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EXTENSION OF EMBEDDINGS CLOSE TO
ISOMETRIES OR SIMILARITIES

P. TUKIA and J. VAISALA

1. Introduction

Let X be a subset of the euclidean n-space R". A map f: X—R" is said to be
bilipschitz if there is L=1 such that

(1.1 x=JlIL =|f(x)=fO)| = Llx—y|

forall x, y€X; we also say that fis L-bilipschitz. It is not usually possible to extend
f to a bilipschitz homeomorphism g: R"—R". For example, if X is the circle S*
and if n=3, fX can be knotted, and f cannot be extended to any homeomorphism
of R®. Orif X=S52% and n=3, fX can be the Fox—Artin wild sphere [Ge,, Theorem
3]. On the other hand, if X=S' and n=2, the extension is possible [Tu,, Tu,, JK,
La]. More generally, X can be a quasicircle in R? [Ge,, Corollary 2, p. 218].

In this paper we show that the extension is possible in the case where X is R?
or S, 1=p=n-—1, and L is sufficiently close to 1. Moreover, we show that the exten-
sion g: R"->R" can be chosen to be L;-bilipschitz where L,=L,(L,n) and
limy,; L, (L, n)=1. For example, for sufficiently small L, an L-bilipschitz image of
St in R® is unknotted.

Our method is rather elementary and explicit, especially in the case p=n—1.
If X=RP, we choose a suitable triangulation on R™ X, define g at the vertices
and extend g affinely to the simplexes. Thus g will be PL outside X. The case X =S?
reduces to the case X'=RP by means of an auxiliary inversion.

Corresponding results are also proved for guasisymmetric embeddings with
small dilatation. The definition and some basic properties of these maps are recalled
in Section 2.

The main results are given in Section 5. Sections 3 and4 contain auxiliary material.

In a later paper, the second author will consider this extension problem for more
general sets X. For example, the extension is possible if X is a compact (n—1)-
dimensional DIFF or PL manifold in R The basic idea will be the same, but the con-
struction of g will be somewhat less explicit than in the present paper.

We thank Jouni Luukkainen for careful reading of our manuscript and for sev-
eral valuable suggestions.
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2. Preliminaries

2.1. Notation and terminology. We let R" denote the euclidean n-space, (ey, ...
..., e,) its standard basis, and |x|=(x3+...+ x})¥/? the euclidean norm of a vector
Xx€R". We shall regard R” in the natural way as a subspace of the space R of all
sequences of real numbers with only finitely many non-zero terms. In particular, if
p<n, RP will be identified with the subspace of R" spanned by ey, ..., €,. The norm
in R= is defined as |x|=(x}+x3+..)1%

We shall use the following notation for certain subsets of R":

R = {x€R": x, =0},
I"=[-117],
J"=10,1]",

B'(x, 1) = {yER": [y—x| <1},
S"=1(x,7) = dB"(x, r) = {yER": |[y—x| =r},
B"(r) = B(0, ), B" = B"(1),
S"1(r) = S"1(0, r), "= S"1(1).

If ACR", welet T(A) denote the affine subspace spanned by 4. If f and g are
two maps into R", defined in a set 4, we set

If—gla = sup|f(x)—g(x)l.
x€A

2.2. Bilipschitz maps. Let X and Y be metric spaces. The distance between points
a, b in either space is written as |a— b|. As defined in the introduction, a map f: XY
is L-bilipschitz if it satisfies the double inequality (1.1). If the right-hand inequality
of (1.1) is satisfied, fis said to be L-Lipschitz. The smallest such L is then called the
Lipschitz constant of f and denoted by lipf. A 1-bilipschitz map is an isometry.
If ACR", anisometry f: A—R" is always the restriction of a unique affine isometry
fi: T(A)—~R". If E is a vector subspace of R" and if f: E~K" is an isometry with
f(0)=0, fis an orthogonal map. A sense-preserving orthogonal map f: R"—R" is
called a rotation.

2.3. Quasisymmetric maps. These maps were introduced in [TV]. We recall the
definition. Let X and Y be metric spaces. An embedding f: XY is quasisymmetric
(abbreviated QS) if there is a homeomorphism #: R. —~R! suchthat if a,b, xcX
with la—x|=t|b—x], then |f(a)—f(x)|=n(0)f(B)—fx)|. We also say that f is
n—QS. An L-bilipschitz map is n—QS with 5 (f)=L*". If fis n—QS with n=id,
fis said to be a similarity. Then there is L=0 such that |f(x)—f( »)|=L|x—y| for
all x,y€X. A map f: R°—R" is a similarity if and only if it is of the form f(x)=
JA(x)+b, where 2>0, béR" and A4: R"—R" is an orthogonal map.



Extension of embeddings close to isometries or similarities 155

We shall consider 7—QS maps which are close to similarities, that is, 5 is close
to the identity map of R, . We need a measure for this closeness. To this end, observe
that the sets

N@Gd,s) = {n: m()—1|=s for 0=1t=1/s},

s=>0, form a basis for the neighborhood system of id in the compact-open topology
of the space H(R%) of all homeomorphisms 7: RY —~R . We say, somewhat ambi-
guously, that an embedding f: X—Y is s-quasisymmetric if it is n—QS for some
ne€N(d, s). We also say that fis 0—QS if it is a similarity.

Every L-bilipschitz map is s —QS with s=(L2—1)/2. For connected spaces we
have the following useful criterion:

2.4. Lemma. Let X and Y be metric spaces with X connected. Let 0<s=1/6,
and let f: X—~Y be an embedding with the following property: If a, b, x€X are dis-
tinct points with |a—x|/|b—x|=t€[s, 1/s], then

@~/ _
@) —/@)

Then f is n,—QS with some n, depending only on s, and f is 25s—QS.

Y =t+s.

Proof. We first show that if 7<s, then ¢"=2s. Choose an integer m=0 such
that s™t2=¢<s™*% Since X is connected, we can find points x;, ..., X,,;1 in X such
that

Xy = b,

Xjp1—x| = slx;—x| for 0=j=m—1,

ixm+1_x1 — |a_x| =g
]xm_x! lxm+1_x|

where s=s"=(t/s™)V/2<s¥2. Then

PACTE A CY)

Fo) e
for 0=j=m—1, and
@S _ iy e
t—-m:(.ﬂ‘{“s) (5/+S):25,

because s=1/6.

The first assertion of the lemma follows now from [TV, 3.10] with the substitu-
tion Ay =A,=1/2, h=2, H=s+1/s. The second assertion follows from the first one
and from what was proved above. [J

2.5. Quasisymmetry is closely related to quasiconformality. In particular, if G
is open in R", an —QS embedding f: G—R" is K-quasiconformal with K=n(1)"~!
[Vd,, 2.3]. Conversely, a quasiconformal embedding f: G—~R" need not be QS,
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but this is true if G=R" [Vi,, 2.5]. In this case, the closeness of fto a similarity can
also be expressed in terms of the dilatation K:

2.6. Theorem. Let f: R"—~R" be an embedding, n=2. If fis s—QS, fis K-
quasiconformal where K=K(s,n)—~1 as s—0. Conversely, if f is K-quasiconformal,
fis s—QS where s=s(K,n)—~0 as K—1. Moreover fR"=R".

Proof. For s=1, we already gave the first part of the theorem in 2.5 with
K(s,n)=(1+5)""". We omit the proof of the case s=1, since it is not needed in
this paper.

Suppose that the second part is false. Then there are s€(0,1/6] and a sequence
of K;-quasiconformal maps f;: R"~R" such that K;—~1 and no f; is 2s—QS. By
2.4, we can pick points a;, b;, x;€R" such that

U}'(aj)—f}‘(xjﬂ
/56 =13(x))l

Performing auxiliary similarities, we may assume that x;=0=f;(x;) and
a;=e,=f;(a;). Since |b;|=1/t;€[s, 1/s], we may assume that b;~bcR"™\{0}.
Furthermore, we may assume that the maps f; converge to an isometry f: R"—R"
uniformly on compact sets. Then

Eaj_le = t_je[s’ ]/S]a

7 =t,=t,+s.
|bj“‘le J 1+s

lim ¢; = 1 _ 1 = lim ¢} = lim ¢;+s
N VIO e
which is a contradiction.
The final statement is a well-known property of quasiconformal maps [V4,,

17.4]. O
3. Elementary estimates

3.1. In this section we give some elementary inequalities for affine maps in R”"
and consider the approximation of QS maps by similarities. We first introduce some
notation. Let A=aq,...q; be a k-simplex in R" with vertices a,, ..., a,. We let b;
denote the distance of a; from the (k — I)-plane spanned by the opposite face, and we
set b(4)=min (by, ..., b,). The diameter d(4) of 4 is the largest edge |a;—a;|. We
let A° denote the set of the vertices of 4.

The following lemma is obvious:

3.2. Lemma. Let B;: A—[0, 1] be the j-th barycentric coordinate. Then B; is
b;*-Lipschitz. [

3.3. Theorem. Suppose that ACR" is an n-simplex, that f: R"—R" is affine,
and that h: R"—~R" is a sense-preserving isometry such that

h(@)—f()] = ab(d)/(n+1)
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for every vertex v of A, where 0=a=1/2. Then f is sense-preserving and (1+20)-
bilipschitz.

Proof. Replacing f by h™'f we may assume that hA=id. Let x, y be points in 4
with barycentric representations

x=2&a, y=2 N
By 3.2 we obtain
f) =) = Ix=y[+Z[&—nllf(a)—ail = A+D)x—y].
Similarly we obtain the estimate
f)—f)] = A —a)lx—yl.

Since 0=a=1/2, 1 —a=(142x)~1, which implies that f is (1+2x)-bilipschitz.

Define the segmental homotopy #,: R"—=R" by h(x)=(1—1)f(x)+tx. Then
each h, is an affine map satisfying the same conditions as f. Thus every 5, is (1+2a)-
bilipschitz and hence bijective. Therefore (/,) is an isotopy, which proves that f is
sense-preserving. [J

3.4. To formulate the corresponding result for similarities we use the following
notation: If f: R"—R" is an affine bijection, we set

Ly=lipfe 1y=(ip/™~ = min|f, H;=Lyl,.

3.5. Theorem. Suppose that ACR" is an n-simplex, that f: R"—~R" is affine,
and that h: R"—R" is a sense-preserving similarity such that

h () —f ()| = oLy b(4)/(n+1)
for every vertex v of A, where O0=a=1/2. Then f is sense-preserving, and
L,=L,(14+20), I, =L,/(1+20), Hy = (14202
Proof. Apply 3.3 with the substitution f—f/L,, h—h/L,. O

We omit the elementary but somewhat tedious proof of the following obvious
fact:

3.6. Lemma. Let K be a finite simplicial complex in R", and let K° be the set of
vertices of K. Then there is a positive number ry=ry(K) such that if f: |K|—~R" is
affine in each simplex of K and if h is a similarity such that ||f—h|ge=Lyry, then fis
injective. If u is a similarity, ro(uK)=L,ro(K). O

The following elementary result is well-known:

3.7. Lemma. Let A=ay...a; be a k-simplex in R", let r;=0 for 0=j=k,
and let

S = {x€R": |[x—a;| =r; for 0=j=k}
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Then there are three possibilities:

(1) S=0.

(2) S consists of a single point in T(4).

(3) S is a sphere of dimension n—k—1 with center in T(4) and such that T(S)
is perpendicular to T(4). O

3.8. Remark. Consider the case k=n—1 in 3.7. Then in the case (3), S con-
sists of two points which are symmetric with respect to 7(4). Consequently, if 4 is
an n-simplex with given n vertices qq, ..., a,—; and given edges |a,—a,|, there are
exactly two possibilities for g, . If the orientation of 4 is given, there is only one possi-
bility.

It follows that a sense-preserving isometry h: R"—R" is uniquely determined by
hle for any (n—1)-simplex o.

39. Lemma. Let A=ay...a,_, be an (n—1)-simplex in R", n=2, and let
XER" with |x|=r. Let f: A°0{x}~R" bean s—QS map which in the case x ¢ T(4)
does not change the orientation. If |f(a;)—a;|=0 for 0=j=n—1, then

f(xX)—x|=e(s, 6, r, 4)
where ¢(s,0,r,4)~0 as s—0 and 0-0.

Proof. Suppose that the lemma is false. Then there are sequences s,—~0 and
8,~0 and a sequence of s5,—QS maps f: 4°0{x}—>R" satisfying the condition on
orientation such that |f,(a;)—a;|=0, for 0=j=n—1 and |fi(x)—x[=e for some
e>0 and for all k. Passing to a subsequence, we may assume that f,(x)—>yER"
Since fi(a;)—~a; for all j,f, converges to a map f. Since 5, —~0, f'is a similarity.
Since f]4°=id, fisanisometry. If x€T(4), x=y by 3.7.1f x¢ T'(4), then f'does not
change the orientation of the n-simplex qy...a,-1x, whence x=y by 3.8. This con-
tradicts the inequality |f(x)—x|=e. O

3.10. Lemma. Suppose that p=1, that f: RP—~R” iss—QS and that f(0)=0,
f(e)ER’, for 1=j=p. Let r=0. If x€B"(r), then
/G —f (e [x] = e(s, p, )| fle)],
where limg_ e(s, p, r)=0.

Proof. Suppose that the lemma is false for some p and r. Then there are ¢=0
and a sequence of s,—QS maps f,: R”~R= such that s5,—~0, £,(0)=0, f;(e;)€ R’
for 1=j=p, and such that |f(x)—|fi(ed)|xi|=¢lfi(e)] for some x,€BP(r).
Replacing f; by fi/| fi(e1)| we may assume that f;(e;)=e,. We may also assume that
x,—x€ BP(r). Replacing f; by y/f, where  is a suitable isometry of R*= with y|R?=id,
we may assume that f;(x)€ R?**. Since s,—0, it follows by induction from 3.9 that
filey)—~e; for je[l, p] and that fi(x)—x. On the other hand, the family {f;: k€N}
is equicontinuous by 2.4 and by [TV, 3.4]. Hence |f;(x;,)—/fi(x)|—=0, which gives the
contradiction = |f(x,)—x,|~0. O
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3.11. Lemma. For every integer p=1 thereis so=s5,(p)=0 with the following
property: If fis an s,—QS map of the set E={0, ey, ..., e,} into R=, then the vectors
f(e))—f(©0), 1=j=p, are linearly independent.

Proof. By an auxiliary similarity of R<, we may assume that f(0)=0, that
f(e;)=ey, and that f(e;)€R? for all j. If the lemma is not true, there is a sequence of
5,—QS maps f,: E~RP satisfying these conditions such that s,—~0 and such that
the vectors f,(e;), 1=j=p, are linearly dependent. An easy compactness argument
leads to a contradiction. [

4. Frames

4.1. In this section we give auxiliary results on frames in R", which are needed
in the case p=n—2 of the main theorems in Section 5. For 1=p=n, a p-frame in
R"is a p-tuple v=(2", ..., 2P) of linearly independent vectors »/€ R". We let V,(R")
denote the set of all p-frames in R" and ¥,’(R") the subset of all orthonormal p-frames.
We identify ¥,(R") with an open subset of (R")’=R". However, it is convenient to
use the norm

o] = max {jo/]: 1= = p}

in (R")? instead of the euclidean norm |v| of R?". These two norms are equivalent:
lell2= o =plo].

Since ¥, (R") is compact, we can choose a compact neighborhood N of V) (R"),
contained in ¥,(R"). The Gram—Schmidt process defines a retraction G: V,(R")~
V(R"). We shall make use of the fact that G is continuously differentiable (in fact,
real analytic). This implies that if »€N, and v+z€V,(R") with |z[|=g, we can
write

(4.2) G+2) =G +G[z+]z]e(z ),

where G’(v): R™"—RP" is a linear map and |[le(z, v)| =¢,(g) with lim ., e,(q)=0.
Moreover,

(4.3) Gl = M = M(n)

for all veN;.

We first prove an interpolation lemma, for which we introduce the following
notation: Let J? be the p-cube [0, 1]7. We let I', denote the family of the 37 closed
subcubes of J?, obtained by trisecting the sides of J?. Let I ; denote the subfamily of
this ““Rubik p-cube”, consisting of the 2P cubes containing the vertices of J”. If
a, e, with anf=0, we write a~p.

4.4. Lemma. For every integer n=2 there is a number qy=q,(n)=0 with the
following property: Let 1=p=n—1 and 0=q=q,, and let u: I',~V,(R"),v: I ,~
VPO(R") be maps, denoted by o—u,, a—v,, and satisfying the conditions:
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(a) uj=v] for acI', and 1=j=p.
(®) lu,—ugl=q for all o, BeI,.
(©) llva—v4ll=q* whenever a~p.

Then there is a map w: I',~V,°(R") such that:

(1) wi=v! for acl', and 1=j=p.

() wil'=u.

(3) Iwa—wyll=(1—2"7"Yg whenever a~p.

(4) If a€l’, meets a k-dimensional face A of J*, 0=k=p, then w, depends only
on v, and on the frames uy for which B meets A.

Proof. Observe that the maps form the diagram

V(R — VP (RY)

r,&~——r »
Here r is the natural map r(v)=(v', ...,2?). The condition (a) means that the rec-
tangle is commutative; the conditions (1) and (2) mean that the two triangles are
commutative.

Fix an integer p€[1, n—1]. It suffices to find a number g,>0 satisfying the con-
dition of the lemma for this p. Let 0=¢=1, and let u, v be as in the lemma. In the
course of the proof we shall put more restrictions on gq.

Let a€l,, and let A, be the face of J? of minimal dimension meeting «. Let B,
be the family of all feI', meeting 4,. Define x,€(R")" as follows: For j=p set
xj=v]. For p+1=j=n let x] be the arithmetic mean of the vectors u} over all
B€B,. From the conditions (a), (b), (c) it follows that |x,—us| =g for every BEB,.
Since N, is a neighborhood of V,°(R") in (R")", there is ¢;=¢,(n)>0 such
that g=¢, implies x,£N. From now on, we assume g=gq,. We claim that the
map w: I',~¥,°(R"), defined by w,=G(x,), is the desired map, provided that ¢ is
sufficiently small. The conditions (1), (2) and (4) are clearly satisfied.

It remains to verify (3). Let «€I',. There is a positive integer m(a) such that
m(a)card B,=27. Set C,=B,X{l,...,m(®)} and define @: C,~V°(R") by
tigxy=ug. Then

4.5 Xp =277 Syec, i

for p+1=j=n.
For yeC, write

Zy=iy—X,, z=27P 2, z,.
If 1=j=p, (a) and (c) imply

|z = i —vi] = g% |2/| = ¢
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If p+1=j=n, (4.5) and (b) yield
28] = 277 3yec, lWi—itl] = q.

Hence we have always

(4.6) Izl = g.
Moreover, if p+1=j=n, (4.5) implies z/=0. Thus
4.7) Izl = g™

From (4.2) we obtain
i, = G(iL,) = w,+G'(x,) z,+ 2l e (2,5 x).

Summing over y€C, and multiplying by 277 yields

Wy =27F > e il,—a,—b,,
where

a, = G'(x,) 2,

by =277 2yec, 17, 8(2,, X,).
From (4.3), (4.6) and (4.7) we obtain the estimates

la.l = Mq?, b,] = ge.(q).

Suppose now that «, a’cI', witha~a’. Then C,nC, is not empty. Using (b)
and the estimates above we obtain

[we—well = 27727 —1) g+lla,l +llaxl +[ball + byl
=(1-277)q+2Mq*+2qe,(q) = (1-27""Y)g,
as soon as q=2"7"%/M and ¢,(gq)=2"7"°. This proves (3). O

4.8. For the next result we introduce some notation. Let p=1 be an integer.
For each integer k we let #,(p) denote the standard subdivision of R? into closed
p-cubes of side length 2*. Thus each Q€ #,(p) contains exactly 27 cubes of _#,_,(p).
Writing Q=agy+277, JP=[0,1]?, we say that the cube Py=a,+2"""J%€ #,_,(p)
is the principal subcube of Q. Let #(p) be the union of all #,(p), k€Z. If Q€ Z.(p),
we write k=k(Q). If k(Q)=k(R) and OnR#0, we write O~ R. We also define
a relation = in #(p): O=R if either Q~R or |k(Q)—k(R)|=1 and QcR or
RcQ.

4.9. Lemma. For every integer n=2 thereis a number q,=q,(n)=0 such that
for every q€(0, q,] thereis r,>0 with the following property: Let 1=p=n—1 and
let v: j(p)—»Vp"(R") be a map such that |vo—vgl=r, whenever Q=R. Then there
is a map u: #(p)~V,(R") such that

(1) uh=v} for 1=j=p and Q€S (p)

(2) lug—ugl=q whenever Q=R.
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If Q€ A(p) and if ucV,2(R") satisfies the condition uj=vj for 1=j=p,
we can choose Ug,=uo-

Proof. We may assume Q,=J?. Let g, be the number given by Lemma 4.4.
We show that the lemma is true for g,=min (¢,/2,27""%). Suppose 0<g=gq;.
Since V°(R") is compact and since the Gram—Schmidt map G is continuous, there is
r,€(0, g% such that r, is less than the distance between Vo(R") and (R"Y\V,(R")
and such that

1Gx) =yl = g%

whenever yeV(R"), x€(R")" and |x—y|=r,. We claim that the lemma is true with
this r,.

Solet 1=p=n—1, andletw be asin the lemma. Suppose that Q€ _#(p) and that
ug€V,(R") satisfies (1). If Re€ #(p) and R=Q, we define

— (L 1
xg = (Vg ..o VR UB™Y o, UQ).

Then |lxg—ugll =|lvg—24|=r,, which implies xr€},(R"). Hence we can form
ur=G(xg). This uy satisfies (1) and

3 llug—ugll = g2

which is stronger than (2). We say that uy is defined directly by u,.

For every integer k=1 welet #(p, k) denote the family of the cubes Q¢ #Z(p)
which are contained in 2¥/?=[—2* 2*]?. Assume that we have defined maps u(k):
F(p, k)~V(R") satisfying (1) and (2). Since ¥,°(R") is compact, we can apply the
diagonal process to find a subsequence u(k,), u(k,), ... such that for each Q¢ #(p),
ug(k;) converges to a limit uy as j—<o. Thus we obtain a map u: #(p)~¥,"(R"),
which clearly satisfies (1) and (2). Consequently, it suffices to find a map u: #(p, k)—
V,2(R") satisfying (1) and (2), and for which u, =u,.

We start with the cube Q,=J” and define u, =u,. For 0,=2J", 1=j=k,
we inductively define g, directly by Ug, - Let 2, be the family of the 37 cubes
Re #(p) with R~Q,. Forevery R¢ X, wedefine ug directlyby uy . If R, R'€ 4},
then

lug—up | = llug—ug,| +lltg, —url = 2¢* = g.

For every R€ X}, R#Qy, we define up for the principal subcube Py directly by
ug.Let E,_; be the convex hull of U {Pg: RE€X;}, and let #,_; be the family of
the cubes of #Z,_,(p) contained in Ej_,. Suppose that Q€ _; and that Q is not
any principal subcube Py, Re.#,. Then Q belongs to a family I', of 3? cubes in
Hj—1 such that I'y is isomorphic in the obvious sense to the Rubik p-cube I', of 4.1
and such that the subfamily I'ycI'y corresponding to I', contains only cubes of the
form Pg. Furthermore, if Pg, PscI'y, (3) implies

lup,—upgll = llup, —ugll + [ ug — usl| + | us—up| = 44>
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Since ¢g=2-""2<1/4 and since r,=g¢> we can apply 4.4 to find u,€¥,’(R") satis-
fying (1) and

(4.10) lug—ugl = (1-277"Hq = ¢,

whenever Q, Q'€ #;_; and Q~(Q’. The condition (4) of 4.4 guarantees that u,
is independent of the choice of I'y. Furthermore, if Q€X#;_; and R} with
O=R, then Q~Py, and we obtain

lug—ugll = llug—upyll +llup,—ugl = (1=2"""9)g+¢* = g,

because g=2"""%<27P71

We can now proceed in a similar manner to smaller cubes. We describe the next
step. For every RE€Aj_1, R#Qy—1, we define up directly by ug. Let E;_, be the
convex hull of U {Pg: REH;_,}, andlet A, _, be the family of the cubes of #,_»(p)
contained in E,_,. If Q€#;_, and Q is not of the form Pg, RE€X,_;, we can
choose the Rubik p-cube I'y as above. If Py, Ps¢I'y, then R~S, and (4.10) and (3)
yield

lupe—tipgll = lltp,—ugll + | ug—usl + | us—upsl = q+24*

Since g=2"""?<2"1, g+2¢*=2g=q,. Since r,=q*=(q+2¢*? we can apply 4.4
to find u, satisfying (1) so that

lug—ugl = (g+2¢5)(1—27771),
whenever Q~Q’ in #;_,. Since g=2"""?=277"2 this implies
lug—ugl = q—q*=q.
If QcA,_, and REA,_, with Q=R, then Q~Pg, and we obtain
lug—ugll = llug—up,l + | up, — gl = 9—q*+q*=q.

The step is completed.
Continuing in this manner, # will be defined in the family o {;: j=k}, which

contains #(p, k). O

4.11. Remarks. 1. Orientation divides ¥,°(R") into two disjoint compact sub-
sets. Replacing ¢, in Lemma 4.9 by a smaller constant if necessary, we can therefore
conclude from (2) that all frames u, have the same orientation, which can be chosen
arbitrarily.

2. In the case p=n—1, the results in this section are not really needed in the
sequel. On the other hand, Lemmas 4.4 and 4.9 are in this case almost trivial, since if
ucV°(R"), u" is uniquely determined up to the sign by (*, ..., u Y.
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5. Extension

5.1. In this section we prove the main results of the paper, mentioned in the intro-
duction. We shall give the proof of the QS case in detail. In the bilipschitz case, some
steps of the proof are obtained as direct corollaries of the QS case, since an L-bilip-
schitz map is (L2—1)Y2—QS. In other steps, we check that the construction gives
bilipschitz maps if the given maps are bilipschitz. A direct proof for the bilipschitz
case would be somewhat but not much simpler. A notable exception is the reduction
of the case X=SP to the case X=RP?, where we shall give separate proofs in these
two categories.

5.2. Triangulation of R™\R”. Let n>p=1 be integers. Let #(p) be the family
of p-cubes defined in 4.8. Each Q€ #(p) can be uniquely written as
Q = aQ‘i-/]uQ Jp’

where ag is a vertex of Q and 4,=2"? the side length of Q. For each Q€ #(p)

we set
AQ = 2),QI"“"\/IQ (int 7"P), YQ = QXAQ.

Yo
/ /
Q 1
—_—|—|—0 | o o | | O R
O, Q-
YQ1 YQz
Figure 1.

Then ¥, is a compact polyhedron in R". Figure 1 illustrates the case n=3, p=1.
Here Q,, Q, are the members of #(p) with k(Q;)=k(Q)—1 contained in Q. To
clarify the figure, we have used different scales in R*X0 and in 0X R2. The collection
of the sets Y, has the following properties:

(1) u{¥p: Q€ A(P)}=R"\R?,
(2) int Ypnint Yz=0 for Q#R,
(3) YonYz#0 if and only if |[k(Q)—k(R)|=1 and QnR=0.
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It is fairly obvious that there is a triangulation W of R™\R* such that each ¥,
is the underlying space of a subcomplex W, of W and such that for Q, R€ #(p),
the natural similarity map Y,—Y; maps W, onto M. In fact, all that is essential
in the proofs is that (1) the flatness d(4)/b(4) of the n-simplexes A of W is bounded,
and (2) the diameter of an n-simplex of W meeting ¥, has the same order of magni-
tude as 1,. We give a construction of ¥, which is not the most economical one.

The boundary of 4, consists of the sets By=/1,01""? and 2B,. These sets have
natural structures as cell complexes. The natural product structure of Ay~ByXI
defines a cell complex structure for 4,. Taking the cartesian product we obtain a cell
complex Cy with |[Cy|=0X 4,=Y,. We replace the subcomplex of C,, correspond-
ing to QX B, by the subdivision induced by the subdivision of Q into 27 cubes
of side length 1,/2. We get a subdivision Cy, of Cy,, which is not a cell complex.
The union C=uU{Cy: Q€ #(p)} is a collection of cells with the properties:

(1) uC=R"R".
(2) The members of C have disjoint cell interiors.
(3) The boundary of each cell is a union of some members of C.

The 1-skeleton C'* of C is a simplicial complex. For every 2-cell E€C we choose
an interior point by such that the natural similarity mappings Y, Y map the points
by onto each other. Since JF is triangulated, we can triangulate E by the cone con-
struction from by. This gives a simplicial subdivision of the 2-skeleton C 2. Proceeding
similarly to cells of higher dimensions we obtain the triangulation W.

5.3. Theorem. For every integer n=2 there is a number L,=Lo(n)=1 with
the following property: Let 1=p=n—1, let 1=L=L,, and let f: RP—~R" be L-
bilipschitz. Then f has an extension to an L,-bilipschitz homeomorphism g: R"—R"
where [ =L,(L,n)—~1 as L—1.

5.4. Theorem. For every integer n=2 there is a number sy=s,(n)=0 with
the following property: Let 1=p=n—1, let 0=s=s,, and let f: R?—~R" be s—QS.
Then f has an extension to an s, —QS homeomorphism g: R"—R" where s,=s,(s, n)~0
as s—0.

Proof. As mentioned in 5.1, we shall prove Theorem 5.4 in detail and obtain
Theorem 5.3 by taking care that the construction gives bilipschitz maps if f'is bilip-
schitz.

Let p€[l, n—1] be an integer. It suffices to find s,=>0 such that 5.4 is true with
this p. Let s,=s,(p) be the number given by 3.11. Let 0=s=s,, and let /2 RP—~R"
be s—QS. In the bilipschitz case, we set L,=(1+s3)"/? and assume that 1=L=L,
and that f is L-bilipschitz. Then fis s—QS with s=(L2—1)/2=ys,.

Using the notation of 4.8 and 5.2, we consider a cube Q=ay+,J7€ #(p).
For every j€[l,p] we set

wh = flag+ige;) —f(ayp).
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It follows from 3.11 that wy€¥,(R"). Hence we can apply the Gram—Schmidt

process and obtain
UQ = G (WQ) E VPO (er).

We define the orthogonal map ¢,: RP—~R" by

pge; =vh,
and the numbers

0o = [Wol:  Ho = Cqlto-
Let hy: RP—R" be the similarity defined by

ho(x) = f(ag)+ pePo(x—ag).

If s=0, hy=f. If 5>0, hy is an approximation of f near a,. More precisely, if
YERP and |y—ay|=riy, then

(55) |f(y)_hQ(y)1 §8(S, b, r)QQ,

where ¢ is the function given by Lemma 3.10. To prove this, we may assume that
ap=0=f(ap). Define f;: RP—~R" by fi(x)=f(2gx). Then f,is s—QS and [fi(e)|=
0o- Choose a rotation Y of R" such that Yfy(e,)€R} for 1=j=p. Since yf,
is s—QS and since Yv)=e;, (5.5) follows easily from 3.10.

If suffices to find a number ¢,=¢,(n)=0 such that for every g€(0, g,] there is
s=s(q,n)>0 such that every s—QS map f: RF—~R" has an 5,—QS extension
g: R">R" where s;=s,(¢,n)~0 as g—0. In the bilipschitz case, we shall find
L=L(q,n)>1 such that every L-bilipschitz map f: R’—R" has an L,-bilipschitz
extension g: R"—R" where L;=L,(q,n)—~1 as g—0.

Let 0<g<g, where ¢, is given by 4.9. Additional restrictions for g will be given
later. Let r,>0 be the number given by 4.9. From (5.5) it easily follows that there is
S3=55(q, n)=s, such that s=s; implies

lvg—vrll = 7

whenever Q=R in #(p). From now on, we assume s=s3.

Let u: #(p)—V,°(R") be the map given by Lemma 4.9. We may assume that the
frames u, are positively oriented, that is, they have the same orientation as the stand-
ard basis (e, ..., e,). We extend the maps ¢4 and hy to a rotation @y: R"—~R" and
to a sense-preserving similarity hy: R"—~R" by

Poe; = ”{z, hQ(x) =f(aQ)+,uQ(pQ(x—-aQ).

For each vertex b of the triangulation W of R™ R, we choose Q(b)€ #(p)
such that b€Yyy,. Set hy=hg,, and g(b)=hy(b). Extend g to R™\RP so that g
is affine on every simplex of W, and define g|R’=f. We claim that this map
g: R"—R" is the desired extension of f provided that ¢ and s are sufficiently small.
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We first show that if O, R€ #(p) with QnR#0 and |k(Q)—k(R)|=1, then
(5.6) lug— x| < 4eng,

where e=¢(s, p, 3n).
Since (5.5) is true for all y¢ QUR with r=3n, we have
Or = ]hQ(aR+}'Rel)_hQ(aR)|+% = polrt+x

where |x|=2c0y. Since Ao=2Jg, this implies (5.6).

We next estimate |g—hy| in Yp. Let beY, be a vertex of ¥, and set R=0Q(b).
Since b€ YynYg, [k(Q)—k(R)|=1and QN R>0. Hence either Q=R or Q=0 =R
for some Q’¢ #(p). Consequently, [up—ugll=2¢. This implies [pg—@g|=2ng;
for linear maps we use the sup-norm. Clearly |b—ag|=2niz=4nly and |ag—ag|=
d(Q)+d(R)=3nly. Hence (5.5) gives

?g(b)_hg(b)] = ]f(ak)_hg(ak)l‘i‘ |#R§0R_,“Q(PQ| |b—ag|

= £0g+4nlg|ur Pr—Ho Pol-
Here (5.6) implies

lur Pr—to Pol = tol@o—@rl+ 1o —1r!|or| = 2nquo+4eo.
Combining these estimates yields
|g(b)—hqy(b)| = (e+8n*q+16n¢)og.
Choose s=s(q,n)=0 such that
e(s, p, 3n) = nq/17.

In the bilipschitz case, we choose L=L(g,n)=(1+s3"2. Since g—hgy is affine
on every simplex of ¥, we obtain

(5.7) lg—hqlly, = 9n*q00

for every Q€ #(p).
As a PL map, g is continuous in R™\ R?. We next show that g is continuous also

at an arbitrary point z€ R?. Let & =0. Since fis continuous, thereis 6>0 such that
|f(»)—f(2)| <& /(4n+1) whenever |y—z[<é. Choose 6,€(0, 8) such that if 4 is an
n-simplex of W meeting B"(z, §;) and if b€4°, then Q(b)cB”(z, ). We show that
|g(x)—g(2)|<¢, for every x€B"(z, 6;)\RP. Choose an n-simplex AecW contain-
ing x. It suffices to show that |g(b)—g(z)|<e, for each vertex b of 4. The cube
Q=0(b) is contained in B"(z, ). Since g(b)=hgy(b), we obtain

lg(b)—g(2)| = |ho(b)—hg(ag)|+1f(ag) —f(2)|
=polb—ag|+&/(An+1)= 2ngy+&/(4n+1).

Since go=d(f0)<2&/(4n+1), the right-hand side is less than s;. Hence g is contin-
uous at z.
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Let A€W be an n-simplex. Choose Q€ #(p) with AcCY,. To estimate the
dilatation and the bilipschitz constant of g|4, we want to apply 3.5 with the substitu-
tion fi-g|d, h—hy. From the construction of W it follows that thereis M =M (n)=1
such that b(4)=4y/M. By (5.7), this implies that we may apply 3.5 with a=
9n?(n+1)Mq provided that «=1/2. This gives the new restriction

1
(-8) 1= W*(nr O M

[IA

in addition to g=g,. By 3.5, g|4 is sense-preserving, and
H(gl4) = (1+18n*(n+1)Mq)® = H,(q, n)

where H,(q,n)—1 as g—0.
In the bilipschitz case, observe first that 1/L=pu,=L,=L. Hence 3.5 implies
that g|4 is L;-bilipschitz with
L, =L,(g,n) = L(1+18n*(n+1)Mgq).

To complete the proof of Theorems 5.3 and 5.4, it suffices to show that g: R"—~R"
is injective. Indeed, f is then H} '-quasiconformal by [V&;, 34.2 and 35.1], and
Theorem 5.4 follows from 2.6. In particular, gR"=R". In the bilipschitz case, it
follows then almost immediately that g is L,-bilipschitz.

Let Q¢ #(p), and set

Eyo =U{R: R~Q}, Zy=EzX2,I"".
Thus Z, is the convex hull of U {Yz: R~Q}. We shall first prove that
(5.9) lg—hollz, = 24n*qoq.

Let R=Q with k(R)=k(Q). Then |pr—@o|=ng and |x—ag|=3ni, for

all x€Z,. Since

hg(x)"hR (x) = hQ(aR) ‘f(aR)+(,UQ Po— Hr ¢r)(x—ag),
we obtain as in the proof of (5.7),
(5.10) ”hQ—hR”ZQ = 4n*qgp.

Let x€Z,\R". Then there is a finite sequence R;D...DR, in #(p) such that
QO~R;, k(Rj;1)=k(R;)—1, and xEYRt- By (5.6), QR1§2ﬁQQ and QRjﬂé.BQRj
where B=(1+4¢)/2. Since n=2 and M=1, (5.8) gives the rough estimate e=
ng/17<1/36, which implies B=5/9. Applying (5.10) with the substitutions
(Q’ R)H(Qa Rl) and (Qa R)"_’(st Rj+1) we obtain

|ho (X)—hg,(x)| = 4n*qoo(1+2B+2p24... +2f'7)

= 4n2qoo(1+2B/(1—P)) = 14ngo,.
By (5.7),
|g(x) —hg,(x)| = 9n*qog, = 10n2go,,
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whence
|g(x)—hgo(x)| = 24n*qoy

for x€Z,\RP. By continuity, this inequality also holds for x€Z,NRP, and we
obtain (5.9).

For Q¢ #(p) let Y, be the union of all Y such that YxnY,#0 and k(R)=
k(Q). Then

d(Yy, Zo\Yg) = Ag/2.

Suppose that x and y are distinct points in R". We want to show that g(x)=g(»).
Since g|R?=f is injective, we may assume that x ¢ R?. Choose Q¢ #(p) such that
x€Y,. We may assume that either y€RP or yecJ¥; for some S with k(S)=k(Q).

Case 1. ye{Yé. Now there is a unique sequence Q=R,CR;C... of cubes of
F(p) such that k(R;,;)=k(R;)+1. Let ¢ be the smallest number such that y€Zg ,
and set R=R,. Then |x—y|=Ag/2. Thus

lhg (x) —hgr (V)| = prlx—y| = og/2.
Hence (5.9) implies that g(x)=g(y) if

4= 1002 -

Case 2. y€Y,. Let W, be the subcomplex of W for which [Wg|=Y;. Let
To (Wg) be the number given by Lemma 3.6. We can choose ry(W;)=704o for some
90=70(n)=0. Since x, y€Y CZ,, it follows from (5.9) and from 3.6 that g(x)#
g(y) if

- Yo
1= Zanz

The proof of Theorems 5.3 and 5.4 is completed. [

5.11. Remark. Suppose that fin 5.3 or in 5.4 satisfies the conditions f(0)=0,
fle)=e1, and f(e))ER’, for 2=j=p. Let Qy=J". The p-frame vy in the proof is
then the standard frame (ey, ..., e,). By 4.9, we can choose quz(e1 , ..., ,). Further-
more, we can choose Q(b)=0, whenever beYj . This implies that gIYQo:id.
In particular, g(e;)=e; for p+1=j=n.

5.12. Explicit bounds. Since the proof of 5.3 contains several indirect arguments,
it does not give any explicit bounds for Ly(n) or for L,(L, n). It is possible, however,
to replace these arguments by elementary geometric and trigonometric considerations,
especially in low dimensions. For example, one can choose &(s,1,1)= 1052,
0=s=1, for the function &(s, p, r) of 3.10. We have shown that in the case p=1,
n=2, a slight modification of the proof of 5.3 gives the bound L,=1+10"% and
for L=1+4¢=L, the bound

Ly = 1+100gV2.
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However, in this case no bound is actually needed for L,, since every bilipschitz
f+ R*—~R?* can be extended to a bilipschitz g: R*~R? [Tu,, JK, Ge,, La]. On the
other hand, the bound 1+ 100¢'/2 has the correct order, since the best possible bound
for small ¢ must be asymptotically at least 1+2¢'?/z. To see this, let 0<oa<m/2
and define f: R'-R? by
{x for x =0,
J@) = xe™ for x=0.
Then
x—=yl/L=fx)—fD) = [x—y|
for all x, y€R', where
L = (1—(1—cos o)/2)~ 12,

Hence the map f;: R'—~R?, defined by f;(x)=L"2f(x), is L'?-bilipschitz.
Suppose that g: R*—~R? is an L,-bilipschitz extension of f;. Suppose, for exam-
ple, that g is sense-preserving. Let y be the circular arc {€': a=¢=n}. Then g~y
is an arc in the upper half-plane with end points L=2 and — L~1/2, Moreover, g~y
does not intersect the disc B?(1/L;). Hence the length /(g~'y) of g~ 'y satisfies the
inequality
l(g™) = 7/L,.

Since /(g y)=L,/(y)=L,(r—a), we obtain
L= (1—o/n)~ Y2

Write L'/2=1+¢ and assume that ¢ is small. Using the first order terms of the Taylor
expansions, we get o~4¢'/%, and the lower bound for L, is ~1+2¢'/?/r.

5.13. Extension from a sphere. We shall next show that Theorems 5.3 and 5.4
remain true if R? is replaced by the sphere SP. By the stereographic projection, we
shall reduce the problem to the previous case. To simplify notation, we replace S?

by the sphere
S = Sp(ep+1/2a 1/2)

Let R"=R"u{} be the one-point compactification of R”, and let u: R"—~R"
be the inversion u(x)=x/|x|%. Then u maps S\ {0} onto the p-plane

T=RPte,, .
The formula
B _ Ix=yl
(5.14) U@~ u() =T

is true for all x, ye R"™\{0}.
Let /2 S—R" be either L-bilipschitz or s—QS for some L or s. Performing an
auxiliary isometry of R", we may assume f(0)=0. Inthe QS case, we may also assume
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fle,o1)=¢ey,+1. Let E={0,eq, ..., e,}+e,,,T. Replacing f by Vf with a suitable
isometry ¥ of R", we may assume that

(5.15) If=idlle = & (L, n) or | f—idl.g = ei(s, n)

in the bilipschitz and the QS case, respectively, where & (L,n)—~0 as L—1 and
¢(s,n)—~0 as s—0. This can be proved by an easy compactness argument, cf. the
proof of 3.9. In fact, one could replace uE by S in (5.15), but this stronger fact will
not be needed.

Since f(0)=0, f’=ufu defines a map f’: T—R". We want to apply 5.3 or 5.4
to . For this we must show that f” satisfies the hypothesis of the appropriate theo-
rem. In the bilipschitz case this is easy:

5.16. Lemma. If 0c¢XCR" and if f: X—R" is L-bilipschitz with f(0)=0,
then the map f =ufu: u[X\{0}]—=R" is L3-bilipschitz.

Proof. This follows by direct computation from (5.14), cf. [Ge,, Lemma 8]. [
5.17. Theorem. Theorem 5.3 remains true if R” is replaced by S”.

Proof. Let Ly=L,(n) and L,(L,n) be the numbers given by 5.3. Assume that
f: §—R" is L-bilipschitz and that f is normalized as in 5.13. From (5.15) it follows

that
If"—idl g = (L, n),

where &(L,n)~0 as L-1. Consequently, there is Lg=Lg(n)>1 such that if
L=L), we can choose a linear map «: R"=>R" such that of’(e,+1)=€,41,
af (e, +1+e€;)=e,41+e€; for 1=j=p, and such that « is L,-bilipschitz where L,=
Ly(L,m)~1 as L-1. Choose Lyj=Lg(m>1 such that L{=Lg"* L{=Lg,
and Ly(L,n)=LY¥* for L=L;. If L=Lg, 5.16 implies that af” is L, L*-bilipschitz.
Since L,L3=L,, it follows from 5.3 that we can extend of”: T—R" to an L,-bilip-
schitz homeomorphism g”: R"-~R", L,=L,(L,L% n). By 5.11, we can choose
g’(0)=0. Then g’=a~'g”: R"~R" is an L,L,-bilipschitz extension of f’, and
g’ (0)=0. Setting g=ug’u we obtain an L;-bilipschitz extension g: R"->R" of f,
where L;=(L;L;)*=Li{(L,m)~1 as L-1. O

5.18. We now turn to the QS case. Unfortunately, we have not found a simple
proof of the QS version of Lemma 5.16. In what follows, we assume that f: S—R"
is s—QS and that f[{0, e,+,}=id. Then f induces the map f": T—R" as in 5.13.
We make the following notational convention: Whenever we consider a triple of
distinct points a, b, x in T, we set

@)
=" " T e
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5.19. Lemma. Let a,b, x be distinct points in T such that t|b|/la|=1/s and
la|/|b|=1]s. Then

U=t+s (t—“—)-l-+ lal ]

|al !bl
Proof. Since f(0)=0 and [u(b)|/[u(a)|=al/[b|=1/s, we have
S@®) _ la
@) ~ bl
Next, since
M = tﬂ' = ';1‘
u®)—u@®)| ~ la] T s’
| (@) =f(u)| lb:
-l-s.

Fu®) )| =
The lemma follows from (5.14). 0O

5.20. Lemma. Let M=1 and let a,b,x be distinct points in T such that
t=s"12 s=M~? and |a||M=|b|=Ma|. Then

V=t+Q2M+1)sY2

Proof. We have |a|/lb|=M=M?=1/s and tb|/la|=s"Y2M=1/s. Thus 5.19
implies
v=t+s(Mt+M+s) = t+s2Q2M+1). O

5.21. Lemma. Suppose that y,zeT with |y|/|z|=1/s. Then

1Ml _ bl
7= T2

Proof. Since f(0)=0 and |u(z)|/lu(y)|=1/s, the lemma follows from the s-
quasisymmetry of f. [

+s.

5.22. Lemma. There is sq=s5(n)>0 such that if 0=s=s}, then " is s —QS
where s'=s"(s,n)—>0 as s—0.

Proof. Suppose that the lemma is false. By 2.4, there is a number 6€(0, 1), a
sequence of s,—QS maps f;: S—~R", and a sequence of triples of distinct points
@y, by, x, €T such that (1) 5,0, (2) fx/{0, e,1}=1d, (3) with the obvious notation,

we have
o=t =1/5, t=t+9.

Passing to a subsequence we may assume that o,=|a;|/|x;|>a, Be=|byl/|x| =B,
Y= lal/|bx| >y with a, B, y€[O0, =].

If 0<y<eo, there is M=1 such that |aq|/M=|b|=M]|a,| for all k. Since
t,=1/0, we have f,=s;'* for sufficiently large k. Since s,=M~% for large k,
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5.20 implies
h+0 =t = L+ 2M+1),

which gives a contradiction as k—oo.
We may thus assume that y=0 or y=-e. Since #,=4J, we have

— by — x|

_ |, — x|
=

+1=—F—"+1=(y+1)/6+1.
5ka| k )/

Hence a<oo implies f<oo. Similarly f<oo implies a<-oe. If a=f=-<o, we can
write y,=t,+¢&, with g—0, and we obtain the contradiction y€[d, 1/6]. We divide
the rest of the proof into three cases:

Case 1. a=f=0. Then t#,—~1. On the other hand, 5.21 implies

|/ (ap)]| -0 |/ (by) -0
P R {€ .

and hence t,—~1, which gives a contradiction.

Case 2. =0, 0<f<o. We can write

EA

]
where g —0. As in Case 1,
FHCATIN
|/ (x|
This implies
RG]
T RGY-R I
where d;—~1. Now
|u(by)] _ |X4]

= =t—& =1/0—¢ = 1/s
W) -G~ To—my] - * = loma=1s

for large k. Since f; is 5, —QS with f,(0)=0, we obtain

A fi(u(B) st
O OO AT

te+0 =t = di(ty—&+5),

Thus

which gives a contradiction as k- ce.

Case 3. f=0, 0<a<o. Now
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with g |=17,B,~0. By 5.21,

fb)
y{enl
For large k we have s ,=o,=1/s,, and then 5.21 implies
1 "’
— Ife(a)] 4 = ot Sy

1/oy 4+ s, - L () -

and hence o;—~a. Now
= di | fi (@) — /(x|
‘ /e ()l ’

where d;—1.
We apply the s,-quasisymmetry of f; to the triple u(x;), 0, u(a,). Since

lu(x,) — u(ay)| _ lax — x| _
lu(ay)| 1|

for large k, we obtain

K@) =A@l _ [Aw) <A@ _
i) w@) T

which gives a contradiction as in Case 2. O

5.23. Theorem. Theorem 5.4 remains true if RP is replaced by S”.

Proof. Let s,=s,(n) and s,(s, n) be the numbers given by 5.4, and let s5=.1s5(n)
be the number given by 5.22. Suppose that f: S—R" is an s—QS map normalized
as in 5.13. There is s;=s;(n)=0 such that if s=s;, we can choose a linear map
o: R"—>R" as in the proof of 5.17. Now « is Ly-bilipschitz where L,=L,(s, n)—~1
as s—0. It follows from 5.22 that if s=s; and s=s;, then af’: T—R" is 5,—QS
where s,=s,(s, 1)~0 as s—~0. Choose s;=s7(n)>0 such that sj=s}, s5=s°,
and such that s,(s, n)=s, for s=s;. If s=s;, it follows from 5.4 that we can ex-
tend af’ to an s;—QS homeomorphism g”: R"—=R", s;=s1(s2(s, n), n). By 5.11,
we can choose g”(0)=0. By 2.6, g” is K;-quasiconformal where K;=K;(s,n)—1
as s—0. Since u is conformal, the map g=wuo~'g’u: R"—~R" is an L2"%K;-
quasiconformal extension of f. By 2.6, g is s; — QS where s;=s7(s, n)~0 as s~0. O

Added in proof. It is possible to simplify the proof of the QS case of 5.23 by
using quasimdbius maps. These will be considered in a later paper of the second author.
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