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ENTIRE FUNCTIONS WITH SPIRAL LIMITS

R. B. BIJRCKEL and SADAHIRO SAEKI

It is (perhaps) well-known that given 0- to= 1r<.. .=tn:2n and complex num-
bers c1, ..., cn, there exists an entire function/such that lim,--l(re):c1for each
tQ(tit,t) and each .i:1,2,...,n. (See G. Pdlya [7] and Exercises M85-IV
186 of G. P6lya and G. szegö [8].) In a similar vein K. Grandjot [5] proved the exis-
tence of a non-zero entire function/such that f(z)*g as z+@ along any algebraic
curve (cf. also H. Bohr [2]). The review Mathematical Reviews 52+8433 gives a
brief historical account of this subject; it should be supplemented by paragraphs 2l
and 43 of the encyclopedia article [1] of L. Bieberbach. For some related results, we
mention the anecdotal paper [10] by W. J. Schneider. In this note, we shall construct
an entire function with "spiral" limits, where the limits are finitely many preassigned
polynomials. Our method uses the well-known technique of shoving poles to infinity.

For each p>0, let S, denote the class of all continuously differentiable real-
valued functions 0 on (0, -) such that

t lo'(t)l .t-n dt =*.
Thus every function of the form P(t) cos Q@+R(t) sin s(r) belongs to so for some
p=1, where P, Q, Ro 

^S 
are polynomials with real coefficients. By a spiral region we

mean an open set in the complex plane C of the form

dZ - {rtt': r > 0 and 0r(r) < t = 0z(r)},

where 0r,0165, for some p>0 and 0r(r)= |zG)=eLQ)+2n for all r>0. As is
customary; we shall often identify a curve with its image set.

Theorem. Let Qr, ..., Qpbe pairwise disjoint spiral regions, ErcQ, unbounded
closed subsets of C, Pi@) polynomials in z(C for j:1,2,...,k, and N a natural
number. Then there exists an entire function g such that

g(z): PtQ)+o(lzl-o) as z€.Ei tends to *
for each j:1,2,.,.,k.

Corollary. Let P be a polynomial, and N a natural number. Then there exists a
non-polynomial entirefunctionh such that h(z):p7"11o(lzl-N) as z+@ along any
algebraic curae.

(i)

(ii)
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To prove these results, we need three lemmas.

Lemma l. Suppose that 0r,0r€5, for some p>1, and that 01<0r<Qu sn

(0, -), where lr:Qt*2ru, For j-1,2, let

(a) Qj:{reii:r=0 and liQ)=t=Ti*rl)),

and let Si be a holomorphic fu:::'r" on Qi such that

(b) z€Qi' and ly' > C + lcie)l = Cll'l'*

for some C 
,and 

lf=p*l: Then there exist ci-lC such that

(c) gi@) : ci*o(lzl-N) as 2€Qt tends ta * (i - 1,2)'

Proof. For 7- 1,2 and l>0, define

(1) ti(t):2-a{0i@,t0i+{t)} and Ti(t\:'tei"/t).

We fix7, and write r:xi, !:Ti, etc. Since fi-l>p>|, .we have

a\ fi (t+tl"'ttl)r-" at = fi (t+loi(r)l+10;(r)l),t-N'fl| <a
bv (i).

Notice that y((0, -))cor, lv?)l:t, and y'(t):{l+it|:(t)}e*Q) for all

t=0 by (l). It follows from (b) that s>r>C implies

(3) lg(vC))-g(r('))l : l[; s'{tfr\f1t)cttl= [" ct-'*1t* tlt'(t)l) dt

= cr-* ti $+tlr'(t)l)t'N dt.
.

From (2) and (3) we infer that g(7(s)) converges to some complex number c:ci
åS J+@r and that

(4) lt-g(Y(t))l : o(r-N) as t"'*-'

Now suppose that z:reis(O;, where r=C andthat 0/r)<s=0i+r(r).'Then
we have

I 
g (v (')) : s V)l : 

| [ lo t' t"") tr eil d tl < 2n c I rzN -r

by (1) and (b), so

l" - c@l= l" - g(y (.))| + 2nc l r'n -'.

This inequality, combined'with (4), yields the desired conclusion.

Lemma 2. Let 0i,p, and Qi A:1,2) be ss in Lemma 1. Fix a positiue real

number ro and a natural number N=P*|. Let

(a) &: roexp [i0t(ro)] and fr : ,oexp [l9r(ro)],
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and tet g(z) be aholomorphic antideriuatioe of l(z-u)(z- F)l-n in the simply connected

2

0o : C\U {rexP li?i(t)l: r >- ro}'
j:L

Then there exist complex numbers c1, c2 such that

(c) g(r\: ci*o(lzl-N) as z€Q1 tends to -
for j:1,2. Moreoaer, cLlcz.

Proof. The existence of c, satisfying (c) is an immediate consequence of Lemma 1.

So we only need to check that ct*cz'
Let y1 and y, be the two infinite curves defined as in the proof of Lemma 1. Notice

both y, and y, lie in Qo, that Tz: -Tt and that

s@) - s (u) - [ ,Q- d) -* (t - p)-N dz (r, u€ oo),

where f :f (u,a) is any smooth curve in Oo from u to o. Now pick anJ/ r>rq, and

consider the closed curve y consisting of the following three pieces: yr(r-t) for
O=t<r, y(t-r) fot r<t=2r, and the semicircle

C,(t) : 7t (r) exp li (t -2r)l for 2r = t = 2r * n.

It is easy to check that a and B lie "outside" and "inside" of y, respectively.

It follows from (l) and Cauchy's residue theorem tlrat

that

(1)

region

(b)

(2)

where

(3)

But it is routine to show that lim r* - I ",:0. 
Letting r* - in (2), we therefore

conclude from (c) and (3) that cr-c2*010, as desired.

Now we write P*(w):P(Uw) for a polynomial P and w#0.

Lemma 3. Let E be a closed subset of C,K a compact connected subset of
C\8, and u,a(K. If N is a nonnegatiae integer, e=0, and Rlis a polynomial, thm

there exists a polynomial R2 such that

lR{(z - u)- RiQ -u)l = el(2'tlzl)N Y z€E.

Proof. For N:0, this is a consequence of Runge's theorem' (Indeed, it can be

proved by an elementary method.) See, for example, Chapter IV, Paragraph I of
S. Saks and A. Zygmund [9].

So assume that N>l and that the result is true with N replaced by N- 1. Apply

this inductive hypothesis to R (z):Qt-r)z to find a polynomial Q such that '

(1) lfu-o)(z-u)-t-?*Q-u)l <. el(2* l"l)*-t Y z€8.
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Divide both sides of this inequality by lr-rl to obtain

(2) lQ - u)-L - {(' - u)-1 + (z - u)-' Q* Q- u)} I =
lz - ul(z * lrl)" -' Y z€8.

But (2*lzl)llz-ul is bounded on.E and e =0 is arbitrary. Thus we conclude tåat
there exists a polynomial R such that

(3) lQ-u)-'- R*(r-u)l - el(2+ Irl)" Y zQE,

-01,?r-P.r./' on (0, -), and for j - I,2

= 0 and 0f (r) < t = Ti*r(r)) @ rz},

which establishes the desired result for R1(z):7. Since (z-u)-l is bounded on,E,
(3) shows that R* (z-u) is bounded on.E. Therefore the general case follows from this
special case combined with the elementary formula A"-Bo:(A-817A"-t+...+
+Bn-t).This completes the induction and hence the proof.

Proof of the Theorem. First consider the case k:|. In this case we may assume

that Q, is the complement of a curve l- of the form I(l): teie(t) for l>0, where g

is in 
^S, 

for some p =0. Then the hypothesis on the closed unbounded set E, is that it
be disjoint from .f . For such an E1, it is easy to construct an infinitely differentiable
function ä on (0; -) such that 0<ö(t)<.2n and lö'(t)l=1 for all t>0 and such

that
E1c {reft: r > 0 and 0(r) < t <. 0(r)-t2n-ä(.)}.

Therefore the case k:I can be reduced to the case k:2. Also the desired result
for ft>3 follows from /c applications of the result for k:2 as follows: for each pair
of complementary spiral regions O, and C\O; and respective polynomials P; and
0, the result for k:2 supplies us with an appropriate entire function g, and for the
desired function g we take gr* gz*. . . *go . Thus it will be sufficient to deal with the
case k:2.

So assume that k:2 and also, without loss of generality, thal Q1 and Q, are
defined by (a) in Lemma l.Let El be a closed unbounded set contained in O, for
j:I,2. Choose and fix an infinitely differentiable function ä on (0, -), with bounded
derivative, such that

(1)

(2)

where

0<ö= -Lmin{0,

Ei c {rei': r

(3) 0!:0i+ö and 07:0i-ö (/-1,2,3).
Now let s>0 and a natural number q=p+I be given. Put

U,: {rr": r > n-I12, lt-7r(t)l - ö(r)},

Vn: trtt': r > n-I12, lt-\r(r)l = ö(r)),

dn : ntio{n) and f n: nrio2@1 for n - lr 2,

(4)

(s)

(6)
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for some polynomials Q, and R1. Suppose that polynomials Q, and R, have been
chosen for some n >1. Notice that a, and co-r, are contained in an arc which is dis-
joint from the closed set C\U,. It follows from Lemma 3 that there exists a poly-
nomial Qn*, such that

(8) lQtr*r(t-o,*)-Qtr@-q,)l =. el(2*lzl)2q" Vz€C\U".
Similarly there exists a polynomial &+, such that

(9) lRtr*r@-F**')-Rtr@-f")l =. el(2*lzl)zq' Vze C\2".
This completes our induction.

Now set f"("):QXQ-a,)*Rl(z-f,) for n:l;2,.... Then (8) and (9) yield

l-f,*Jz) -f,Q)l < 2el(2+ltl)'n" V z€C\( UnuVn).

Entire functions with spiral limits 1,49

We shall construct two sequences of polynomials Q, and Ä, as follows. The rational
function fr(z):lQ-ar)(z-f)l-n admits a representation of the form

(7)

(10)

It follows from (4), (5) and (10) that tle rational functionsfr converge to an entire
function / uniformly on each compact set. Moreover, we have

(11) lfQ)--ftQ)l- )-- . ,= ?u',.== = , ,41-,ru, vz€c\(t/ruzr).- ltn=, (2+lz11ze" - (2+1z11ze

Let g be the antiderivative oflwith B(0):0, and let gt be the antiderivative of
Jr with g'(0):0 in

C\ Ö {t ex<pli0,(t)l: r >' 1}.
j:r

By Lemma 2, there exist distinct complex numbers cr and c, such that

(r2) g'(z): c;*o(lzl-q) as z(Qi tends to @

for 7:1,2. By the definition of ftand (11), we can find C=1 so large that lf@)l=
Cllzl'n for all z in C\(U.uZ) with Itl=C. It follows from (two applications
of) Lemma 1 and (1)-(5) that there exist two complex numbers ä1 and å, such that

(13) s(z) : bj+o(lzl-) as z(ai tends to @

for 7:1,2. We claim that bt*bz, provided that e>0 is small enough.

Indeed, let z, and ?.; be as in the proof of Lemma 1:

ri?) : {0i(t)+0i+{t)Y2 and Ti(t) : tei"/t) for r = 0'

According to (1)-(5) we have

(14) I;(0, ..) c Ai . C\(fåvVt), i - t, 2.
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Since

(1 5)

(1)

and

(2)

which
It

8t

s(0) : St(O) - 0, tt

Ig (v; (')) -
follows (14) that r=0

< 4tI;

is finite by (2).Thus (after an extension to (0, b)) the function

is evident that e* satisfies (1) and (2) for all P>0. Put

H - {(x, y): x > L and z-Le* s Y < 2t*I.

from (1

)l : ll:
(lo;(r)l+

ff\*1 ,-,d,-r;lffil,,a*
: {; lJ'@) x-J @)l ("' *J'@72)-orz-z dx,

f
w

1)

{t
. 

l(
6

and

'(v 
tQ

;(t)l)

f,0itr)))yj(

implies

) arl(v t(')
l+t

t-,

dt

))

1z+Vl) - 4eB, s&y.

Notice that B is a finite constant which is independent of e. Letting r*- in (15)

we obtain from (12) and (13) that lbt-ctl= eB for ;:1,2. Hence lbr-brl=
lc1-c2l-8eB>0, provided that e>0 is small enough' which confirms our claim.

Upon setting h:u*fg for appropriate coefficients a and B, we therefore obtain an

entire function å such that

(16) h(z):{ilil,'r",',7 ;: ',27, H:: ;: I: ""u
where a and b are arbitrary, but preassigned, complex numbers.

Finally let P, and P, be two given polynomials. Write

P1Q) : Z{=raoro and P2@): Zo'=oborr.

Choose a natural number q>M*N*p and entire functions åe which behave as in
(16)with a-ao and b:br, (k:0,1,...,M). Put F(4:Z{ zrho1z1. Itisevident
that F has the required properties.

ProoJ of the Corollary. Let f be any continuously differentiable, positive real-

valued function on (0, -) for which there exists p>0 such that

x+.f'(x)f(x) > 0 for all x 4 P,

f 
* 

l-f'(x)x-f(x)l . (*' +-f(x)')-nrz-2 dx< oo.
arp

The graph of such a function is essentially a curve of the kindwhichboundsspiral

regions. To see this, define two functions / and 0 of xby setting t(x):(x2-lf(x)2)ttz
and O(x):a;rstanlf(x)lxl. Then dtldx:lx+f (x)f(x)llt>O for all x>-p by (l),
so t has a continuously differentiable inverse on [å, -), where b:t(p). Accordingly,

0 may be regarded as a function of t>b. A simple calculation shows that

0 belongs to So.

(3)

By
in

the result established in the preceding paragraph; C\H is essentially contained

a spiral region O. (More precisely, CVI is contained in the union of O and a
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bounded set.) Given a natural number N, our theorem yields an entire function g

such that S@):o(lzl-N) as z€O tends to -. Indeed, such a g can be chosen so

that g(z):l+o(l"l-*) as z+@ along the gurva )s:l for x>0'
Now let l- be an arbitrary algebraic curve. Thus, by definition, there exist finitely

many polynomials po, Qr,,..,Q,tn x; with Q,+0, such that each point (x,y) of
f satisfies

(4) Qo@)IQt@)y+.. .+Q*@)Y" - 0.

It is easily seen from (3) that ,f (x,y) is in Il and x or y is large enough, then (x,y)
does not satisfy (a). In other words, only a bounded portion of f lies outside O;

hence g(z)-o(lzl-\ as 2+6 along j-. It follows that, given a polynomial P, the

entire function g+P has the required properties.
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