ENTIRE FUNCTIONS WITH SPIRAL LIMITS

R. B. BIRCKEL and SADAHIRO SAeki

It is (perhaps) well-known that given $0=t_0<t_1<\ldots<t_n=2\pi$ and complex numbers c_1, \ldots, c_n, there exists an entire function f such that $\lim_{r \to \infty} f(re^{i\theta})=c_j$ for each $t_j=(t_{j-1}, t_j)$ and each $j=1, 2, \ldots, n$. (See G. Pólya [7] and Exercises IV 185—IV 186 of G. Pólya and G. Szegő [8].) In a similar vein K. Grandjot [5] proved the existence of a non-zero entire function f such that $f(z)\to 0$ as $z\to \infty$ along any algebraic curve (cf. also H. Bohr [2]). The review Mathematical Reviews 52 # 8433 gives a brief historical account of this subject; it should be supplemented by Paragraphs 21 and 43 of the encyclopedia article [1] of L. Bieberbach. For some related results, we mention the anecdotal paper [10] by W. J. Schneider. In this note, we shall construct an entire function with "spiral" limits, where the limits are finitely many preassigned polynomials. Our method uses the well-known technique of shoving poles to infinity.

For each $p>0$, let S_p denote the class of all continuously differentiable real-valued functions θ on $(0, \infty)$ such that

$$\int_1^\infty |\theta'(t)| \cdot t^{-p} \, dt < \infty.$$ (i)

Thus every function of the form $P(t) \cos Q(t) + R(t) \sin S(t)$ belongs to S_p for some $p>1$, where P, Q, R, S are polynomials with real coefficients. By a spiral region we mean an open set in the complex plane C of the form

$$\Omega = \{re^{it} : r > 0 \text{ and } \theta_1(r) < t < \theta_2(r)\},$$ (ii)

where $\theta_1, \theta_2 \in S_p$ for some $p>0$ and $\theta_1(t) < \theta_2(t) \leq \theta_1(t) + 2\pi$ for all $t>0$. As is customary, we shall often identify a curve with its image set.

Theorem. Let $\Omega_1, \ldots, \Omega_k$ be pairwise disjoint spiral regions, $E_j \subset \Omega_j$ unbounded closed subsets of C, $P_j(z)$ polynomials in $z \in C$ for $j=1, 2, \ldots, k$, and N a natural number. Then there exists an entire function g such that

$$g(z) = P_j(z) + o(|z|^{-N}) \text{ as } z \in E_j \text{ tends to } \infty$$

for each $j=1, 2, \ldots, k$.

Corollary. Let P be a polynomial, and N a natural number. Then there exists a non-polynomial entire function h such that $h(z) = P(z) + o(|z|^{-N})$ as $z \to \infty$ along any algebraic curve.

To prove these results, we need three lemmas.

Lemma 1. Suppose that \(\theta_1, \theta_2 \in S_p \) for some \(p > 1 \), and that \(\theta_1 < \theta_2 < \theta_3 \) on \((0, \infty) \), where \(\theta_3 = \theta_1 + 2\pi \). For \(j = 1, 2 \), let

\[
\Omega_j = \{ |re^{it}| > 0 \quad \text{and} \quad \theta_j(r) < t < \theta_{j+1}(r) \},
\]

and let \(g_j \) be a holomorphic function on \(\Omega_j \) such that

\[
z \in \Omega_j \quad \text{and} \quad |z| > C \Rightarrow |g_j'(z)| < C/|z|^{2N}
\]

for some \(C \) and \(N > p + 1 \). Then there exist \(c_j \in C \) such that

\[
g_j(z) = c_j + o(|z|^{-N}) \quad \text{as} \quad z \in \Omega_j \quad \text{tends to} \quad \infty \quad (j = 1, 2).
\]

Proof. For \(j = 1, 2 \) and \(t \geq 0 \), define

\[
\tau_j(t) = 2^{-1}\{\theta_j(t) + \theta_{j+1}(t)\} \quad \text{and} \quad \gamma_j(t) = te^{itj(t)}.
\]

We fix \(j \), and write \(\tau = \tau_j \), \(\gamma = \gamma_j \), etc. Since \(N - 1 > p > 1 \), we have

\[
\int_1^\infty (1 + t|\tau'(t)|)t^{-N} dt \leq \int_1^\infty (1 + |\tau'_j(t)| + |\tau'_{j+1}(t)|)t^{-N} dt < \infty
\]

by (i).

Notice that \(\gamma((0, \infty)) \subset \Omega_j \), \(|\gamma(t)| = t \), and \(\gamma'(t) = (1 + i\tau'(t))e^{itj(t)} \) for all \(t > 0 \) by (1). It follows from (b) that \(s > r > C \) implies

\[
|g(\gamma(s)) - g(\gamma(r))| = \left| \int_r^s g'(\gamma(t))\gamma'(t) dt \right| \leq \int_r^s (1 + t|\gamma'(t)|) dt
\]

\[
= C e^{-N} \int_r^\infty (1 + t|\tau'(t)|)t^{-N} dt.
\]

From (2) and (3) we infer that \(g(\gamma(s)) \) converges to some complex number \(c = c_j \) as \(s \to \infty \), and that

\[
|c - g(\gamma(r))| = o(r^{-N}) \quad \text{as} \quad r \to \infty.
\]

Now suppose that \(z = re^{it} \in \Omega_j \), where \(r > C \) and that \(\theta_j(r) < s < \theta_{j+1}(r) \). Then we have

\[
|g(\gamma(r)) - g(z)| \leq \int_s^r (g'(re^{it})ire^{it} dt < 2\pi C/r^{2N-1}
\]

by (1) and (b), so

\[
|c - g(z)| \leq |c - g(\gamma(r))| + 2\pi C/r^{2N-1}.
\]

This inequality, combined with (4), yields the desired conclusion.

Lemma 2. Let \(\theta_j \), \(p \), and \(\Omega_j \) \((j = 1, 2)\) be as in Lemma 1. Fix a positive real number \(r_0 \) and a natural number \(N > p + 1 \). Let

\[
\alpha = r_0 \exp[i\theta_1(r_0)] \quad \text{and} \quad \beta = r_0 \exp[i\theta_2(r_0)],
\]
and let \(g(z) \) be a holomorphic antiderivative of \([(z-x)(z-\beta)]^{-N} \) in the simply connected region

\[
\Omega_0 = \mathbb{C} \setminus \bigcup_{j=1}^{2} \{ r \exp[i\theta_j(r)]: r \equiv r_0 \}.
\]

Then there exist complex numbers \(c_1, c_2 \) such that

\[
g(z) = c_j + o(|z|^{-N}) \quad \text{as} \quad z \in \Omega_j \text{ tends to } \infty
\]

for \(j=1, 2 \). Moreover, \(c_1 \neq c_2 \).

Proof. The existence of \(c_j \) satisfying (c) is an immediate consequence of Lemma 1. So we only need to check that \(c_1 \neq c_2 \).

Let \(\gamma_1 \) and \(\gamma_2 \) be the two infinite curves defined as in the proof of Lemma 1. Notice that both \(\gamma_1 \) and \(\gamma_2 \) lie in \(\Omega_0 \), that \(\gamma_2 = -\gamma_1 \) and that

\[
g(v) - g(u) = \int_{\Gamma} (z-x)^{-N}(z-\beta)^{-N} \, dz \quad (u, v \in \Omega_0),
\]

where \(\Gamma = \Gamma(u, v) \) is any smooth curve in \(\Omega_0 \) from \(u \) to \(v \). Now pick any \(r > r_0 \), and consider the closed curve \(\gamma \) consisting of the following three pieces: \(\gamma_2(r-t) \) for \(0 \leq t \leq r \), \(\gamma_1(t-r) \) for \(r \leq t \leq 2r \), and the semicircle \(C_r(t) = \gamma_1(r) \exp[i(t-2r)] \) for \(2r \leq t \leq 2r + \pi \).

It is easy to check that \(x \) and \(\beta \) lie "outside" and "inside" of \(\gamma \), respectively.

It follows from (1) and Cauchy's residue theorem that

\[
g(\gamma_1(r)) - g(\gamma_2(r)) + \int_{C_r} (z-x)^{-N}(z-\beta)^{-N} \, dz = 2\pi i \text{Res}(\beta),
\]

where

\[
\text{Res}(\beta) = \frac{[2(N-1)!]}{[(N-1)!]^2} (-1)^{N-1}(\beta-x)^{1-2N} \neq 0.
\]

But it is routine to show that \(\lim_{r \to \infty} \int_{C_r} = 0 \). Letting \(r \to \infty \) in (2), we therefore conclude from (c) and (3) that \(c_1 - c_2 + 0 \neq 0 \), as desired.

Now we write \(P^*(w) = P(1/w) \) for a polynomial \(P \) and \(w \neq 0 \).

Lemma 3. Let \(E \) be a closed subset of \(\mathbb{C} \), \(K \) a compact connected subset of \(\mathbb{C} \setminus E \), and \(u, v \in K \). If \(N \) is a nonnegative integer, \(\varepsilon > 0 \), and \(R_1 \) is a polynomial, then there exists a polynomial \(R_2 \) such that

\[
|R_1^*(z-u) - R_2^*(z-v)| < \varepsilon/(2+|z|^N) \quad \forall z \in E.
\]

Proof. For \(N = 0 \), this is a consequence of Runge's theorem. (Indeed, it can be proved by an elementary method.) See, for example, Chapter IV, Paragraph 1 of S. Saks and A. Zygmund [9].

So assume that \(N \geq 1 \) and that the result is true with \(N \) replaced by \(N-1 \). Apply this inductive hypothesis to \(R_1(z) = (u-v)z \) to find a polynomial \(Q \) such that

\[
|(u-v)(z-u)^{-1} Q^*(z-v)| < \varepsilon/(2+|z|^{N-1}) \quad \forall z \in E.
\]
Divide both sides of this inequality by \(|z-v|\) to obtain

\[
|\frac{1}{z-u} - \{\frac{1}{z-v} + (z-v)^{-1}Q^*(z-v)\}| < \frac{\epsilon}{|z-v|(2 + |z|)^{N-1}} \quad \forall z \in E.
\]

But \((2 + |z|)/|z-v|\) is bounded on \(E\) and \(\epsilon > 0\) is arbitrary. Thus we conclude that there exists a polynomial \(R\) such that

\[
|\frac{1}{z-u} - R^*(z-v)| < \epsilon(2 + |z|)^{N} \quad \forall z \in E,
\]

which establishes the desired result for \(R_1(z)\). Since \((z-u)^{-1}\) is bounded on \(E\), (3) shows that \(R^*(z-v)\) is bounded on \(E\). Therefore the general case follows from this special case combined with the elementary formula \(A^n - B^n = (A - B)(A^{n-1} + \ldots + B^n)\). This completes the induction and hence the proof.

Proof of the Theorem. First consider the case \(k=1\). In this case we may assume that \(\Omega_1\) is the complement of a curve \(\Gamma\) of the form \(\Gamma(t) = te^{i\theta(t)}\) for \(t \geq 0\), where \(\theta\) is in \(S_p\) for some \(p > 0\). Then the hypothesis on the closed unbounded set \(E_1\) is that it be disjoint from \(\Gamma\). For such an \(E_1\), it is easy to construct an infinitely differentiable function \(\delta\) on \((0, \infty)\) such that \(0 < \delta(t) < 2\pi\) and \(|\delta(t)| < 1\) for all \(t > 0\) and such that

\[E_1 \subset \{e^{it}: r > 0\text{ and } \theta(r) < t < \theta(r) + 2\pi - \delta(r)\}.
\]

Therefore the case \(k=1\) can be reduced to the case \(k=2\). Also the desired result for \(k \geq 3\) follows from \(k\) applications of the result for \(k=2\) as follows: for each pair of complementary spiral regions \(\Omega_j\) and \(C \setminus \Omega_j\) and respective polynomials \(P_j\) and \(0\), the result for \(k=2\) supplies us with an appropriate entire function \(g_j\) and for the desired function \(g\) we take \(g_1 + g_2 + \ldots + g_k\). Thus it will be sufficient to deal with the case \(k=2\).

So assume that \(k=2\) and also, without loss of generality, that \(\Omega_1\) and \(\Omega_2\) are defined by (a) in Lemma 1. Let \(E_j\) be a closed unbounded set contained in \(\Omega_j\) for \(j=1, 2\). Choose and fix an infinitely differentiable function \(\delta\) on \((0, \infty)\), with bounded derivative, such that

\[
0 < \delta < 4^{-1}\min \{\theta_2 - \theta_1, \theta_3 - \theta_2\} \text{ on } (0, \infty), \quad \text{and for } j = 1, 2
\]

\[
E_j \subset \{e^{it}: r > 0 \text{ and } \theta_j^+(r) < t < \theta_{j+1}^-(r)\} \quad \text{def } \Omega_j^*,
\]

where

\[
\theta_j^+ = \theta_j + \delta \quad \text{and} \quad \theta_j^- = \theta_j - \delta \quad (j = 1, 2, 3).
\]

Now let \(\epsilon > 0\) and a natural number \(q > p + 1\) be given. Put

\[
U_n = \{e^{it}: r > n - 1/2, |t - \theta_1(t)| < \delta(r)\},
\]

\[
V_n = \{e^{it}: r > n - 1/2, |t - \theta_2(t)| < \delta(r)\},
\]

\[
\alpha_n = ne^{i\theta_1(n)} \quad \text{and} \quad \beta_n = ne^{i\theta_2(n)} \quad \text{for } n = 1, 2, \ldots.
\]
We shall construct two sequences of polynomials Q_n and R_n as follows. The rational function $f_1(z) = \frac{1}{(z-a_1)(z-b_1)^q}$ admits a representation of the form

$$f_1(z) = Q_1^*(z-a_1) + R_1^*(z-b_1)$$

for some polynomials Q_1 and R_1. Suppose that polynomials Q_n and R_n have been chosen for some $n \geq 1$. Notice that a_n and b_{n+1} are contained in an arc which is disjoint from the closed set $C \setminus U_n$. It follows from Lemma 3 that there exists a polynomial Q_{n+1}^* such that

$$|Q_{n+1}^*(z-a_{n+1}) - Q_n^*(z-a_n)| < \varepsilon/(2 + |z|)^{2q_n} \quad \forall z \in C \setminus U_n.$$

Similarly there exists a polynomial R_{n+1}^* such that

$$|R_{n+1}^*(z-b_{n+1}) - R_n^*(z-b_n)| < \varepsilon/(2 + |z|)^{2q_n} \quad \forall z \in C \setminus V_n.$$

This completes our induction.

Now set $f_n(z) = Q_n^*(z-a_n) + R_n^*(z-b_n)$ for $n = 1, 2, \ldots$. Then (8) and (9) yield

$$|f_{n+1}(z) - f_n(z)| < 2\varepsilon/(2 + |z|)^{2q_n} \quad \forall z \in C \setminus (U_n \cup V_n).$$

It follows from (4), (5) and (10) that the rational functions f_n converge to an entire function f uniformly on each compact set. Moreover, we have

$$|f(z) - f_1(z)| < \sum_{n=1}^{\infty} \frac{2\varepsilon}{(2 + |z|)^{2q_n}} \equiv \frac{4\varepsilon}{(2 + |z|)^{2q}} \quad \forall z \in C \setminus (U_1 \cup V_1).$$

Let g be the antiderivative of f with $g(0) = 0$, and let g_1 be the antiderivative of f_1 with $g_1(0) = 0$ in

$$C \setminus \bigcup_{j=1}^{2} \{ t \exp[i\theta_j(t)] : t \equiv 1 \}.$$

By Lemma 2, there exist distinct complex numbers c_1 and c_2 such that

$$g_1(z) = c_j + o(|z|^{-q}) \quad \text{as} \quad z \in \Omega_j \quad \text{tends to} \quad \infty$$

for $j = 1, 2$. By the definition of f_1 and (11), we can find $C > 1$ so large that $|f(z)| < C/|z|^{2q}$ for all z in $C \setminus (U_1 \cup V_1)$ with $|z| > C$. It follows from (two applications of) Lemma 1 and (1)—(5) that there exist two complex numbers b_1 and b_2 such that

$$g(z) = b_j + o(|z|^{-q}) \quad \text{as} \quad z \in \Omega_j^* \quad \text{tends to} \quad \infty$$

for $j = 1, 2$. We claim that $b_1 \neq b_2$, provided that $\varepsilon > 0$ is small enough.

Indeed, let τ_j and γ_j be as in the proof of Lemma 1:

$$\tau_j(t) = \{ \theta_j(t) + \theta_{j+1}(t) \}/2 \quad \text{and} \quad \gamma_j(t) = te^{\tau_j(t)} \quad \text{for} \quad t \equiv 0.$$

According to (1)—(5) we have

$$\gamma_j(0, \infty) \subset \Omega_j^* \subset C \setminus (U_1 \cup V_1), \quad j = 1, 2.$$
Since \(g(0) = g_1(0) = 0 \), it follows from (11) and (14) that \(r > 0 \) implies

\[
|g(y_j(t)) - g_1(y_j(t))| = \left| \int_0^r \{ f(y_j(t)) - f_1(y_j(t)) \} y_j(t) \, dt \right|
\]

\[
< 4\varepsilon \int_0^\infty \frac{1 + t(\theta_j'(t) + |\theta_j'(t)|)}{(2 + |t|)^{2\alpha}} \, dt = 4\varepsilon B, \quad \text{say.}
\]

Notice that \(B \) is a finite constant which is independent of \(\varepsilon \). Letting \(r \to \infty \) in (15) we obtain from (12) and (13) that \(\|b_j - c_j\| \leq 4\varepsilon B \) for \(j = 1, 2 \). Hence \(\|b_1 - b_2\| \leq |c_1 - c_2| - 8\varepsilon B > 0 \), provided that \(\varepsilon > 0 \) is small enough, which confirms our claim. Upon setting \(h = \alpha + \beta \) for appropriate coefficients \(\alpha \) and \(\beta \), we therefore obtain an entire function \(h \) such that

\[
h(z) = \begin{cases}
 a + o(|z|^{-\theta}) & \text{as } z \to 1, \\
 b + o(|z|^{-\theta}) & \text{as } z \to \infty,
\end{cases}
\]

where \(a \) and \(b \) are arbitrary, but preassigned, complex numbers.

Finally let \(P_1 \) and \(P_2 \) be two given polynomials. Write

\[
P_1(z) = \sum_{k=0}^M a_k z^k \quad \text{and} \quad P_2(z) = \sum_{k=0}^M b_k z^k.
\]

Choose a natural number \(q > M + N + p \) and entire functions \(h_k \) which behave as in (16) with \(a = a_k \) and \(b = b_k \) \((k = 0, 1, \ldots, M)\). Put \(F(z) = \sum_{k=0}^M z^k h_k(z) \). It is evident that \(F \) has the required properties.

Proof of the Corollary. Let \(f \) be any continuously differentiable, positive real-valued function on \((0, \infty)\) for which there exists \(p > 0 \) such that

(1) \[x + f'(x) f(x) > 0 \quad \text{for all } x \equiv p, \]

and

(2) \[\int_p^\infty |f'(x) x - f(x)| \cdot (x^2 + f(x)²)^{-p/2 - 2} \, dx < \infty. \]

The graph of such a function is essentially a curve of the kind which bounds spiral regions. To see this, define two functions \(t \) and \(\theta \) of \(x \) by setting \(t(x) = (x^2 + f(x)²)^{1/2} \) and \(\theta(x) = \arctan \left(f(x)/x \right) \). Then \(dt/dx = (x + f'(x) f(x))/t > 0 \) for all \(x \equiv p \) by (1), so \(t \) has a continuously differentiable inverse on \([b, \infty)\), where \(b = t(p) \). Accordingly, \(\theta \) may be regarded as a function of \(t \equiv b \). A simple calculation shows that

\[
\int_b^\infty \left| \frac{d\theta}{dt} \right| t^{-p} \, dt = \int_p^\infty \left| \frac{d\theta}{dx} \right| t^{-p} \, dx
\]

which is finite by (2). Thus (after an extension to \((0, b)\)) the function \(\theta \) belongs to \(S_p \).

It is evident that \(e^x \) satisfies (1) and (2) for all \(p > 0 \). Put

(3) \[H = \{(x, y): x \equiv 1 \quad \text{and} \quad 2^{-1} e^x \equiv y \equiv 2e^x\}. \]

By the result established in the preceding paragraph, \(C \setminus H \) is essentially contained in a spiral region \(\Omega \). (More precisely, \(C \setminus H \) is contained in the union of \(\Omega \) and a
bounded set.) Given a natural number \(N \), our theorem yields an entire function \(g \) such that \(g(z) = o(|z|^{-N}) \) as \(z \in \Omega \) tends to \(\infty \). Indeed, such a \(g \) can be chosen so that \(g(z) = 1 + o(|z|^{-N}) \) as \(z \to \infty \) along the curve \(y = e^x \) for \(x > 0 \).

Now let \(\Gamma \) be an arbitrary algebraic curve. Thus, by definition, there exist finitely many polynomials \(Q_0, Q_1, \ldots, Q_n \) in \(x \), with \(Q_n \neq 0 \), such that each point \((x, y) \) of \(\Gamma \) satisfies
\[
Q_0(x) + Q_1(x)y + \ldots + Q_n(x)y^n = 0.
\]
It is easily seen from (3) that if \((x, y) \) is in \(H \) and \(x \) or \(y \) is large enough, then \((x, y) \) does not satisfy (4). In other words, only a bounded portion of \(\Gamma \) lies outside \(\Omega \); hence \(g(z) = o(|z|^{-N}) \) as \(z \to \infty \) along \(\Gamma \). It follows that, given a polynomial \(P \), the entire function \(g + P \) has the required properties.

References

Kansas State University
Department of Mathematics
Manhattan, Kansas 66506
USA

Received 31 January 1984