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1. Introduction

Let X be a subset of the euclidean n-space R'. A map f: X*Rn is said to be
bilipschitz if there is L>I such that

lx - yllL = lf @) -f(y)l = Ll* - yl

for all x, y€X; we also say that/is l-bilipschitz. It is not usually possible to extend

f to a bilipschitz homeomorphism g: Rn*Rn. For example, f X is the circle 51
and if n:3, fX can be knotted, andllcannot be extended to any homeomorphism
of R3. Or if X:S2 and n:3, fX can be the Fox-Artin wild sphere [Ger, Theorem
3J. On the other hand, if X:,Sl and n:2, the extension is possible [Tur, Tu2, JK;
La], More generally, X can be a quasicircle in lR2 [Ger. Corollary 2, p. 218].

In this paper we show that the extension is possible in the case where X is Rp
orSP, 1=p=n- 1, and Lis sfficiently close lo 1. Moreover, we showthat the exten-
sion g; R"-R" can be chosen to be lr-bilipschitz where l,r:lo(L,n) and
limr,r I1(L,n):1. For example, for sufficiently small L,an L-bilipschitz image of
51 in Rs is unknotted.

Our method is rather elementary and explicit, especially in the c,ase p:n-1.
lf X:Rp, we choose a suitable triangulation on R'\X, define gat the vertices
and extend g affinely to the simplexes. Thus g will be PL outside X. The case X:SP
reduces to the case X= Rp by means of an auxiliary inversion.

corresponding results are also proved for quasisymmetric embeddings with
small dilatation. The dgfinition and some basic properties of these maps are recalled
in Section 2.

The main results are given in Section 5. Sections3 and4 contain auxiliarymaterial.
In a later paper, the second author will consider this extension problem for more

general sets X. For example, the extension is possible if X is a compact (n-l)-
dimensional DIFF or PL manifold in R'. The basic idea will be the same, but the con-
struction of g will be somewhat less explicit than in the present paper.

We thank Jouni Luukkainen for careful reading of our manuscript and for sev-
eral valuable suggestions.
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2. Prelimifiarres

2.1,. Notation and terminology,We let Rn denote the euclidean n-space, (er, ...

...,en) its standard basis, and lxl:(xl+...*x)rtz the euclidean norm of a vector

x(.Rn. We shall regard Rn in the natural way as a subspace of the space R- of all

sequences of real numbers with only finitely many non-zero terms' In particular, if
p <n, Rp will be identified with the subspace of R' spanne d by e1, ..., €p .The norm

in R- is defined as lxl:(x!+xf,+...)'t'.
We shall use the following notation for certain subsets of Rn:

R! : {x€Ro: xn - 0},

J" : l_1, ll,
1" - 10,ll"

B"(x, r) : {y€R": ly-xl = r\,

So-t(x, r) : \Bn(x, r) : {Y(R": lY-*l: ,),

B"(r) : B'(0, r), Bn : B"(l),

^S'-1(r) : Sn-1(0, r), Sn-r :,S"-1(1).

lf AcR", welet T(A) denote the affine subspace spanned by A- lf f and g are

two maps into Rn, defined in a set l, we set

llf- slle: ::9 l"f(x)- g(x)l'

2.2. Bilipschitz maps.Let X and Y be metric spaces. The distance between points

qibineitherspaceiswritten asla-bl.Asdefinedinthe introduction, amap f: X-Y
is Z-bilipschitz if it satisfies the double inequality (1.1). If the right-hand ineqriality

of (1.1) is satisfied,/is said to be L-Lipschitz.The smallest such Z is then called the

Lipschitzconstant of f and denoted by lipf. A l;bilipschitz map is an isometry"

lf AcR", an isometry f: A-Rn is always the restriction of a unique affine isometry

f1: T(A)*p. If Eisavectorsubspaceof Rnandif f: E-R" isanisometrywith

/(0):0, f is qn orthogonal map. A sense-preserving orthogonal map /: P*R is

called a rotation.

2.3. Quasisymmetric maps. These maps were introduced in [TV]. We recall the

definition, Let X andY be metric spaces. An embeddin$ f: X*f is quasisymmetric

(abbreviated QS) if there is a homeomorphism 4: Rt+*Rt* such that if a,b,'xQx
with la-xl=t!b-xl, then lf@)-f(x)l=4!)lf(b)-f(x)1. We also sav that / is

4-QS.An I-bilipschitzmap is ry-QS with q(t)=Lzt. If f is.4-QS.with 4=id,
/is said to be a similarity.Then there is I=0 such that lf(x)-f(il1:Llx-yl for

all x, y(X. A map f: Re *Rn is a similarity if and only if it is of the form /(x):
AA(x)tb, where 1>O,b(Rn and A: Rp-R" isanorthogonalmap.



Extension of embeddings close to isometries or similarities 155

We shalt consider t-QS maps which are close to similarities, that is,4 is close

to tle identity map of Rf . We need a measure for this closeness. To this end; observe

that the sets

N(id,s):{ry: lrt@-tl =s for 0=r=1/s},
s=0, form a basis for the neighborhood system of id in the compact-open topology

of the space ä(Ri) of all homeomorphisms a: Rf .*R1*. We say, somewhat ambi-
guously, that an embedding f: X-Y is s-quasisymmetric if it is ?-QS for some

4(ff(id,s). We also say thatlis 0-QS if it is a similarity.
Every l-bilipschitz map is ^v-QS with s:(Iz -l)ttz. For connected spaces we

have the following useful criterion:

2.4. Lemma. Let X and Y be metric spaces with X connected. Let 0<s€116,
and let f: X*Y be an embedding with the following propetty: If a;b, x(X are dis-

tinct points with la-xlllb-xl:t€[s, 1/s], then

lf@)-f(x)l : { =M-
Then .f is ry, - QS with some q, depending only on

/* s.

r, and.f is 2s-QS.

Proof. We first show that if l=s, then t'=2s. Choose an integer la>0 such

that s^+2=t=J'*1. Since X is connected, we can find points xo, ..., x*q1in X such

that
xo: b,

lxi+r-xl:slxi-xl for o=i =rn-I,
lx^*r-xl _ la-xl _s,
l*^- xl lx^*r- xl

where s=s' :(tls^)1/2<J1/2. Then

l.f@i +) -f(x)l 2s=t
l"f@)-J@)l -

for O=j=m-l, and

t :VJ\.-t-J2l < (s'+s)2 = (sr/z+s)'= 2s,
lf@)-f(x)l

because s=116.
The first assertion of the lemma follows now from [TV; 3.10] with the substitu-

tion ).r:),r-112, h:2, fl:s*1/s. The second assertion follows from the first one

and from what was proved above. E

2.5. Quasisymmetry is closely related to quasiconformality.In particular, if G

is open in Rn, an 4-QS embedding f: G*R" isK-quasiconformal with K:ry(1)"-1

lVäz, 2.31. Conversely, a quasiconformal embedding f: G-P.J need not be QS,
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but this is true if G:R" lVäl,2.51.In this case, the closeness of f to a similarity can
also be expressed in terms of the dilatation K:

2.6. Theorem. Let f: R"-Rn be anembedding, ft>2. Iff is s-QS, f is K-
quasiconformal where K:K(s, n)*l as s*0. Conuersely, if f is K-quasiconformal,

/r:r s-QS where s:s(K,n)*O as K*1. Moreouer fN:N.
Proof. For s< 1, we already gave the first part of the theorem in 2.5 with

K(s;n):(1*s)o-t. We omit the proof of tle case s-1, since it is not needed in
this paper.

Suppose that the second part is false. Then there are s€(0,1/6] and a sequence

of Kr-quasiconformal maps [: .P*Ro such that Ki*l and nofl is 2s-QS. By
2.4,we can pick points ai,bi,xi€.R' such that

l.fi@)-J;(";)l
lfi(b) -"fi(")l

Performing auxiliary similarities, we may assume that xi:O:f1(xi) and
at:e1-fi(ai). Since lbtl:1ltt(fs,llsl, we may assume that ål*å€A\{0}.
Furthermore, we may assume that the mapsf' converge to an isometry f: R"*Rn
uniformly on compact sets. Then

linl1i*\ti: W: fu: jI: { = ljm /;*s'

which is a contradiction.
The final statement is a well-known property of quasiconformal maps [Vä1,

17.41. fI

3. Elementary estimates

3.1. In this section we give some elementary inequalities for affine maps in Ro

and consider the approximation of QS maps by similarities. We first introduce some

notation. Let Å:ao...ak be a ft-simplex in Äo with vertices d0, ..., ao. We let b,
denote the distance of a, from the (&- l)-plane spanned by the opposite face, and we
set b(/):min(bo, ...,bo). The diameter d(/) of / is the largest edge la;-a;1. We
let /0 denote the set of the vertices of /.

The following lemma is obvious:

3.2. Lemma. Let fii: Å*lO,1l be the j+h barycentric coordinate. Then P, is
b;L-Iipschitz. I

3.3. Theorem. Supposethat lcP isann-simplex,that f: N*N isaffine,
and that h: Rn-R" is a sense-preseraing isometry such that

loi- *il
ffi:rr€[s'Us]'

Ih(u)-f(u)l = ab(Å)l@+ 1)
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for eaery oertex a of /, where 0=a=112. Thenf is sense-preseraing and (l+2rl)-
bilipschitz.

Proof. Replacing/by h-tf we may assume that h:id. Let x,y be points in /
with barycentric representations

x : )l=s&ai, I : Zi=a\iat.

By 3.2 we obtain

lJ' @) -f 0)l = lx - yl * z tl( r 4 tlll @,) - a,l = (1 + a) lx - y l.

Similarly we obtain the estimate

lf @) -l'0)l > ( - a)lx - vl.

Since 0< a< I 12, I - a> (l * 2a)-t, which implies that / is (1 *2a)-bilipschitz.
Define the segmental homotopy hr: N*R' by h,(x):(l-t)f(x)*tx. Then

eachh, is an affine map satisfying the same conditions asf Thus every ht is (1+2a")-
bilipschitz and hence bijective. Therefore (år) is an isotopy, which proves that / is

sense-preserving. n

3.4. To formulate tåe corresponding result for similarities we use tle following
notation: lf f: N-PI is an aff.ne bijection, we set

Lr:lip f, tr: (trpf-L)-' : ,Till^r)1, Hy: L1ll1.

3.5. Theorem. Supposethat lcRn ls ann-simplex,that f: Rn*Rn isaffine,
and that h: Rn*R" is a sense-preseroing similarity such that

lh (o) -f (u)l 
= aL 1,b (/) I @ t t)

for eaery aertex a of Ä, where O=a=112. Then f is sense-preseraing, and

Lf < Lh(I+zd,), lt = Lnl(l+Za), Hr = 
(I+2a)2.

Proof. Apply 3.3 with the substitution f-f/Lu, h-hf L1,. tr

We omit the elementary but somewhat tedious proof of the following obvious
fact:

3.6. Lemma. Let Kbe afinite simplicial complex in R", and let Ko be the set of
aertices of K. Then there is a positiue number rs:rs(K) such that if f: lKl*p" ig
affi.te in each simplex of K and if h is a similarity such that llf-hllK=Lpo, thenf is
iniectiae. If u is a similarity, rs(uK):L,yr(I(). tl

The following elementary result is well-known:

3.7. Lemma. Let Å:ao...d* be a k-simplex in Rn, let rr>0 for O=i=1s,
and let

,S-tx€Än: l*-oil:rj for 0=i=kI.
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Then there are three possibilities:
(1) ,S:0.
(2) S consists of a single point in T(/).
(3) ,S tr a sphere of dimension n-k-l with center in T(/) and such that T(S)

is perpendicular to T(Å). n
3.8. Remark. Consider the case k:n-l in 3.7. Then in the case (3), S con-

sists of two points which are symmetric with respect to T(/). Consequently, if / is

ann-simplexwithgiven n vertices ao,...,ao-1 &fidgivenedges lo,-oil, thereare
exactly two possibilities for an. If the orientation of / is given, there is only one possi-

bility.
It follows that a sense-preserving isometry h: R"*R" is uniquely determined by

hlo for any (n-l)-simplex o.

3.9. Lemma. Let A1ao...an-r be an (n-l)'simplex in R", n>2, and let
x(R" with lxl=r. Let f: Aov{x}*p" bean s-QS mapwhichinthecase x{f(Å)
does not change the orientation. If lf(a)-atl=6 for 0=i=n-1, then

lf@)-xl < e(s, 6, r, /)
where e(s,ö,r,A)-O as s*0 and ö-O'

Proof. Suppose that the lemma is false. Then there are sequences so*Q an61

är*0 and a sequence of so-QS maps fo: /ou{x}*.p' satisfying the condition on

orientation such that lfi(at)-a1l=öo for O<-i=n-l and lfo@)-xl=e for some

e=0 and for all k. Passing to a subsequence, we may assume that fr@)*yqp".
Since fi(a;)*dj for all j,fe converges to a map/. Since s*,-0, f is a similarity.

Since /l/o:id, /is an isometry. If x(T(/), x:y by 3.7.|f x{T(A), t}ren/does not
changetheorientationof then-simplex es...aa-lx2whence x:y bY 3.8.Thiscon-
tradicts the inequality lf(l.)-*l>e. fl

3.10. Lemma. Supposethat p>7, that f: Rp*R- rss-QS andthat.f(0):0,
f@)en! for l=-j=p. Let r>0. If x€Be(r), then

lf@)-lf@',)lxl = e(s, p,r)lf(e)I,
where lim"*oe(s, p, r) :0.

Proof. Suppose that the lemma is false for some p andr. Then there are e=0
and a sequence of rr-QS maps fe: Rp*A- such that se*O,fi(0):0,fo@)(R!*
for l=j=p, and such that lfo@)-lfy(e)lxel>-elfo@)l for some xeQ-B(r).

Replacingfi by follfo@)l we may assume that fo(et):e1. We may also assume that
xo*x(Bp(r). Replacingfi by rlrfowhere ry' is a suitable isometry of R- with ry'lRe:id,
we may assume that fo@)€Rp+l. Since sr*O, it follows by induction from 3.9 that

.fo(e)*ei for j(ll,pl and that fo(x)*x. On the other hand; the family {fo: k€N}
is equicontinuous by 2.4 and by [TV, 3.4]. Hence lfo@)-fo@)l*0, which gives the

contradiction e=lfo@)-trl*0. n
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3.1 l. Lemm a. F or eaery integer p =-l there is s2: sr(pt) >0 with the folhwing
property: Il'f is ansz-QS map of the set E:{0,€r,...,en\ into R-,thentheaectors

f("j)-f(0), l=j=p, are linearly independent.

Proof. By an auxiliary similarity of R-, we may assume that /(0):0, that

f("r):"r, and that f(e j)€Rp for all.i. If the lemma is not true, there is a sequence of
J.-QS maps fo: E*Rp satisfying these conditions such that so*Q and such that
the vectors fo@), I=-j=p, are linearly dependent. An easy compactness argument
leads to a contradiction. I

4. Frames

4.L ln this section we give auxiliary results on frames in Äo, which are needed

in the case p=n-2 of the main theorems in Section 5. For l=p=n, a p-framein
.Rn is a p-trtple a:(ar,...,ap) of linearly independentvectors 1)i€R". We let Ve(R")

denote the set of allp-frames in Rn andVro(N7 the subset of all orthonormal p-frames.

We identify Vo(R") with an open subset of (R')e:Rpn. However, it is convenient to
use the norm 

llull : max {luil: 1 = 
j 

= p)

in (R")e instead of the euclidean norm lol of Re'. These two norms are equivalent:

lloll2=Wlz=pllallz.
Since I/o0(Ro) is compact, we can choose a compact neighborhood Ni of VIG\,

contained inVr(R"). The Gram-Schmidt process defines a retraction G: Vo(N)*
V;(R"). We shall make use of the fact thatG is continuously differentiable (in fact,

real analytic). This implies that if u€Ni and a*z(Yn(R") with llzll=q, we can

write

G(u* z) - G(r) + G'(u)z+llzlle(2, u),(4.2)

where G'(a): Rn"-RPn is a linear map and lle(z,a)ll=e*(q) with limn-6 E,(q):O.
Moreover,

(4.3) llc(u)ll = M: M(n)

for all a(NX.
We first prove an interpolation lemma, for which we introduce the following

notation: Let Jp be the p-cube [0, 1]o. We let fo denote the family of the 3p closed

subcubes of Je, obtained by trisecting the sides of ,Ip. Let f 'n denote the subfamily of
this "Rubik p-cabe", consisting of the 2p cubes containing the vertices of Jp. If
u,B€f n wth anB+O, we wrile a-F.

4.4. Lemma. For eaery integer n=2 there is a number Qo:7o(n)=O with the

fottowingproperty: Let l<p<n-l and 0=q<8o, andlet u: f'r*V,o1pn),a: f o-
Veo(Rn) be maps, denoted by u*uo, d-oo, and satisfying the conditions:
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(a) uj*:at, for a€r'o and l=j=p.
(b) llu,-uull=a fo, all a, f(.r;.
(c) llu"-a i,ll=Q' wheneuer a - fr.

Then there is a mop w: f o*40 (R") such that:

(1) wl-ui, for a€f p and l=j=p.
(2) *lf'r:Lt.
(3) llw"-wpll =(1 -2-n-t)e wheneaer a-$.
(4) If a(f o meets a k-dimensional face A of Jp, 0= k=p,

on uo and on the frames up for which B meets A.

Proof. Observe that the maps form the diagram

then wo depends only

Here r is the natural map r(o):@,,...,op). The condition (a) means that the rec-
tangle is commutative; the conditions (1) and (2) mean that the two triangles are
commutative.

Fix an integer p(U,n-11. It suffices to find a number 4o>0 satisfying the con-
dition of thelemmafor this p.Let 0=q=1, and let u,ube as in the lemma. In the
course of the proof we shall put more restrictions on g.

Let uQlo, and let A"be the face of Jp of minimal dimension meeting a.Let Bn
be the family of all 0€f', meeting Ao.Defrne xo€(R')n as follows: For 7=p set
*j,:oj,. For p*l=j=n let xr,be the arithmetic mean of the vectors ui over all
f€.8*. From the conditions (a); (b), (c) it follows that llx,-upll=4 for every pqBn.
Since Nj is a neighborhood of 4o(R') in (R')', there is et:Qt(n)=O such
that q=q1 implies x,€Ni. From now on, we assume g=h, We claim that the
mapw: f o*I(o(N), defined by wn:6116n), is the desired map, provided that 4 is
sufficiently small. The conditions (1), (2) and (4) are clearly satisfied.

It remains to verify (3). Let a€fr. There is a positive integer z(a) such that
m(a)caldBn:2p. Set Co:BoX{1,...,m(u)} and define u: Co'4o(R") by
fr(p,k):Up. Then

(4.5)

for p +I=-i=n.
For T€C " write

xi: 2-e Zr€c*ury

zy:ilr-xo, z - 2-e Zr€cnzy.
If l=j=p, (a) and (c) imply

Itl,l
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If p+l=i=n, (4.5) and (b) yield

lrtl = z-e Z" e ,_liltr-fr.l| = q.

Hence we have always

(4.6)

Moreover, if p +l=i=n,
(4.7)

From (4.2) we obtain

ll trll < qt.

(4.5) implies zi:0. Thus

llzll € q'.

ilr: G(ii) : wn1-G'(xn1zr+llzlle(2, x).

Summing over 7€Cn and multiplying by 2-r yields

where 
wr: 2-' Zrec.ilr-an-bo'

ao: G'(xo)2,

bn: /-e Ztec,llzrlle(zr x).
From (4.3), (4.6) and (4.7) we obtain the estimates

lla,ll =- Mq', llb"ll = qe,(q).

Suppose now that u, a'11, witha-u'. Then C,nC", is not empty. Using (b)
rnd the estimates above we obtain

llw"-w",ll = 2-p (2p -t) q+lla"ll *lla",ll + llb,ll + llö,,11

= ( - 2-e) q * 2M q2 -f 2qe"(q) = (l - 2-n -t7 n,

as soon as q=2-t-sfM and e,(q)=2-p-3. This proves (3). tl
4.8. For the next result we introduce some notation. Let p>l be an integer.

For each integer k we let 9*(p) denote the standard subdivision of Rp into closed

p-cubes of side length 2k. Thus each Q(/*(p) contains exactly 2P cubes of go-r@).
Writing Q:6o$2kJe, Jp:10,1]e, we say that the cube Pa:aa*2k-'Joe go-r@)
isthe principal subcube of Q.Lel t@)be the union of all foQt), k(2. If Q€$r,@);
we write k:k(Q). If k(Q):k(R) and QnR*O, we write Q- R. We also define
a relation = in 9b): Q-R if eitler Q-i ot lk(Q)-k(R)l:1 and QcR or
RcQ.

4.9. Lemma, For eoery integer n>2 thereis anumber Qr:Qr(n)=O such that

foreaery q€(0,qtl thereis rq=0 withthefollowingproperty: Let l=-p=n-l and
Iet o: S/1p1*veo(R') be a map such that lloa-o^ll=r" whmeaer Q=R. Then there

is a map u: 1/(p)*Yoo(R') such that
(t) uto:aro for \=j=p and Q€/@),
Q) llua-uxll=q whener:er Q=R.



r62 P. Turra and J. VÄIsÄrÄ

If Qr€ Y(p) and if uo€V.o (R") satisfies the condition

we can choose ,eo:ur.
fo, I=j=p,

Proof. We may assume Qo:Jp. Let qs be the number giver-r b.y Lemma 4.4.

We show that the lemma is true for 4r:66 (qol2,2-"-\. Suppose O=q5h.
Since 2,0(R') is compact and since the Gram-Schmidt map G is continuous, there is

rn((0,q21 such that ru is less than the distance between V"o(R") and (R")'\((R')
and such that

llG(x)-yll = q2,

whenever y€.V,o(R"), x€(R')" and llx-yll=rs. Weclaimthatthelemmais truewith
this rn.

So let 1 =p=n-|, andleta be as in the lemma. Suppose that Q€9(p) and that
ua(V,o(R") satisfies (l). If ne/@) and R=Q, we define

x.: (u1*, ,.,, fR, u$+L, ..., u$).

Then llx^-usll:llo^-onllsrn, which implies xn(11,(R\. Hence we can form
up:G(xx). This rza satisfies (1) and

llua- upll = q',

uto:abo

(3)

which is stronger than (2). We say lhat u*is defined directly by ua.

For every integer k=l we let /(p,k) denote the family of the cubes Qe/(p)
which are contained in 2klp:l-2k,2k1n. Assume that we have defined maps u(k):

/(p,k)*V,o(R") satisfying (1) and (2). Since y,o(R") is compäct, we can apply the

diagonal process to find a subsequence u(k1), u(kr), ... such that for each Qe{(D,
uq(k) converges to a limit usas j*-. Thus we obtain a map u: /(1t)-V,o(R"),
which clearly satisfies (1) and (2). Consequently, it suffices to find a map u: /(p, k)*
Vn'(R") satisfying (1) and (2), and for which ueo:tto.

We start with the cube Qo:1p and define uoo:76. For Qi:2iJn, 1=j=k,
we inductively define un, directly by uer_,.LeI tre be the family of the 31 cubes

R<9@) with R* Q*. For every R(.fk, we define z* directly by un*. lf R, R'€ffk,
then

ll u 

^- 
u 

^,ll = llu ^- 
u s*ll -l ll u e*- u *'ll = 2q' = q.

For every R<trk, RlQo, we define u"*for the principal subcube Pa directlyby
u^.Let E1,-1 bethe convexhull of u {P*: R€trk}, and let to-, be the family of
the cubes of /,,-r.(p) contained in 81,-1. Suppose that Q(tr*-t and that Q is not
any principal subcube PR, R€trk. Then Q belongs to a family lnof 3e cubes in
ffo-, sachthat f ois isomorphic in the obvious sense to the Rubik p-cube f , of 4.7

and such that the subfamily f'ncf n correspondingb f; contains only cubes of the
form P*. Furthermore, if PR, Ps(f'a, (3) implies

llur^-r.tpsll = llur^-tlRll + ll up- asll *llus-r,tpsll = 4q'
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Since q=2-"-2=114 and since ro€ez, we can apply 4.4 to find uocY,o(Rn'S satts-

fying (1) and

(4.10) llus-us'll =- (l-2-e-\4 3 e,

whenever Q,Q'(tr*-t and Q*9'. The condition (4) of 4'4 gtarantees that uo

is independent of the choice of f s. Furthermore, if Q<ffo-t and R€trr wft
Q=R, then Q-P*, and we obtain

llua-u"ll = llun-up^ll+llup^-u*ll = (t-z-p-') q* q' s q,

because q=2-n-2<2-P-L.
We can now proceed in a similar manner to smaller cubes. We describe the next

step. For every R€tr1,-r, R*Q*-r, we define zp* directly by u*.Let Eo-, be the

convex hull of u {P*: R€4,-}, and let tro-, be the family of the cubes of gr-r(p)
contained h Er-r. If Q(trr-z and Q is not of the form PR, R€.{k-11 w€ cåD

choose the Rubikp-cube l-e as above. If Pn, Pt(fb, then R-,S, and (4.10) and (3)

yield

llup^-ur,ll = llur^-upll *llrzn- usll-fllus-up"ll = q+2q'.

Since q=2-n-2<2-1, q*2q2=2q=40. Since rr=q2=(q*2qz)2, we can apply 4.4

to find ao satisfying (1) so that

ll ue- us,ll = @ * 2 q2) (r - 2- P -L),

whenever Q-Q' in tro-r.Since q=2-n-2=2-p-s, this implies

llua-tts,ll =q-q2=q.

If Qe$,-, and R€trxq with Q= R, then Q'^.', P^, and we obtain

llua- u"ll = lluo- u, *ll *llup ^- 
u^ll = q - qz + qz : q.

The step is completed.

Continuing in this manner, z will be defined in the family v {/di:7=k}, which

contains 9(p, k). tr

4.11. Remarks. 1. Orientation divides U,o(R") into two disjoint compact sub-

sets. Replacing qrin Lemma 4.9 by a smaller constant if necessary, we can therefore

conclude from (2) that all frames uohave the same orientation, which can be chosen

arbitrarily.
2. In the case p-n- 1, the results in this section are not really needed in the

sequel. On the other hand, Lemmas 4.4 and 4.9 are in this case almost trivial, since if
u€Vf (P), rzo is uniquely determined up to the sign by (u', '-.,uo-').
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5. Extension

5.1. In this section we prove the main results of the paper, mentioned in the intro-
duction. We shall give the proof of the QS case in detail. In the bilipschitz case, some

steps of the proof are obtained as direct corollaries of the QS case, since an l-bilip-
schitz map is (Zz-l)u'z-Qs. In otler steps, we check that the construction gives

bilipschitz maps if the given maps are bilipschitz. A direct proof for the bilipschitz
case would be somewhat but not much simpler. A notable exception is the reduction
of the case X: Sp to the case X : Rp , where we shall give separate proofs in these

two categories.

5.2. Triangulation of R'14r. Let n>p>t be integers. Let 
"{(p) 

be the family
of p-cubes defined in 4.8. Each Q€/(p) can be uniquely written as

Q: aa*LaJP,

where ao is a vertex of Q and )"o-2*@t the side length of Q. Fot each Q€f(p)
we set

Aa:2lal"-\zln (int 1"-e), Yn: QXAy'

Figure 1.

Then In is a compact polyhedron in R". Figure I illustrates the case n:3, p:1.
Here Q1, Q2 are the members of g(p) with k(Qt\:k(Q)-l contained in Q. To
clarify the figure, we have used different scales in R1X0 and in 0XR2. The collection

of the sets In has the following properties:

(1) u {Ye: Q€/(p)}:R\Ro,
(2) intYonintYn:$ fot QlR,
(3) YoaY"*O if and only if lk(Q)-k@)l=1, and QnRtA.

T/



Extension of embeddings close to isometries or similarities 165

It is fairly obvious that there is a triangulation W of A'\Rk such that each Yn

is the underlying space of a subcomplex Wn of W and such that for Q, R(g(p),
the natural similarity map Yg*Y^ maps Wn onto W*. In fact, all that is essential

in the proofs is that (1) the flatness d(/)lb(A) of the n-simplexes / of Wis bounded,
and (2) the diameter of an n-simplex of W meeting Yehas the same order of magni-
tude as ).n.We give a construction of W,which is not the most economical one.

The boundary of Agconsists of the sets Ba:Lp|In-e and2Bn. These sets have
natural structures as cell complexes. The natural product structure of Agx.BgXI
defines a cell complex structure for As. Taking the cartesian product we obtain a cell
complex Cswith lCgl:QXAs:Ys. We replace the subcomplex of Ce correspond-
ing to QXB' by the subdivision induced by the subdivision of Q into 2P cubes

of side length )"o12. We get a subdivision C'o of C s, which is not a cell complex.
The union C:v {C's: Q<9@)\ is a collection of cells with the properties:

(1) uC:R\Rt.
(2) The members of C have disjoint cell interiors.
(3) The boundary of each cell is a union of some members of C.

The l-skeleton C1 of C is a simplicial complex. For every 2-cell E€C we choose

an interior pointbs such that the natural similarity mappings Ye*Y^ map the points
bB onto each other. Since åE is triangulated, we can triangulate E by the cone con-
struction from å". This gives a simplicial subdivision of the 2-skeleton C2. Proceeding
similarly to cells of higher dimensions we obtain the triangulatron W.

5.3. Theorem. For euery integer n>2 there is a number Lo:Lo(n)>l with
the following property: Let l<p=n-I, let l=L=Lo, and let f: RetR" be L-
bilipschitz. Then f has an extension to an L1-bilipschitz hameamorphism g: Rn*Rn
where Lt:[.1(L,n)-l as L*1.

5.4. Theorem. For eaery integer n>2 there is a number so:so(n)>O with
thefollowingproperty: Let l=p=n-|, let 0=J<ro, andlet f: Re*N åes-QS.
Thenf has an extension to an s1*QS homeomorphism g: Rn*Rn where sr:sr(s, n)*0
as s*0.

Proof. As mentioned in 5.1, we shall prove Theorem 5.4 in detail änd obtain
Theorem 5.3 by taking care tlat the construction gives bilipschitz maps if/is bilip-
schitz.

Let p(fl, n-ll be an integer. It suffices to find so>O such that 5.4is true with
thisp. Let sz:sz(P) be the number given by 3.lI.Let 0<r=rr, and let f: Re*Rn
be,r-QS. In the bilipschitz case, we set lr:(l *sf,|tz and assume that 1<L=Lz
and that/is l-bilipschitz. Then/is s-QS with s:(I2 -l)'/'=sr.

Using the notation of 4.8 and 5.2, we consider a cube Q:as*).qJeeg@).
For every j€11, pl we set

wb : -f(aa* Aae j) -f (ad.
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It follows from 3.11 that wa<Vo(R\. Hence we czrn apply the Gram-Schmidt
process and obtain

ao: G(ws)€vno(R").

We define the orthogonal map es: R!*N by

and the numbers 
{Pgei: vlg'

e9: lwLsl, Fo : Qsllo.

Let hs: Rp*ff be the similarity defined by

ho@) : f(a)* psvs(x-as).

If s:0, ha:f. If s=0, hois an approximation of/near ae' More precisely, if
y€Re and ly-anl=rAn, then

(5.5) lf@-haO)l = s(s, p, r)Qa,

where e is the function given by Lemma 3.10. To prove this, we may assume that
aa:O:f(ao). Define f1: Re*N by ft(x):f()"sx). Thenftiss-QSand l[(et)l:
cf. Choor" a rotation rlt of N such that {tf1@)€R!* for l=j=p. Since r/fi
is s-QS and since ,ltrL:"i, (5.5) follows easily from 3.10'

If suffices to find a number Qo=Qo(n)=O such that for every q((0, qol there is

s-s(q,n)=O such that every s-QS map f: RP*R' has an sr-QS extension

L:L(q,n)=l such that every l-bilipschitz map f: Rp*Ro has an Zt-bilipschitz
extension g: Rn*.P where Lt:Lt(q,n)*t as 4+0.

Let 0<q<.q1 where q, is given by 4.9. Additional restrictions for q will be given

later. Let rr>0 be the number given by 4.9. From (5.5) it easily follows that there is

Jg:Ja(4, n)<s2 such that s<s, imPlies

lloo-opll E r*

whenever Q=R in 9(d' From now on' w€ ässufil€ J<Js'
Let u: y@)*V"o(R') be the map given by Lemma 4.9. We may assume that the

frames ueare positively oriented; that is, they have the same orientation as the stand-

ard basis (et, ..., en). We extend the maps <Pg andhgto a rotation {pg; N*R" and

to a sense-preserving similarity h9; R" * R" by

Qsei : uje, hs(x) : f(as)* PsEs@- as)'

For each vertex å of the triangulation lZ of R\Re, we choose Q(b)(g@)
such that b€Ya<D. Set h6:hep, and g(å):å6(b). Extend g to Rn\iqr so that g
is affine on every simplex of W, and define glRe{. We claim that this map

g: ^ff*.6{ is the desired extension of/provided that q and s are sufrciently smalL
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We first show that if Q,R(g(p) with QnR+O and lk(Q)-k(R)l=1' then

(5.6) lpa-pnl< 4eps,

where e:e ( s, p,3n).

Since (5.5) is true for all yQQvR with r:3n, we have

p^: lhe(ana )'^et)-hs(a^)l+x : Fslp*x
where lxl=-2eea. Srnce ),o=2,1a, this implies (5.6).

We next estimate ls-halinYs. Let b(Ys be a vertex of IT, and set R:Q(b)'
since b€rnnYR,lk(Q)-k(R)l=t and QoR*A' Hence eithet Q=R ot Q=Q'=R
for some Q'eg(p). Consequently, llus-u^ll=2q. This implies lqa-E^l=2nq;
for linear maps we use the sup-norm. Clearly lb-apl=2il.^=4n).n and la*-asl€
d(Q)+a(N=3n)"e. Hence (5.5) gives

I e (b) - h t(b)l = | f (a 
") - 

ho (a J I * I 
p *E 

^ 
- p aE al lb - o 

"l
= eqs*  il.slp^E *- paq al'

Here (5.6) implies

lp*E ^- 
paE al = 

palE a- E nl t lpa- ttnl I E"l = 2n q p'n* 4eps'

Combining these estimates yields

lg(b)-hs(b)l = (e*8n2 q*l6ne)Pn.

Choose s:s(I,n) >0 such that

e(s, p,3n) = nql17.

In the bilipschitz case, we choose L:L(q,n):(l*sz)1/2. Since g-hs is affine

on every simplex of W, we obtain

(5.7) 11g-hellYo = 9n2 qQa

for every Q(9(d.
As a PL map, g is continuous in Ro\Rp. We next show that g is continuous also

atanarbittarypoint z(Rp. Let e1>0. Since/iscontinuous,thereis ö=0 suchthat

lf0)-fQ)l=etl(4n*1) whenever ly-zl=ö. Choose är€(0, ö) such that if / is an

z-simplex of W meettn1 B"Q, är) and if b(/o, then Q@)cBe(2,6). We show that

lg(x)-g(z)l=e, for every x(8"(2, är)\Ro. Choose an n-simplex A€W contain-

ing x. It suffices to show that lg(å)- g(z)l=q for each vertex b of Å. The cube

Q:Q(b) is contained in B"(2,ö). Since g(b):ha(b), we obtain

ls @) - s e)l = lh a@) - h a@ dl + lf (a d -f Q)l

= polb - a sl I etl (4n * I) = 2n q o-f erl (4n * t).

Since qs=d6q1-2eilan *1), the right-hand side is less than e1. Hence g is contin-

uous at z.
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Let ÅQW be an n-simplex. Choose Q(/(p) with lcYe. To estimate the
dilatation and the bilipschitz constant of glÅ, we want to apply 3.5 with the substitu-
tion f-gl/, h*h a. From the construction of lZ it follows that there is M : M (n)= I
such that b(/)>),alM. By (5.7), this implies that we may apply 3.5 with *:
9nz(n*l)Mq provided that a=112. This gives the new restriction

(5.8) n = -=-J.-.-.:" 
_ tgnrln+tyM

in addition to q=qt. By 3.5, gll is sense-preserving, and

H(sl/) = (1+18n'z(ntl)Mq)z: H,(q,n)

where H{q, n)-l as Q-0.
In the bilipschitz case, observe first tlat llL=pn:L'=I. Hence 3.5 implies

that glÅ is I'-bilipschitz with

Lr : Lt(Q, n) : L(l * lSnz (n -l 1) M q).

To complete the proof of Theorems 5.3 and 5.4, it suffices to show that g : Rn *R'
is injective. Indeed, / is then f/i-l-quasiconformal by [Vä1, 34.2 and 35.1], and
Theorem 5.4 follows from 2.6. In particular, gRn:R'. In the bilipschitz case, it
follows then almost immediately that g is Zt-bilipschitz.

Let Q("f(p), and set

Ea:v{R: R-Q), Ze: EsX2)'oI"-n.

Thus Zeis the convex hull of u {I*: R-Q}. We shall first prove that

(5.9) llg-hsllze= 24n2qQa.

Let R=Q with ft(R)=k(Q). Then lV^-rOel=nq and lx-aal=3nAs for
all x(Ze. Since

h e@) - h n @) : h a@ a) -.f (a ) * (F ae a - tt a E n) (x - a n),

we obtain as in the proof of (5.7),

Ilha-hRllzo = 4nz QQe.(5.10)

Let x€Zs\Rp. Thenthereisafinite sequence Rrr...>R, in S/@) suchthat
Q-Rr, k(\a):k(Rr-1, and x€Yp,. By (5.6), Qn,l2Bps and en,*,EfQn,
where B:(1 +4e)12. Since n >2 and M>1, (5.8) gives the rough estiårate e=
nqllT<1136, which implies P=519. Applying (5.10) with the substitutions
(Q, R)-(Q, Rt) and (Q, R)*(Ri, R;+') we obtain

lha@) - hn,(x) I = 4nz QQa(1 + zfr +2P'+ .. . *2Bt -t1

= 4n2 QQa(1 + zplT-B)) = r4n'qQe.
By (5.7),

lg(x) -hn,(x)l = 9nz QQn, = LUn'QQs,
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whence

lg(x)-hs(x)l = 24nzqss

for x€29\R'. By continuity, this inequality also holds for x€.ZynRe, and we

obtain (5.9).

For Qqglp\ let YI be the union of all I* such that Ye^Yal0 and fr(R)=
k(O. Then

d(Ya,Za\Yä): ),a12.

Suppose that x and y are distinct points in Rn. We want to show that C @) + C O)'
Since glRr:/ is injective, we may assume that .rr(Rp. Choose Q€/(p) such that
x€Ys. We mayassumethat either y€Re or /€Is for some S with ft(S)=ft(p).

Case l. yqY6. Now there is a unique sequence Q.:RocRtc... of cubes of
S/@) wch that /c(Rya1):k(R;)*1 . Let t be the smallest number such that !(2n,,
and set R:R,. Then lx-yl=1"12. Thus

lh p(x) - h p(y)l : p"lx - yl =- p 

^l 
2.

Hence (5.9) implies that g(x)*g(y) if

n- 7

t - roon,'

Case 2. t(Yi. Let 8j be the subcomplex of W for which lWil:Y[. Let
ro(Wi) be the number given by Lemma 3.6. We can choose rs(W;):yÅ's for some

lo:1,o(r)=0. Since x,yQY[cZs, it follows from (5.9) and from 3'6 that S@)#
so) if

-loq= 
24n2'

The proof of Theorems 5.3 and 5.4 is completed. n

5.11. Remark. Suppose thatf in 5'3 or in 5.4 satisfies the conditions /(0):0,
f(er):er, and f@)eRr* for 2=j=p. Let Qo:Je. Thep-frame ooo in the proof is

then the standard frame (er, ..., en), By 4.9,we can choose ugo:(et, .'., €n), Further-

more; we can choose Q(b):Qo whenever 6<Yao. This implies that glYoo:if,.
In particular, g(ei):e1 for p*1=i=n.

5.12. Explicit bounds. Since the proof of 5.3 contains several indirect arguments,

it does not give any explicit bounds for Ls(n) or fot L1(L,n). It is possible, however,

to replace these arguments by elementary geometric and trigonometric considerations,

especially in low dimensions. For example, one can choose e(s, l, L):lQsr/2,

0<s81, for the function e(s, p,r) of 3.10. We have shown that in the case p:1,
n:2, a slight modification of the proof of 5.3 gives the bound Io:1*10-ö, and

for L:l*e=Lo the bound

L, : 1'* 100ev2'
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However, in this case no bound is actually needed for Ls, since every bilipschitz

f: Rt*R2 can be extended to a bilipschitz g: Rz*R' [Tur, JK, Ger, La]. On the
other hand, the bound 1+ 100s1/2 has the correct order, since the best possible bound
for small e must be asymptotically at least L+2eLlLln. To see this, let O=a=nl2
and define f: Rr*Rz by

for all x,y(RL, where

t : (l-(1 - cos a)lZ)-rrz.

Hence the map f1: Rr-Rz, defined by fr(x)==1,'/'f(r), is Zll2-bilipschitz.
Suppose that g: R2*Ä2 is an Zr-bilipschitz extension offi . Suppose, for exam-

ple, that g is sense-preserving. Lety be the circular arc {eiE: q,=E=n). Then g-17
is an arc in the upper half-plane with end points L-Llz and -L-Ll2.Moreover, g-ly
does not intersect the disc B2(1lL). Hence the length l(S-'y) of g-r, satisfies the
inequality

l(e-'Y) = nlLr'

Since /(g-1y)=LLl(y): L1(n-a), we obtain

Lr= (l-aln)-rtz'

Write Irla:1 *e and assume that e is small. Using the first order terms of the Taylor
expansions, we get ax4e7l2, and the lower bound for L, is =1 +2etlzln.

5.13. Extension from a sphere. We shall next show that Theorems 5.3 and 5.4
remain true if Re is replaced by the sphere ,S'. By the stereographic projection; we
shall reduce the problem to the previous case. To simplify notation, we replace Se

by the sphere 
,S: ^Sp(ep+r lz,U2).

Let Rn:R'u{-} be the one-point compactification of Rn, and let a: Ro*Rn
be the inversion u(x):xllxlz. Then u maps S\{0} onto the p-plane

Then

The formula

(5.14)

(x for 1=0,
'f(x)-txeid for x=0.

lx- yllL = lf@)-f9)l = l*- yt

T - ,Rp+ €n+L.

lu(x)--u(y)l :f#
is true for all x,y€R\{O}.

Let f: S*Ro be either l-bilipschitz or s-QS for some L or s. Performing an
auxiliary isometry of Rn, we may assume 

"f(0) 
:0. In the QS case; we may also assume
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f(erat):ep+r. Let. E:{0,€1,'..,en],+er*rcT. Replacing/bV tl'f with a suitable

isometry rlt of K, we may assume that

(5.15) ll,f-idll," < er(L, n) or llf-idll"" = ei(s, n)

in the bilipschitz and the QS case, respectively, where e1(L,n)*0 as Z*1 and

ei(s, n)*0 as s*0. This can be proved by an easy compactness argument, cf. the

proof of 3.9. In fact, one could replace uE by S in (5.15), but this stronger fact will
not be needed.

Since /(0):0,f':ufu defines a map f': T*R"' We want to apply 5.3 or 5'4

to f . For this we must show that f' satisfies the hypothesis of the appropriate theo-

rem. In the bilipschitz case this is easy:

5.16. Lemma. If O€XcR" and if f: X'R" is L-bilipschitz with "f(0):0'
then the map f :s|v: a[\{O}]*R" is Ls-bilipschitz.

Proof. This follows bydirect computation from(5'14),cf. [Ger, Lemma 8]' !

5.17. Theor em. Theorem 5'3 remains true if Re is replaced by So.

Proof. Let Lo:Lo(n) and L1(L,n) be the numbers given by 5.3, Assume that

f: S*R" is l-bilipschitz and that/is normalized as in 5.13. From (5.15) it follows

that
ll.f' -idll" < er(L, n),

where e2(I,n)*0 as Z*1. Consequently, there is Lio:2!o1n1=1 such that if
L=Llo; we can choose a linear map a: R"-R" such that af'(eoa1):ep+r,
af (eoa1*ei):eoat*ei for I=-i€P, and such that a is l2-bilipschitzwhete Lr:
L2(L,n)*l- as- L*1. Choose L(:t!(1n1=1 such that L(=rf,i4, Li(=L;,
and L2(L;n)=L!ta for L=ft. lf L=Ll;, 5'16 implies that uf is l2Z3-bilipschitz.

Since IrZs= Lo, itfollows from 5'3 that we can extend af : T*R" to an Zt-bilip-
schitz homeomorphism g": Ro-Rn, Lt:Lt(LzLs,n)' By 5'11' we can choose

g"(0):0. ^Ihen g'-a-rg"t N-N is an LrL2-bilipschitz extension of f, and

d(0):0. Setting g:ug'u we obtain an li-tilipschitz extension 8': R'*R" of f,
where Zi:(Lttrlt:2i1L,n)*1 as L*1. n

5.18. We now turn to the QS case. Unfortunately, we have not found a simple

proof of the QS version of Lemma 5.16. In what follows, we assume that f: $*Rn
is s-QS and that fl{0,ep+t\:id. Theny'induces the map f' : T*Rn as in 5'13'

We make the following notational convention: Whenever we consider a triple of

distinct points a,b,x in I, we set

171

la-xl
i-l IL- lb4'
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5.19. Lemma. Let a,b,x be distinct points in T such that tlblllal=lls and

lalllbl=Us. Then

t'< t+'('j#*#1.t.
Proof. Since /(0):0 and lu(b)lllu(a)l:lalllbl=11s, we have

V@fnl)l _ lol _"

Next, since lf@(d)l: lbl ' "'

lu(a)-u(x)l :rlbl = IV@ -'l7l-=;'
lr("rd)-f(uri)l _ . tut,
V@J@l=rj;i+s'

The lemma follows from (5.14). D

5.20. Lemma. Let M>t and let a,b,x be distinct points in T such that
t=s-rtz s=M-z and lallM=lbl=Mlal. Then

t'=t+(2M+l)suz.

Proof. We have lalllbl=M=Mz=-lls and tlblllal=s-rtz114=1/.r. Thus 5.19
implies

t,=t+s(Mt+M_ts) = 71srtz(2M*l). u

5.21. Lemma. Suppose that y,z€T with lylllzl=Us. Then

lf @l = l.vl *"
lf'Q)l : l"l '"'

Proof. Since /(0):0 and lu(z)lllu(y)l=1/s, the lemma follows from the s-
quasisymmetry of f. n

5.22. Lemma. There rs sff:sfr1r; >0 such that if 0=s<sf, then f ,r "/-QS
where s':s'(s,n;*g a.r s*0.

Proof. Suppose that the lemma is false. By 2.4, there is a number å€(0,1), a
sequence of so-QS maps f1,: S*Ro, and a sequence of triples of distinct points
a*, b*, x1€ 7 such that (l) sr,*O; Q) fi,1{0, er*1}:id, (3) with the obvious notation,
we have

ö = to= |fö, ti= tn+ö.

Passing to a subsequence we may assume that ar:laelllxl,l*a, f1,:lbl,lllxrl*8,
yk:laklllbkl*y with a, B, y€10, fl.

If 0=1l<-, there is M=l such that laollM=lbol=Mlaol for all ft. Since
tu=llö, we have t1,=sluz for sufficiently large ft. Since sp€fu[-z for large k,

t72
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5.20 implies
tk+ö = t;= tr+sY'(2M+l),

which gives a contradiction as k*-.
We may thus assume that y:9 or l--. Since lo>ä, we have

Bra lb\-lol *t = 
lou-:1ol +t < (o(&+ t)lö+t.lxol ö lxol

Hence a=- implies p<-. Similarly f=- implies d<-. If a-f-o, w€cåIl
write y1,:t1,*e1 with sr*O, and we obtain the contradiction y€[ö, 1/å]. We divide

the rest of the proof into three cases:

Case l. a:f:O. Then /o*1. On the other hand,5.21 implies

lf,,!(a)l ^ lfi(bo)l Am-'' E@fi**
and hence li*I, which gives a contradiction.

Case 2. a-0, O<f<.-. 'We can write

, - lxtlt*:6;]1*e*'
where eo*0. As in Case 1,

lr:,\"r!! *0.
lfi@o)l

This implies

^, dilf,!(x)ltk: W(bJffiil'
where di*L Now

for large k. Since fo is rp-QS with fop)-O, we obtain

lu(bo)l _ l*ol +

ffi ffi - tk-t1'= rlö-.{' € llsr

Thus
t**ö = ti = di,Go- tp* so),

which gives a contradiction as k**.

Case 3. fi:O, 0=d< oo. Now

tk - 
la*: x*l * so

lxrcl
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with |to[= t*F*-*Q.

For large k we have

By 5.21,

lf{=\b),|, _- Q.

l"fi@o)l

11< ex=llso, and then 5.21 implies

T

u.,,+,,=l/i{@)r
and hence ai*s. Now

., - d'olfi@)-f,i@o)l
'o - ---W(x;)l-'

where di*1.
We apply the s1-quasisymmetry of f1, to the triple u(xo),0, z(ao). Since

lu(xo)-u(a)l - lao---t
lu(ao)l l"*l 

r! : tr-eP= lf sr

for large k, we

lf,!(x)l lfo(u(o))
€ tn-ek*so,

which gives a contradiction as in Case 2. tr

5.23. Theorem. Theorem 5.4 remains true if Re is replaced by So.

Proof. Let so:so(2) and sr(s, n) be the numbers given by 5.4, and let sf :sfi6x;
be the number given by 5.22. Suppose that /: ,S*Rn is an s-QS map normalized
as in 5.13. There is s6:så(n)=0 such that if s=si, we can choose a linear map
a: Rn*R' as in the proof of 5.17. Now a is lr-bilipschitz where L2:L2(s,n)*l
as s*0. Itfollows from5.22thatif s<sf, and s=si, then af : T*Rn issr-QS
where r2:r2(r, n)*0 as s*0. Choose s(:5'((n)=0 such that sfr=.rfr, sä=so,
and such that s2(s, n)=se for s=sf . If s=s'i, it follows from 5.4 that we can ex-

tend af'to an s1-QS homeomorphism g": Ro-Rn, sr:s1(s2(s, n),n). By 5.I1,
we can choose g"(0):0. By 2.6, g" is Kr-quasiconformal where Kt:Kt(s,n)*l
as J*0. Since a is conformal, the map g-vq-Lg"u: Ro-Rn is an L?r"-zKr-
quasiconformal extension of f.By 2.6, g issi-QS where si:si(,s, n)*Q 35 s*Q. n

Added in proof.It is possible to simplify the proof of the QS case of 5.23by
usingquasimöbius maps. These will be considered in a later paper of the second author.
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