, p. 21] of f.

1.3. Theorem. Let I be a finitely generated Fuchsian group and f a non-constant
rotation automorphic function with respect to I' satisfying the condition (2). If L is the
set of all non-parabolic limit points of I' on 0D, then Ko(f)=0D\L and K. (f)=L.

Proof. Let (€L and let 4 be an arbitrary angular domain at {. Then, by
[7, p. 181], we find a sequence of transformations (7,)CI" and a sequence of points
(z,) on the radius 0 tending to { such that z,=T,(z,)€D(0, r)={z||z|<r}, r<1,
for each n=1,2, .... Since fis non-constant, it is possible to choose a sequence of
points (w)C4 such that w,—~{, (2)C(2,), (2, W) =R =<0, W= T (w)—~w, and
(1—|w}2)f* (w)=0. By the continuity of f*(z) we have

tim (1= ) 000 = lim (L=[wif3) /(o) = (1 wif2)£*0wd).

Hence (€K,(f) and thus LK, (f).
By [1, 1.4. Theorem] fis a normal function in D. Further, by a theorem of Pom-

merenke (cf. [9, Theorem 4]), £ has an angular limit at parabolic vertices. Let P be the
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set of parabolic vertices. Since F(f)CK,y(f) (cf. [10, Lemma 3]), K,(f)>P. We
denote by C the set Urer Ui, T(c), where ¢, i=1,...,n, are the closures of
all free sides of F. Then, by [1, 1.2. Lemma], (1—z,,[*)f*(z,)—~0 as z,~ (e T(c),
i=1,...,n; Tel'. Hence CCK,y(f). For the disjoint sets C, L and P 0D=CULUP
holds. The equation K,(f)nK, (f)=0 implies that Ky(f)COD\K, (f)CID\L=
CuUP and K, (f)TODN\K,(f)cOD\PuC=L. The theorem follows.

1.4. Remark. If I'is of the first kind, then C=9. Since P is at most countable,
the linear Lebesgue measure of K,(f) is zero. Thus the linear Lebesgue measure of
K, (f) is 2n (cf. [10, Theorem 2J).

1.5. Remark. Let I' be an arbitrary Fuchsian group (finitely or infinitely gene-
rated). We shall show that if the rotation automorphic function f satisfies the con-
dition (2), then f has an angular limit at every parabolic vertex p€P, that is,
Ky(f)>P. Therefore let P be a parabolic generator transformation fixing p and let
f(P(2))=5,(f(2)). Let S be a rotation of the Riemann sphere such that (SoS,)(z)=
€'?S(z), where @cR. We choose the transformations T,eI, n=0,1, ..., n,,
Ty=id, as follows: The fundamental domains F, T;(F), ..., T,,O(F), which have the
common vertex p, are adjacent and P maps a side s of F beginning at p on a side s
of T, (F). There is a fixed circle of P passing through p and cutting s and s". If D,
denotes its interior, the set 7= ({2, 7,(F))nD, is called a parabolic sector at p.
Let 1/(P(z)—p)=1/(z—p)+c and let the parameter mapping t=e*™ /=P If
g==Sof, then g(z(t))=1"h(z(¢)), where h(z(t)) is a meromorphic function in a
parameter disc {f||t{| <d} and a=¢/2rn. This follows from the condition (2) as
shown in [1, 1.3. Lemma]. This implies g to be continuous in the closure T where 7
has been taken in the closed unit disc D={z||z|=1}. As z—p belonging to s’,
we have g(z)—a. On the other hand, g(z)=g(P(w))=e"g(w)—~e"a. Let (z,) be
a sequence of points in an arbitrary angular domain 4 at p tending to p. Then we can
find the transformations P™, m,c€Z, such that P™(z,)=z,€T and z,—p for
n—oo, Hence

2(g(z,), a) = x(e™g(z,), €™ a) = y(g(P™(z,)), a) = x(g(z}), a)~ 0

as n—eo. This implies that g has an angular limit a at p. Since f=S§ ~log, f has an
angular limit S ~'(a) at p.
Next we shall prove the following lemma:

1.6. Lemma. Let f be a rotation automorphic function with respect to a Fuchsian
group I'. Suppose that the fundamental domain F is thick and [ [¢ f*(z)’do,< <. If
Gr={z|d(z, F)<R} is any hull of F, then

[, 1o, <=

Proof. Since the fundamental domain F is thick, there is, for every hyperbolic
disc U(z, R), z€ F, an integer n(R), depending only on the radius R, such that U(z, R)
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intersects at most n(R) fundamental domains T(F), T€I'. Let Gr={z|d(z, F)<R}
be any hull of F. We show that every point of F has at most n(R) I'-equivalent points
in Gg. Suppose, on the contrary, that there is a point z,€ F' such that it has n; >n(R)
I'-equivalent points z;=1T;(z,), i=1, ..., ny, in Gx. Then U(z,, R) intersects the fun-
damental domains 7; *(F), i=1, ..., n;. Since n;>n(R), this is a contradiction and
the assertion follows. Thus

JI, rr@rdo.=n® [[ 172 do. <,

and the lemma is proved.
By using the above lemma we obtain

1.7. Theorem. Let f be a rotation automorphic function with respect to T.
Suppose that the fundamental domain F is thick and [ f r /¥ (2)?do, <. Then, for
each sequence of points (z,)CGgr=1{z|d(z, F)<R} converging to 0D,

fim (1|, /*(z) = 0
holds.

Proof. We choose a sequence of points (z,)CGy tending to dD and the hyper-
bolic discs U(z,, R)CGyg, n=1,2,.... By 1.6. Lemma

— 1 * 2
(.1 SiR = — [ [ o/ (@Pdo.~0
as n—oo. Define the transformations
_ _ Cttz
2=V,0 = 1757

and the functions
5O =V (©)
By [6, Theorem 6.1] we have

(12 O = 5 20

where x=(e*®*—1)/(e*®+1). On the other hand,

(1.3) f2 ) = (1—[z,[5*(z,)
By (1.1), (1.2) and (1.3),

lim (1—|2,%) £*(z) = 0,
which is the assertion.

1.8. Remark. This result improves Theorem 5 of [4] according to which f,
satisfying (2), is a normal function in D.

In what follows Gy denotes the closure of Gy taken in the closed unit disc D=
{z||z|=1}.
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1.9. Corollary. By the assumptions of 1.7. Theorem every point (€GrndD
belongs to K,(f).

Proof. Let (£GrndD be any point and 4 an arbitrary angular domain at (.
We find a positive real number R such that Ggo>4. Hence (€K,(f).

1.10. Remark. In the proof of 1.3. Theorem we obtained K, (f)DL suppos-
ing that f is only a rotation automorphic function, that is, f need not satisfy the
integral condition (2). This result, which is valid for a finitely generated Fuchsian
group, generalizes 2.4. Theorem in [2].

Again we assume that fis a non-constant rotation automorphic function satis-
fying (2). Let F be the Riemannian image of D by fcovering C. Let y(z, f) be the maxi-
mum of g, 0<g=1, such that F contains the schlicht disk {wEé]x(w, f(@)<q}
of centre f(z)€ F; if f*(2)=0, we set y(z,/)=0 (cf. [10, p. 143]). Let Q,(f) be the
set of points (€0D such that

limy (2, /) = 0

along each angular domain at {. Let O, (f) be the set of points {€dD such that
lim sgup y(z,f) =0

along each angular domain at {. By applying [10, Lemma 4] in Theorem 1.3 we obtain
Qo(f)=0D\L and Q. (f)=L provided, I is finitely generated.

2. In what follows we shall get rid of the assumption that a rotation automorphic
function satisfies the integral condition (2). Let f be a non-constant rotation automor-
phic function with respect to I', { a hyperbolic fixed point of I and & a transitive point
of I'. In [2, 2.3. Theorem, 2.7. Theorem] we proved that {¢ F(f) and ¢¢ F(f). We
now show that (€K, (f) and E€K,(f).

We shall first prove (€K, (f), where ( is a hyperbolic fixed point of T, T€T.
Choose a circle through { and the other fixed point {” of T'and denote its arc lying in
D by C. Further, we choose a point z, on C suchthat /*(z,)>0. Now (isan attractive
fixed point of either 7 or 7! and we suppose that { is an attractive fixed point, then
2,=T"(zp)~{ as n—co. Since (1—|z|?)f*(z9)=(1—|z,*)f*(z,) and an arbitrary
angular domain 4 contains the end of some circle C, (€K, (f).

The reasoning in the case of a transitive point ¢ is the following: If 4 is any
angular domain at £, we find a sequence of (7,)CI’ and a point z,¢ D such that
(z)=(Tu(20))=4, z,~¢ and [*(z)=>0. Since (1—|z[%)f*(z0)=(1—|z,[f*(z,),
CEKL(f)-

2.1. Remark. Let I be of divergence type, that is, Srcr(1—|T(2)[?)= s,

z€D. Then the set of all transitive points has the linear Lebesgue measure equal to 2.
Since, by the above, the set of all transitive points belongs to K, (1), the linear Lebes-
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gue measure of K (f) is 2n. This implies that the linear Lebesgue measure of Ko(f)
is zero (cf. 1.4. Remark).

A rotation automorphic function fis said to be of the second kind if there exists
a sequence of points (z,) in the closure F such that the sequence of functions

C+Zl1 )

o =72

tends uniformly to a constant limit in some neighbourhood of (=0.
We proved in [2, 2.2. Theorem] the following theorem: Let f'be a rotation auto-
morphic function with respect to I'. If F(f)#90, then fis of the second kind.
Now we shall improve this result as follows:

2.2. Theorem. Let f be a rotation automorphic function with respect to I'. If
Ko(f)#9, then fis of the second kind.

Proof. Suppose that E€Ko(f). Let (z,)c4 (4 an angular domain at &;) be
a sequence of points converging to &o- We choose the transformations L,€Q, T,€I’
such that L,(0)=z,, T,(z,)=z,¢F and (T,oL)(O=({+z)/(1+Z,{) for each
teD and n=1,2,....

Define the functions

gn (é/) :f(Ln (C))

By a small computation we obtain

0 = 1o (1= L O (G O)

Then (L,,(C)) belongs to an angular domain A’ at &, and converges to &, for all
(e U0, r), r=eoo, as n—eco. Hence, by the assumption, (1=1L,OPR)f* (L (D)0
and thus g%({)—~0 as n—oo. This implies that

g =M=

for each (€U(0,r) and n=1,2,.... Therefore {g,} is a normal family in D by
Marty’s criterion. Now we find a subsequence (gu) of (g,) converging to g, uniformly
on every compact part of D. Thus

g () = lim g¢ () =

uniformly in U(0,r). Asa meromorphic function gy({) = ¢ (aconstant). By continuing
in the same way as in [2, the proof of 2.2.Theorem] we find a subsequence (h,) of
(h)=(foTyoL,) converginguniformly toa constant in U(0, r). The theorem follows.
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