Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 9, 1984, 177—193

ON FUNCTIONS WITH A FINITE OR LOCALLY BOUNDED DIRICHLET INTEGRAL

MATTI VUORINEN

1. Introduction

The modulus of a curve family is an effective tool in the geometric function theory and in the theory of quasiconformal and quasiregular mappings (cf. [1], [13], [18], [19]). The aim of this paper is to show that the modulus method applies to the study of real-valued functions as well. We shall give an approach to the theory of Dirichlet finite functions, which is based on the well-known connection between the Dirichlet integral of an ACLⁿ function u and the modulus of the family of curves joining given level sets of u. In this approach the modulus method has a role similar to that of the length-area principle in [7] and [17]. We shall extend some results, which were previously known in the case of quasiconformal mappings, to the case of Dirichlet finite functions (cf. [21], [24]).

A function $u: \mathbb{R}^n_+ \to \mathbb{R}$ is said to have a finite Dirichlet integral (or to be Dirichlet finite) if u is ACLⁿ and if

(1.1)
$$\int_{\mathbb{R}^n_+} |\nabla u|^n \, dm < \infty.$$

In this paper all functions are required to be continuous. We shall consider the following weaker condition: u is ACLⁿ and there are numbers $M, B \in (0, \infty)$ such that

(1.2)
$$\int_{D(x,M)} |\nabla u|^n \, dm \leq B$$

for all $x \in R_n^+$, where D(x, M) is the hyperbolic ball in R_+^n with the centre x and radius M. If (1.2) holds, u is said to have a locally bounded Dirichlet integral.

In the preliminary Section 2 we prove, using the modulus method, that functions of \mathbb{R}^n_+ which are monotone (in the sense of Lebesgue) and have a locally bounded Dirichlet integral are uniformly continuous with respect to the hyperbolic metric of \mathbb{R}^n_+ . In Section 3 we prove that a monotone function satisfying (1.1) and having a limit α at 0 through a set $E \subset \mathbb{R}^n_+$, has in fact an angular limit α at 0 provided that the lower capacity density of E at 0 is positive, cap dens (E, 0) > 0. Similar results for some other classes of functions were given in [21] and [22]. An example is given to show that the condition cap dens (E, 0) > 0 is not sufficient here. As an application of the results of Section 3 we can prove that a Dirichlet finite quasiregular mapping f: $R_+^n \rightarrow R^n$, $f = (f_1, ..., f_n)$, will have an angular limit $(\alpha_1, ..., \alpha_n)$ at 0 if each coordinate function f_j has a limit α_j through a set E_j with cap dens $(E_j, 0) > 0$. A related result for bounded analytic functions was proved by F. W. Gehring and A. J. Lohwater [4]. In Section 4 we shall give an example illustrating the behaviour of a monotone function satisfying (1.2). The topic of Section 5 is the behaviour of a monotone function at an isolated singularity. In the final section, Section 6, we prove a variant of the Iversen—Tsuji theorem for monotone Dirichlet finite functions.

2. Preliminary results

We shall follow, as a rule, the notation and terminology of Väisälä's book [18], which the reader is referred to for some definitions etc. Some notation will be introduced at first.

2.1. For $x \in \mathbb{R}^n$, $n \ge 2$, and r > 0, let $B^n(x, r) = \{z \in \mathbb{R}^n : |z - x| < r\}$, $S^{n-1}(x, r) = \partial B^n(x, r)$, $B^n(r) = B^n(0, r)$, $S^{n-1}(r) = \partial B^n(r)$, $B^n = B^n(1)$, and $S^{n-1} = \partial B^n$. If $x \in \mathbb{R}^n$ and b > a > 0, then we write $R(x, b, a) = B^n(x, b) \setminus \overline{B}^n(x, a)$ and R(b, a) = R(0, b, a). The standard coordinate unit vectors are e_1, \ldots, e_n . If $A \subset \mathbb{R}^n$, let $A_+ = \{x = (x_1, \ldots, x_n) \in A : x_n > 0\}$. The hyperbolic metric ϱ in \mathbb{R}^n_+ is defined by the element of length $d\varrho = |dx|/x_n$. If $x \in \mathbb{R}^n_+$ and M > 0, we write $D(x, M) = \{z \in \mathbb{R}^n_+ : \varrho(z, x) < M\}$. A well-known fact is that the hyperbolic balls are balls in the euclidean geometry as well, for instance

(2.2)
$$D(te_n, M) = B^n((t \cosh M)e_n, t \sinh M), \quad t > 0.$$

For $x, y \in \mathbb{R}^n_+$ the following formula holds [2, (3.3.4) p. 35]:

(2.3)
$$\cosh \varrho(x, y) = 1 + \frac{|x-y|^2}{2x_n y_n}.$$

Sometimes we shall regard B^n as a hyperbolic space as well and use the same symbols as in the case of R^n_+ . The hyperbolic metric ϱ is then defined by $d\varrho = 2 |dx|/(1-|x|^2)$. The counterpart of (2.2) for B^n is

(2.4)
$$D(x, M) = B^{n}(y, r) \begin{cases} y = \frac{x(1 - \tanh^{2}(M/2))}{1 - |x|^{2} \tanh^{2}(M/2)} \\ r = \frac{(1 - |x|^{2}) \tanh(M/2)}{1 - |x|^{2} \tanh(M/2)} \end{cases}$$

2.5. Monotone functions. Let $G \subset \mathbb{R}^n$ be an open set. A continuous function $u: G \rightarrow \mathbb{R}$ is said to be monotone (in the sense of Lebesque) if

$$\max_{\overline{D}} u(x) = \max_{\partial D} u(x), \quad \min_{\overline{D}} u(x) = \min_{\partial D} u(x),$$

whenever D is a domain with compact closure $\overline{D} \subset G$.

2.6. Remark. It follows from the above definition that if $t \in R$, then each component $A \neq \emptyset$ of the set $\{z \in G: u(z) > t\}$ is not relatively compact, i.e., $\overline{A} \cap (\partial G \cup \{\infty\}) \neq \emptyset$. A similar statement holds if > is replaced by \geq , <, or \leq . Hence monotone functions obey a sort of maximum principle.

2.7. The modulus of a curve family. Let Γ be a family of curves in \mathbb{R}^n . The modulus of Γ is defined by

$$M(\Gamma) = \inf_{\varrho \in F(\Gamma)} \int_{R^n} \varrho^n \, dm,$$

where $F(\Gamma)$ is the family of all non-negative Borel functions $\varrho: \mathbb{R}^n \to \mathbb{R}^1 \cup \{\infty\}$ with $\int_{\gamma} \varrho \, ds \ge 1$ for all locally rectifiable $\gamma \in \Gamma$. For the properties of the modulus the reader is referred to Väisälä's book [18]. If $E, F, G \subset \mathbb{R}^n$, then $\Delta(E, F; G)$ is the family of all curves $\gamma \subset G$ joining E to F in the following sense: $\bar{\gamma} \cap E \neq \emptyset \neq \bar{\gamma} \cap F$.

2.8. Condenser and its capacity. A pair (A, C) is said to be a condenser if $A \subset \mathbb{R}^n$ is open and $C \subset A$ is compact. The capacity of E = (A, C) is defined by

(2.9)
$$\operatorname{cap} E = \operatorname{cap} (A, C) = \inf_{u} \int_{\mathbb{R}^{n}} |\nabla u|^{n} dm,$$

where *u* runs through the set of all ACL^{*n*} functions with compact support in *A* and with $u(x) \ge 1$ for $x \in C$. An alternative definition is

(2.10)
$$\operatorname{cap}(A, C) = M(\varDelta(C, \partial A; R^n)) = M(\varDelta(C, \partial A; A)).$$

Ziemer [26] proved that (2.9) and (2.10) agree for bounded A, from which the same conclusion for unbounded A follows easily. A compact set E in \mathbb{R}^n is said to be of *capacity zero* if cap $(\mathbb{B}^n(t), E)=0$ for some t>0 such that $E \subset \mathbb{B}^n(t)$.

The following lower bound for the Dirichlet integral of an ACLⁿ function will be applied several times in what follows. In fact, it is the easy part in the proof of (2.10). The proof is standard (cf. [1, p. 65], [9, p. 577], [26, Lemma 3.1]).

2.11. Lemma. Let $u: G \rightarrow R$ be an ACLⁿ function, $-\infty < a < b < \infty$, and let A, $B \subset G$ be such that $u(x) \leq a$ for $x \in A$ and $u(x) \geq b$ for $x \in B$. Then

$$M(\Delta(A, B; G)) \leq (b-a)^{-n} \int_{G} |\nabla u|^n \, dm.$$

2.12. Remark. In classical complex analysis one often uses a different capacity. The connection between the classical capacity and the above one has been studied in [1, p. 70] and in [13].

We next give a proof of the fact that a monotone ACLⁿ function with a locally bounded Dirichlet integral is uniformly continuous with respect to the hyperbolic metric. For the sake of technical reasons we shall consider functions defined in B^n , but with small modifications one can prove a similar result for functions defined in R_{\perp}^n . 2.13. Lemma. Let $u: B^n \rightarrow R$ be a monotone ACLⁿ function satisfying (1.2). Then

$$|u(x) - u(y)|^n \le C \left(\log \frac{1}{r} \right)^{-1} (1 - r)^{1-n},$$

where $r = \tanh(\varrho(x, y)/4)$ and C is a positive constant depending only on n, M, and B in (1.2). In particular, $u: (B^n, \varrho) \rightarrow (R, ||)$ is uniformly continuous.

Proof. Clearly we may assume u(x) < u(y). Since the right side depends only on x and y through the Möbius invariant quantity $\varrho(x, y)$, we may assume $x = re_1 = -y$, $r = \tanh(\varrho(x, y)/4)$ (cf. (2.4)). Let

$$E = \{z \in B^n \colon u(z) \le u(x)\},\$$

$$F = \{z \in B^n \colon u(z) \ge u(y)\},\$$

$$\Gamma_r = \Delta(E, F; B^n(\sqrt{r})).$$

Then by Remark 2.6 and [18, 10.12]

$$M(\Gamma_r) \ge c_n \log \frac{1}{\sqrt{r}}.$$

Lemma 2.11 yields

$$M(\Gamma_r) \leq |u(x) - u(y)|^{-n} \int_{B^n(\sqrt{r})} |\nabla u|^n \, dm.$$

In view of (1.2) the integral can be estimated from above in terms of B and the following number

$$k = \inf \left\{ p \colon \overline{B^n(\sqrt[p]{r})} \subset \bigcup_{j=1}^p D(x_j, M) \right\}.$$

An upper bound for k can be found by a method involving estimation of the hyperbolic volume of $\cup \{D(x, M): |x| \leq \sqrt{r}\}$. (For details see [25, Section 9]). This method yields the estimate

$$\int_{B^n(\sqrt{r})} |\nabla u|^n \, dm \leq d \left(1 - \sqrt{r}\right)^{1-n},$$

where d is a positive number depending only on n, M, and B. The desired estimate with $C=2^n d/c_n$ follows from this and the preceding estimates.

The uniform continuity in 2.13 can also be proved with the help of an oscillation inequality of Gehring [3, p. 355]. (See also Lelong—Ferrand [7, p. 7]). For *n*-dimensional version of the oscillation inequality see Mostow [12]. The oscillation inequality is applied in the proof of [18, 10.12], which was exploited above.

2.14. Remark. For large values of $\varrho(x, y)$ the above upper bound is not sharp. Indeed, one can replace the factor $(\log (1/r))^{-1}(1-r)^{1-n}$ in 2.13 by $(1+\log ((1+r)/(1-r))) \cdot \text{const.}$, which yields a better estimate for large values of

 $\varrho(x, y)$. Such an estimate can be deduced from the above version of Lemma 2.13, in particular, from the fact that u is uniformly continuous.

A continuous function $v: \mathbb{R}^n_+ \to \mathbb{R}_+ \cup \{0\}, \mathbb{R}_+ = \{x \in \mathbb{R}: x > 0\}$, is said to satisfy a Harnack inequality if there exist numbers $\lambda \in (0, 1)$ and $C_{\lambda} \ge 1$ such that (cf. [23])

(2.15)
$$\max_{\overline{B}^n(x,\,\lambda r)} v(z) \leq C_{\lambda} \min_{\overline{B}^n(x,\,\lambda r)} v(z)$$

whenever $B^n(x, r) \subset \mathbb{R}^n_+$. The next result should be compared with [5, p. 200].

2.16. Corollary. If $u: \mathbb{R}^n_+ \to \mathbb{R}$ is a monotone function satisfying (1.2), then e^u satisfies (2.15) for every $\lambda \in (0, 1)$ with

$$\log C_{\lambda} = C^{1/n} \left(\log \frac{1}{\lambda} \right)^{-1/n} \left(\frac{1+\lambda}{1-\lambda} \right)^{(n-1)/(2n)},$$

where C is the number in 2.13.

Proof. Fix $\lambda \in (0, 1)$. Choose $B^n(x, r) \subset \mathbb{R}^n_+$. Then $r \leq x_n$, where $x = (x_1, ..., x_n)$, and $\varrho(\overline{B}^n(x, \lambda r)) \leq \log((1+\lambda)/(1-\lambda))$ by (2.2) or (2.3). For $z, y \in \overline{B}^n(x, \lambda r)$ we get by 2.13 and by some elementary inequalities that

$$|u(z) - u(y)| \le C^{1/n} \left(\log \frac{1}{\lambda} \right)^{-1/n} \left(\frac{1+\lambda}{1-\lambda} \right)^{(n-1)/(2n)}$$

from which (2.15) for e^u follows.

We shall now give examples of functions satisfying (1.2) in B^n .

2.17. The function u_F . Let F be a relatively closed subset of B^n . For $x \in B^n$ set (cf. [23, 3.6])

$$u_F(x) = \exp\left(-\varrho(x, F)\right).$$

As shown in [23], the function u_F has some extremal properties for appropriate choices of F. For $x, y \in B^n$ and $\varrho(x, F) \leq \varrho(y, F)$ we get

$$\begin{aligned} |u_F(x) - u_F(y)| &\leq |e^{-\varrho(x,F)} - e^{-\varrho(y,F)}| = e^{-\varrho(x,F)} |1 - e^{-a}| \\ &\leq e^{-\varrho(x,F)} a \leq e^{-\varrho(x,F)} \varrho(x,y) \leq \varrho(x,y), \end{aligned}$$

where $a = \varrho(y, F) - \varrho(x, F)$. Similarly $|u_F(x) - u_F(y)| \le \varrho(x, y)$ for $\varrho(x, F) \ge \varrho(y, F)$ as well. Next we apply [22, 2.11] to get

$$\varrho(x, y) \le \log\left(1 + \frac{|x-y|}{d(x) - |x-y|}\right) \le \frac{|x-y|}{d(x) - |x-y|},$$

for $y \in B^n(x, d(x))$ where $d(x) = d(x, \partial B^n)$. Therefore

$$\limsup_{y \to x} \frac{|u_F(x) - u_F(y)|}{|x - y|} \le \limsup_{y \to x} \frac{1}{d(x) - |x - y|} = \frac{1}{d(x)}.$$

It follows that u_F is locally Lipschitz continuous and hence ACLⁿ. Fix M>0. Then we get by (2.4) that

$$\int_{D(x,M)} |\nabla u_F(x)|^n dm(x) \leq \int_{D(x,M)} d(x)^{-n} dm(x) \leq c_1(n,M).$$

In conclusion, u_F satisfies (1.2). Note, however, that u_F is usually not monotone.

2.18. Remark. It follows from [5, p. 23, formula (2.32)] and (2.4) that all bounded harmonic functions satisfy (1.2).

3. Behaviour at an individual boundary point

For $\varphi \in (0, \pi/2)$ let $C(\varphi) = \{y \in R_+^n : (y|e_n) > |y| \cos \varphi\}$, where (z|u) is the inner product $\sum z_i u_i$. A function $u: R_+^n \to R$ is said to have an *angular limit* α at 0 if, for each $\varphi \in (0, \pi/2)$, $\lim_{x \to 0, x \in C(\varphi)} u(x) = \alpha$. A function u is said to have an *asymptotic value* α at 0 if there exists a continuous curve $\gamma: [0, 1] \to R_+^n$ with $u(\gamma(t)) \to \alpha$ and $\gamma(t) \to 0$ as $t \to 1$.

3.1. Lemma. Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a monotone ACLⁿ function satisfying (1.2) and let $E \subset \mathbb{R}^n_+$ be a measurable set such that

$$\lim_{r\to 0} m((R^n_+ \setminus E) \cap B^n(r))r^{-n} = 0.$$

If $u(x) \rightarrow \alpha$ as $x \rightarrow 0$ and $x \in E$, then u has an angular limit α at 0.

Proof. The proof follows from 2.13 and [23, 6.13].

3.2. Remarks. (1) It is not difficult to show that the assumption in 3.1 is equivalent to the condition that u has an approximate limit α at 0 [23, 6.3]. For the definition of an approximate limit see [23, 6.1]. For a related result see J. Lelong—Ferrand [7, p. 16] and [21, 5.9].

(2) The monotone ACL² function $u: \mathbb{R}^2_+ \to \mathbb{R}$, $u(x, y) = \overline{\operatorname{arc}} \tan(y/x)$, satisfies (1.2) (but not (1.1)) and has infinitely many distinct asymptotic values at 0 but no angular limit at 0. Hence an approximate limit in the hypotheses of 3.1 cannot be replaced by an asymptotic value.

For
$$E \subset \mathbb{R}^n$$
, $x \in \mathbb{R}^n$, and $t > r > 0$ set
 $M_t(E, r, x) = M(\Delta(S^{n-1}(x, t), E \cap \overline{B}^n(x, r); \mathbb{R}^n)),$
 $M(E, r, x) = M_{2r}(E, r, x).$

The lower and upper capacity densities of E at x are defined by

 $\operatorname{cap} \underline{\operatorname{dens}} (E, x) = \liminf_{r \to 0} M(E, r, x),$ $\operatorname{cap} \overline{\operatorname{dens}} (E, x) = \limsup_{r \to 0} M(E, r, x).$

3.3. Lemma. Let $u: (R^n_+, \varrho) \rightarrow (R, ||)$ be uniformly continuous, let $b_k \in R^n_+$, $b_k \rightarrow 0$, and let $u(b_k) \rightarrow \beta \neq \infty$. For every $\varepsilon > 0$ there exists $M \in (0, \infty)$ and $p \ge 1$ such that

$$|u(x)-\beta| < \varepsilon, \quad x \in E_M = \bigcup_{k \ge p} D(b_k, M).$$

Moreover, if there exists $\varphi \in (0, \pi/2)$ such that $b_k \in C(\varphi)$ for all k, then there exists a positive number c depending only on n, φ , and M such that

$$\operatorname{cap} \operatorname{\overline{dens}} (E_M, 0) \ge c > 0.$$

Proof. The first part follows from the definition of uniform continuity. For the proof of the second part we assume $b_k \in C(\varphi)$, k=1, 2, ... It follows from (2.2) that $F_M \subset E_M$,

$$F_M = \bigcup_{k \ge p} B^n(b_k, b_{kn}(1 - e^{-M})),$$

where $b_{kn} \ge |b_k| \cos \varphi$ is the *n*-th coordinate of b_k . Hence the proof follows from [18, 10.12]. For more details see [21, 2.5 (2)].

3.4. Theorem. Let $u: (R_+^n, \varrho) \rightarrow (R, ||)$ be a uniformly continuous and Dirichlet finite function and let $E \subset R_+^n$ be a set with cap dens (E, 0) > 0. If $u(x) \rightarrow \alpha$ as $x \rightarrow 0$, $x \in E$, then u has an angular limit α at 0.

Proof. Fix $\varphi \in (0, \pi/2)$. Suppose, on the contrary, that there exists a sequence (b_k) in $C(\varphi)$ with $b_k \to 0$ and $u(b_k) \to \beta \neq \alpha$. We shall assume that $-\infty < \alpha < \beta < \infty$; in other cases the proof is similar. Let B_k be the b_k -component of the set $B = \{z \in \mathbb{R}^n_+ : u(z) > (\alpha + 2\beta)/3\}$ and let $A = \{z \in \mathbb{R}^n_+ : u(z) < (2\alpha + \beta)/3\}$. Since u is uniformly continuous, there exist by Lemma 3.3 numbers M > 0 and $p \in \mathbb{N}$ such that $D(b_k, M) \subset B_k$ for $k \ge p$ and

$$\operatorname{cap} \operatorname{\overline{dens}} (B, 0) \ge c > 0.$$

Since cap dens (E, 0) > 0, it follows from [21, 4.3] and [20, 3.8] that

$$M(\Delta(A, B; \mathbb{R}^n_+)) \ge M(\Delta(A, B; \mathbb{R}^n))/2 = \infty.$$

A contradiction follows from (1.1) and 2.11.

3.5. Remark. The condition cap dens (E, 0) > 0 is satisfied for instance if E is a curve terminating at 0. This fact follows from [18, 10.12]; for details and other sufficient conditions for cap dens (E, 0) > 0 see [21]. On the other hand, there are compact sets E of zero Hausdorff dimension with cap dens (E, 0) > 0 (cf. [21, 2.5 (3)]).

We shall now construct an example showing that the condition cap $\overline{\text{dens}}(E, 0) > 0$ would not suffice in 3.4.

3.6. Example. There exists a monotone ACLⁿ function $u: \mathbb{R}^n_+ \to \mathbb{R}$ with a finite Dirichlet integral such that for a sequence $r_k \to 0$ with $0 < r_{k+1} < r_k$

(a)
$$u \bigg| \bigcup_{k=1}^{\infty} S_{+}^{n-1}(r_{2k-1}) = 1,$$

(b)
$$u \left| \bigcup_{k=1}^{\infty} S_{+}^{n-1}(r_{2k}) = 0. \right.$$

Let $r_1=1$. Select $r_{k+1} \in (0, r_k/2), k=1, 2, ...,$ such that

(3.7)
$$\left(\log \frac{r_k}{r_{k+1}}\right)^{1-n} < 2^{-k}$$

Define $u: \mathbb{R}^n_+ \to \mathbb{R}$ by u(x) = 1 for $x \in \mathbb{R}^n_+ \setminus \mathbb{B}^n$ and

$$u(x) = \frac{\log |x| - \log r_{2k}}{\log (r_{2k-1}/r_{2k})}; \quad r_{2k-1} > |x| \ge r_{2k}, \quad x \in \mathbb{R}^n_+,$$
$$u(x) = \frac{\log r_{2k} - \log |x|}{\log (r_{2k}/r_{2k+1})}; \quad r_{2k} > |x| \ge r_{2k+1}, \quad x \in \mathbb{R}^n_+,$$

for k=1, 2, ... It follows from (3.7) that (1.1) holds (cf. [18, 7.5]). Clearly *u* is monotone and satisfies (a) and (b). In addition, cap dens (B, 0) > 0, $B = \bigcup_{k=1}^{\infty} S_{+}^{n-1}(r_{2k})$ and $u(z) \to 0$, as $z \to 0$, $z \in B$, and *u* fails to have an asymptotic value and hence an angular limit at 0. Therefore the condition cap dens (E, 0) > 0 in Theorem 3.4 cannot be replaced by cap dens (E, 0) > 0.

3.8. Theorem. Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a monotone and Dirichlet finite function, let $(b_k) \subset \mathbb{R}^n_+$ be a sequence with $\varrho(b_k, b_h) \ge 4M$ for $k \ne h$, and let $a_k \in D(b_k, M)$. For each $\varepsilon > 0$ let $P_{\varepsilon} = \{k \in \mathbb{N}: |u(a_k) - u(b_k)| \ge \varepsilon\}$. Then

card
$$P_{\varepsilon} \leq A \varepsilon^{-n} \int_{\mathbb{R}^n_+} |\nabla u|^n dm$$
,

where A is a positive number depending only on n and M.

Proof. Fix $\varepsilon > 0$. Let

$$A_{k} = \{z \in R_{+}^{n}: |u(z) - u(a_{k})| < \varepsilon/3\},\$$

$$B_{k} = \{z \in R_{+}^{n}: |u(z) - u(b_{k})| < \varepsilon/3\},\$$

$$\Gamma_{k} = \Delta(A_{k}, B_{k}; D(b_{k}, 2M)),\$$

$$k \in P_{+}.$$

From 2.6 it follows that the a_k -component of A_k meets $\partial D(b_k, 2M)$, and that so does the b_k -component of B_k , when $k \in P_e$. It follows from the conformal invariance of the modulus [18, 8.1], from $\varrho(a_k, b_k) < M$, and from (2.4) that

$$M(\Gamma_k) \ge c_n \log \frac{\tanh M}{\tanh (M/2)} \ge c_n (\log 2) e^{-M}$$

holds for $k \in P_{\varepsilon}$. Let $A = \bigcup_{k \in P_{\varepsilon}} A_k$, $B = \bigcup_{k \in P_{\varepsilon}} B_k$ and $\Gamma = \Delta(A, B; R^n_+)$. Since $\varrho(b_k, b_h) \ge 4M$ for $k \ne h$, it follows that $\{\Gamma_k: k \in P_{\varepsilon}\}$ are separate subfamilies of Γ . Hence we get by [18, 6.7]

$$\sum_{K \in P_{\varepsilon}} M(\Gamma_k) \leq M(\Gamma) \leq \left(\frac{3}{\varepsilon}\right)^n \int_{R_+^n} |\nabla u|^n dm.$$

The desired upper bound for card P_{ε} follows from this and the preceding inequality with $A = (3^n e^M)/(c_n \log 2)$.

3.9. Remark. A similar result holds for a uniformly continuous Dirichlet finite function $u: (R^n_+, \varrho) \rightarrow (R, | |)$ as well, but with a more complicated dependence on the Dirichlet integral and the modulus of continuity of the function.

3.10. Theorem. Let $u: (R^n_+, \varrho) \rightarrow (R, ||)$ be a uniformly continuous and Dirichlet finite function, let $(b_k) \subset R^n_+$, $b_k \rightarrow 0$, $u(b_k) \rightarrow \beta$ and let $M \in (0, \infty)$. Then $u(x) \rightarrow \beta$ as $x \rightarrow 0$, $x \in \bigcup D(b_k, M)$.

Proof. In the case of monotone functions the proof follows from 3.8. The general case follows from 3.9.

The next theorem has its roots in [24], where a similar result was proved for quasiconformal mappings. We shall omit the proof since it parallels the proofs of Theorems 3.8 and that of [24, 4.9]. For the statement of the theorem the following condition is needed. Let (a_k) and (b_k) be sequences in \mathbb{R}^n_+ tending to 0 and let $J_k=J[a_k, b_k]$ be the closed geodesic segment in the hyperbolic geometry joining a_k with b_k . Thus J_k is the arc between a_k and b_k on a circle through a_k and b_k , which is orthogonal to $\partial \mathbb{R}^n_+$. Suppose that there exists a positive number M such that

(3.11)
$$\varrho(J_k, J_h) \ge M > 0 \quad \text{for} \quad k \neq h.$$

As in [24, 4.9], condition (3.11) is needed to guarantee that some curve families are separate.

3.12. Theorem. Let (a_k) and (b_k) be sequences in \mathbb{R}^n_+ tending to 0 and satisfying (3.11), let $u: (\mathbb{R}^n_+, \varrho) \to (\mathbb{R}, | |)$ be uniformly continuous and Dirichlet finite, and let $u(a_k) \to \alpha$, $u(b_k) \to \beta$. If $\sum \varrho(a_k, b_k)^{1-n} = \infty$, then $\alpha = \beta$.

Proof. The proof is similar to the proof of 3.8 and [24, 4.9]. The details are left to the reader.

3.13. Remarks. (1) Theorem 3.4 was proved by V. M. Mikljukov [10] in the case when the set E is a curve and the mapping is vector-valued and of class BL. One variant of Theorem 3.10 for these mappings was given by G. D. Suvorov [17, p. 122].

(2) It should be observed that Theorem 3.12 follows from Theorem 3.10 in the case $\liminf \varrho(a_k, b_k) < \infty$.

(3) We shall next show that condition (3.11) cannot be removed from the hypotheses of Theorem 3.12 even in the case of continuous mappings (and, a fortiori, in the case of uniformly continuous Dirichlet finite functions). Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a continuous function such that $u(\tilde{a}_k) \to 0$, $u(\tilde{b}_k) \to 1$, where $\tilde{a}_k, \tilde{b}_k \to 0$. We shall construct two new sequences (a_k) and (b_k) with $\{a_j\} = \{\tilde{a}_k\}$ and $\{b_j\} = \{\tilde{b}_k\}$ for which (3.11) fails to hold and for which $\sum \varrho(a_k, b_k)^{1-n} = \infty$. To this end, let $p_1 = 1$, $p_{j+1} > p_j$ be an increasing sequence of integers such that

$$(p_{k+1}-p_k)\varrho(\tilde{a}_k,\tilde{b}_k)^{1-n} > 1/k$$

for all k=1, 2, Set

$$a_j = \tilde{a}_i$$
 and $b_j = \tilde{b}_i$ if $p_i \le j < p_{i+1}$.

Then $a_k, b_k \to 0$ and $\sum \varrho(a_k, b_k)^{1-n} = \infty$ hold while $u(a_k) \to 0, u(b_k) \to 1$.

We show that Theorem 3.12 is sharp in a sense.

3.14. Theorem. Let (b_k) be a sequence in \mathbb{R}^n_+ with $|b_{k+1}| < |b_k|$, $b_k \to 0$, let $a_k = |b_k|e_n$, and suppose that (3.11) holds. If $\sum \varrho(a_k, b_k)^{1-n} < \infty$, then there exists a monotone Dirichlet finite function $u: \mathbb{R}^n_+ \to \mathbb{R}$ having an angular limit 0 at 0 and satisfying $u(b_k) \to 1$.

Proof. Since $a_k = |b_k|e_n$, we obtain by (3.11), (2.2), and (2.3) that

$$\varrho(J_k, J_{k+1}) = \log \frac{|b_k|}{|b_{k+1}|} \ge M > 0.$$

It follows that the annuli $R(|b_k|\lambda, |b_k|/\lambda)$ are disjoint when $\lambda = e^{M/2}$. Let $w_k \in \partial R_+^n$ be a unit vector such that $b_k - b_{kn}e_n = cw_k$, where b_{kn} is the *n*-th coordinate of b_k and *c* is a positive number such that $|b_k|^2 = c^2 + b_{kn}^2$. The balls $B_k = B^n(|b_k|w_k, r_k)$, $r_k = |b_k|(1-1/\lambda)$ are then disjoint. Let $t_k = |b_k - |b_k|w_k|$. It follows from (2.3) that

$$t_k < 2|b_k| \exp\left(-\varrho(a_k, b_k)\right)$$

(for more details see [23, (2.4)]). Since $\sum \varrho(a_k, b_k)^{1-n} < \infty$, it follows that $\varrho(a_k, b_k) \to \infty$ as $k \to \infty$. By relabelling and passing to a subsequence if necessary we may hence assume, in view of the above estimate for t_k , that $t_k < r_k$ for all k. Choose now a monotone ACLⁿ function u_k such that (cf. 3.6)

$$u_{k} | R_{+}^{n} \searrow B_{k} = 0, \quad u_{k} | R_{+}^{n} \cap \overline{B}^{n}(|b_{k}| w_{k}, t_{k}) = 1,$$
$$d_{k} = \int_{R_{+}^{n}} |\nabla u_{k}|^{n} dm = \frac{\omega_{n-1}}{2} \left(\log \frac{r_{k}}{t_{k}} \right)^{1-n}.$$

There exist numbers k_0 and c(n, M) such that for $k \ge k_0$

$$d_k \leq c(n, M)\varrho(a_k, b_k)^{1-n}.$$

Set $u = \sum_{k \ge k_0} u_k$. Then *u* is monotone, ACL^{*n*}, $u(b_k) \rightarrow 1$, $u(te_n) = 0$, t > 0 and *u* has a finite Dirichlet integral, as desired.

We shall next give some applications of the preceding results to the theory of quasiregular mappings. A continuous ACLⁿ mapping $f: \mathbb{R}^n_+ \to \mathbb{R}^n$ is called *quasiregular* (qr) if there exists a constant $K \in [1, \infty)$ such that

$$\sup_{|h|=1} |f'(x)h|^n \le K J_f(x)$$

a.e. in R_+^n , where J_f is the Jacobian determinant of f. A sense-preserving homeomorphism is quasiregular if and only if it is quasiconformal (qc). For the basic parts of the theory of qc and qr mappings the reader is referred to [15], [18], [19]. For the following result see Rešetnjak's book [15, p. 118].

3.15. Lemma. The coordinate functions $f_1, ..., f_n$ of a qr mapping $f: \mathbb{R}^n_+ \to \mathbb{R}^n$, $f=(f_1, ..., f_n)$, are monotone.

3.16. Theorem. Let $f: \mathbb{R}^n_+ \to \mathbb{R}^n$ be a qr mapping with

$$\int_{\mathbb{R}^n_+} |\nabla f_j|^n \, dm < \infty, \quad j = 1, \dots, n.$$

If $f_j(x) \rightarrow \alpha_j$ as $x \rightarrow 0$, $x \in E_j$ and cap dens $(E_j, 0) > 0$, then f_j has an angular limit α_i at 0, j=1, 2, ..., n.

Proof. The proof follows from 3.15, 2.13, and 3.4.

3.17. Remarks. For bounded analytic functions a result similar to 3.16 holds without a condition about finite Dirichlet integral (Gehring—Lohwater [4]). In the case of bounded qr mappings $f: \mathbb{R}^n_+ \to \mathbb{R}^n$ such a condition is, however, necessary if $n \ge 3$. This fact follows from an example due to Rickman [16].

4. On the behaviour at a typical boundary point

In this section we shall study the behaviour of a Dirichlet finite function at a "typical" boundary point. We shall employ the following result of Rešetnjak [14].

4.1. Lemma. Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be an ACLⁿ function with a finite Dirichlet integral. Then there exists a set $E \subset \partial \mathbb{R}^n_+$ such that every compact set F in E is of zero *n*-capacity and such that u has an essential value at every point of $\partial \mathbb{R}^n_+ \setminus E$, i.e., for every $x \in \partial \mathbb{R}^n_+ \setminus E$ there exists a number α with

$$\lim_{r\to 0} r^{-n} \int_{B^n_+(x,r)} |f(y) - \alpha| \, dm = 0.$$

4.2. Theorem. Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a monotone ACL^n function with a finite Dirichlet integral. Then u has an angular limit at every point of $\partial \mathbb{R}^n_+ \setminus E$, where E is as in 4.1.

Proof. Since *u* has an essential value at the points of $\partial R_+^n \setminus E$, it has an approximate limit as well by [23, 6.7 (1)]. By 3.1 and 3.2 (1) it has an angular limit, too.

We next show that 4.2 fails to hold for monotone functions satisfying (1.2) but not (1.1).

4.3. Example. There exists a bounded monotone ACL² function $u: \mathbb{R}^2_+ \to \mathbb{R}$ satisfying condition (1.2), having an asymptotic value at each point of a dense subset of $\partial \mathbb{R}^n_+$, but having no angular limits.

Divide the square $Q=[0, 1]\times(0, 1]\subset R^2_+$ into four equal squares by joining the midpoints of opposite sides with (euclidean) segments. Repeat the division in those resulting squares which have one side on the x-axis. By continuing this process we get a division of Q into closed squares Q_i^j : $i=1, 2, ..., j=1, ..., 2^i$ of constant hyperbolic size, where Q_i^j has euclidean side-length 2^{-i} . Join the center of Q_i^j by (euclidean) segments to the centres of those two adjacent squares in $\{Q_{i+1}^j: j=1, 2, ..., 2^{i+1}\}$ each of which has a side lying on a side of Q_i^j , for each i and j. As a result we get two distinct "treelike" infinite polygonal curves approaching the x-axis. The union of these curves will be denoted by T.

Define u(x)=0 if x is located on a side A of a square Q_i^j and $A \cap T = \emptyset$ and u(y)=1 if $y \in T$. In (int Q) $\setminus T$ define u in such a way that $u: Q \to R \cup [0, 1]$ will be monotone, have all partial derivatives, continuous in \cup (int $Q_k^j \setminus T$ and

(4.4)
$$|\nabla u(z)| \leq 2^{k+3} \quad \text{for} \quad z \in (\text{int } Q_k^j) \setminus T,$$

 $j=1, 2, ..., 2^k$. Extend the domain of definition of u to R_+^2 as follows. If Im z>1, set u(z)=0. If $p\in Z$ and $z\in Q+\{(p, 0)\}$, then $z-(p, 0)\in Q$; set u(z)=u(z-(p, 0)). Then u is defined in R_+^2 , has an asymptotic value 1 at the points of $\overline{T} \cap \partial R_+^2 \setminus \{\infty\}$ through the set T and is monotone, and it follows from (4.4) that (1.2) holds. Moreover, it is clear that u has no angular limits.

5. On isolated singularities and Phragmén-Lindelöf-type behaviour

A function with a finite Dirichlet integral need not have a limit at an isolated singularity. To see this fact we may consider the function in Example 3.5 and extend it by reflection in ∂R_+^n to a map $v: \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}$ with a finite Dirichlet integral and with no limit at 0. This function is not, however, monotone although $v|\mathbb{R}_+^n$ indeed is monotone.

5.1. Theorem. Let $u: \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}$ be a monotone ACLⁿ function. If u has no limit at 0, then

$$\liminf_{t\to 0} \int_{R(1,t)} |\nabla u|^n \, dm / \log \frac{1}{t} > 0.$$

Proof. Suppose that there are sequences $\{a_k\}$, $\{b_k\}$ in $B^n \setminus \{0\}$ with $a_k, b_k \to 0$ and $u(a_k) \to \alpha, u(b_k) \to \beta \neq \alpha$. We may assume $-\infty < \alpha < \beta < \infty$. Let A_k be the a_k component of the set

$$A = \left\{ z \in \mathbb{R}^n \setminus \{0\} \colon u(z) \le (2\alpha + \beta)/3 \right\},$$

and B_k the b_k -component of the set

$$B = \{z \in \mathbb{R}^n \setminus \{0\} \colon u(z) \ge (2\beta + \alpha)/3\}.$$

By 2.6, $\overline{A}_k \cap \{0, \infty\} \neq \emptyset \neq \overline{B}_k \cap \{0, \infty\}$ for all large k. There is a sequence (j_k) such that either $0 \in \overline{A}_{j_k}$ for all j_k or $\infty \in \overline{A}_{j_k}$ for all j_k . Consider the first case, the proof being similar in the second case. For $t \in (0, 1)$ set

$$\Gamma_t = \Delta(B, A_{i_1}; R(1, t)).$$

Suppose that $0 \in \overline{B}_k$ for some k such that $|b_k| < |a_{i,j}|$. Then we get by [18, 10.12]

(5.2)
$$M(\Gamma_t) \ge c_n \log \frac{|b_k|}{t} = c_n \log |b_k| + c_n \log \frac{1}{t}; \ t < |b_k|.$$

Otherwise $\infty \in \overline{B}_k$ for all k such that $|b_k| < |a_{j_1}|$ and thus $S^{n-1}(r) \cap B \neq \emptyset$ for all $r \in (0, |a_{j_1}|)$, because $b_k \to 0$ (cf. 2.6). Hence (5.2) holds in this case for all $t \in (0, |a_{j_1}|)$ by [18, 10.12]. Lemma 2.11 yields

$$M(\Gamma_t) \leq \left(\frac{3}{\beta-\alpha}\right)^n \int_C |\nabla u|^n \, dm,$$

where C = R(1, t). This estimate together with (5.2) gives the desired lower bound.

5.3. Corollary. Let $u: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be a bounded monotone ACL^n function and let $\alpha = \liminf_{x \to 0} u(x), \beta = \limsup_{x \to 0} u(x)$. Then

$$\liminf_{t\to 0} \left(\int_{R(1,t)} |\nabla u|^n \, dm \right) / \log \frac{1}{t} \ge c_n (\beta - \alpha)^n,$$

where c_n is the positive constant in the proof of 5.1.

A counterpart of condition (1.2) for the ACLⁿ function $u: \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}$ is the following one. There are constants $\mu \in (0, 1)$ and A > 0 such that

(5.4)
$$\int_{B_x} |\nabla u|^n \, dm \le A, \quad B_x = \overline{B}^n(x, \, \mu|x|)$$

for all $x \in \mathbb{R}^n \setminus \{0\}$. From a standard covering argument (cf. [25]) and from (5.4) it follows that

(5.5)
$$\int_{\mathcal{R}(t,t/2)} |\nabla u|^n \, dm \leq d(n,A,\mu)$$

for $t \in (0, 1)$, where $d(n, A, \mu)$ depends only on n, A and μ . Furthermore, it follows

from (5.5) that for $t \in (0, 1/2)$

(5.6)
$$\int_{R(\mathbf{1},t)} |\nabla u|^n \, dm \leq c(n, A, \mu) \log \frac{1}{t}.$$

A direct calculation shows that the monotone ACL² function $v(x, y) = y^2/(x^2+y^2)$, $(x, y) \in \mathbb{R}^2 \setminus \{0\}$ satisfies (5.4) and (5.6), but v fails to have a limit at 0. This example should be compared with 5.1.

According to Theorem 5.1 a monotone function with a finite Dirichlet integral has a limit at an isolated singularity. A natural question is whether a similar result holds for a countable sequence of isolated singularities.

5.7. Example. There is a monotone ACLⁿ function $u: \mathbb{R}^n \setminus \{2^{-k}e_1: k=1, 2, ...\} \setminus \{0\} \rightarrow \mathbb{R}$ with

$$\lim_{x \to 2^{-k}e_1} u(x) = 1, \quad \lim_{t \to 0^+} u(-te_1) = 0$$

k=1, 2, ... with a finite Dirichlet integral. The existence of such a function u can be seen by a direct construction. Clearly u has no limit at 0.

The next result is a Phragmén-Lindelöf type theorem.

5.8. Theorem. Let $G \subset \mathbb{R}^n$ be a domain such that $M(\mathbb{R}^n \setminus G, r, 0) \ge \delta > 0$ for all $r \ge r_0$, and let $u: G \to \mathbb{R}$ be a monotone ACL^n function. If

$$\limsup_{x \to y} u(x) \le 1$$

for all $y \in \partial G \setminus \{\infty\}$, then either $u(x) \leq 1$ for all $x \in G$ or

$$\liminf_{t\to\infty}\int_{G\cap B^n(t)}|\nabla u|^n\,dm/\log t>0.$$

Proof. Suppose that $u(x_0)=c>1$ for some $x_0\in G$. Let $E=\{x\in G: u(x)<(2+c)/3\}$. Then $\partial G \subset \overline{E}$ by the assumption. Let F be the x_0 -component of $\{z\in G: u(z)>(1+2c)/3\}$. Then $\infty \in \overline{F}$ by 2.6. Let

$$\begin{split} &\Gamma_t = \varDelta \big(E, \, F; \; G \cap B^n(t) \big), \quad t \ge r_0, \\ &\widetilde{\Gamma}_t = \varDelta \big(E, \, F; \; B^n(t) \big), \quad t \ge r_0. \end{split}$$

By the geometry of the situation it follows that $M(\Gamma_t) = M(\tilde{\Gamma}_t)$ (cf. [18, 11.3] and (2.10)). From [20, 3.5] we obtain

$$M(\tilde{\Gamma}_t) \ge c(n, \delta) \log t$$

for large values of t. The proof follows from Lemma 2.11.

6. Some properties of boundary values

Next we shall compare the limit values of a monotone Dirichlet finite function on the closure of its domain of definition to the limit values on the boundary.

6.1. Theorem. Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a monotone Dirichlet finite function and let $E \subset \partial \mathbb{R}^n_+$ be a compact set of capacity zero with $0 \in E$. Then

$$\limsup_{x \to 0} u(x) = \limsup_{x \to 0} \Big(\limsup_{\substack{y \to x \\ x \in \partial R^n_+ \setminus E}} u(y)\Big).$$

Proof. Since cap E=0, it follows that $0 \in (\overline{\partial R_+^n \setminus E})$ ([15, p. 72]) and hence the right side of the above equality makes sense. Denote the left and right sides by \tilde{a} and \tilde{b} , respectively. Clearly $\tilde{a} \ge \tilde{b}$. Hence it remains to be shown that $\tilde{a} > \tilde{b}$ is impossible. Choose a and b such that $\tilde{b} < b < a < \tilde{a}$. Let r > 0 be such that

$$\limsup_{y \to x} u(y) < b$$

for all $x \in (\partial R_+^n \setminus E) \cap B^n(r)$. Choose a sequence (a_k) in $B_+^n(r)$ with $u(a_k) > a$ and $|a_k| < r/k$. Let A_k be the a_k -component of the set $\{z \in R_+^n : u(z) > a\}$. It follows from 2.6 that $\overline{A}_k \cap (\partial R_+^n \cup \{\infty\}) \neq \emptyset$ for all k. From (6.2) it follows that $\overline{A}_k \cap (E \cup (\partial R_+^n \setminus B^n(r))) \neq \emptyset$ for all k. Let $B = \{z \in R_+^n : u(z) < b\}$ and $\Gamma_k = \Delta(A_k, B; R_+^n)$. It follows from 2.11 that

(6.3)
$$M(\Gamma_k) \leq (a-b)^{-n} \int_{\mathbb{R}^n} |\nabla u|^n \, dm < \infty.$$

If $\overline{A}_k \cap (E \cap B^n(r)) \neq \emptyset$, then $M(\Gamma_k) = \infty$ because A_k is a connected set and cap E = 0 (cf. [18, 10.12]). Otherwise $\overline{A}_k \cap (\partial R^n_+ \setminus B^n(r)) \neq \emptyset$, and since cap E = 0 and A_k is connected, we get by [18, 10.12] that

$$M(\Gamma_k) \ge c_n \log k.$$

In either case we obtain a contradiction with (6.3) when $k \rightarrow \infty$.

6.4. Remark. By inspecting the above proof we see that the condition cap E=0 can be weakened. In fact, it suffices to assume that $E \subset \partial R_+^n$ is a compact set which has no interior points (in the topology of ∂R_+^n) and which satisfies $M(y, \partial R_+^n \setminus E) = \infty$ for all $y \in E$ in the sense of [9].

6.5. A bound for a Dirichlet finite function. Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a monotone Dirichlet finite function, let $E \subset \overline{\mathbb{R}}^n_+$, and let *u* have a continuous extension, denoted by *u*, to the points $E \cap \partial \mathbb{R}^n_+$ such that $u(x) \leq b$ for $x \in E$. Define

(6.6)
$$\sigma(x, E) = \inf_{C} M(\Delta(C, E; \mathbb{R}^{n}_{+})),$$

where the infimum is taken over all continua C with $x \in C$ and $C \cap (\partial R^n_+ \cup \{\infty\}) \neq \emptyset$.

It follows then that

(6.7)
$$u(x) \le b + \left[\left(\int_{\mathbb{R}^{n}_{+}} |\nabla u|^{n} dm \right) / \sigma(x, E) \right]^{1/n}$$

for all $x \in \mathbb{R}^n_+$. This estimate follows directly from Lemma 2.11 and Remark 2.6. In fact, this idea has been applied several times in this paper. The inequality (6.7) suggests that the quantity $\sigma(x, E)$ is of some interest in the theory of Dirichlet finite functions.

References

- [1] AHLFORS, L. V.: Conformal invariants. Topics in geometric function theory. McGraw-Hill Book Company, New York et al., 1973.
- [2] BEARDON, A. F.: The geometry of discrete groups. Graduate Texts in Mathematics 91, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
- [3] GEHRING, F. W.: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103, 1962, 353—393.
- [4] GEHRING, F. W., and A. J. LOHWATER: On the Lindelöf theorem. Math. Nachr. 19, 1958, 165-170.
- [5] GILBARG, D., and N. S. TRUDINGER: Elliptic partial differential equations of second order. -Die Grundlehren der mathematischen Wissenschaften 224, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [6] GRANLUND, S., P. LINDQVIST, and O. MARTIO: Conformally invariant variational integrals. -Trans. Amer. Math. Soc. 277, 1983, 43—73.
- [7] LELONG-FERRAND, J.: Représentation conforme et transformations a intégrale de Dirichlet bornée. - Gauthier-Villars, Éditeur-Imprimeur-Libraire, Paris, 1955.
- [8] LELONG-FERRAND, J.: Invariants conformes globaux sur les varietes riemanniennes. J. Differential Geom. 8, 1973, 487-510.
- [9] MARTIO, O.: Equicontinuity theorem with an application to variational integrals. Duke Math. J. 42, 1975, 569-581.
- [10] MIKLJUKOV, V. M.: Boundary properties of a certain class of transformations in space. -Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 189, 1966, 80-85 (Russian).
- [11] MIKLJUKOV, V. M.: A certain boundary property of n-dimensional mappings with bounded distortion. - Mat. Zametki 11, 1972, 159—164 (Russian).
- [12] Mosrow, G. D.: Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms. - Inst. Hautes Études Sci. Publ. Math. 34, 1968, 53—104.
- [13] OHTSUKA, M.: Dirichlet problem, extremal length and prime ends. Van Nostrand Reinhold Company, New York—Cincinnati—Toronto—London—Melbourne, 1970.
- [14] REŠETNJAK, JU. G.: The concept of capacity in the theory of functions with generalized derivatives. - Sibirsk. Mat. Ž. 10, 1969, 1109–1138 (Russian).
- [15] REŠETNJAK, JU. G.: Spatial mappings with bounded distortion. Izdatel'stvo Nauka, Novosibirsk, 1982 (Russian).
- [16] RICKMAN, S.: Asymptotic values and angular limits of quasiregular mappings of a ball. -Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5, 1980, 185–196.
- [17] SUVOROV, G. D.: The metric theory of prime ends and boundary properties of plane mappings with bounded Dirichlet integrals. - "Naukova Dumka", Kiev, 1981 (Russian).

- [18] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin—Heidelberg—New York, 1971.
- [19] VÄISÄLÄ, J.: A survey of quasiregular maps in Rⁿ. Proceedings of the International Congress of Mathematicians, Helsinki 1978, 685–691.
- [20] VUORINEN, M.: Lower bounds for the moduli of path families with applications to non-tangential limits of quasiconformal mappings. - Ann. Acad. Sci. Fenn. Ser. A. I. Math. 4, 1978/79, 279—291.
- [21] VUORINEN, M.: On the existence of angular limits of *n*-dimensional quasiconformal mappings. -Ark. Math. 18: 2, 1980, 157–180.
- [22] VUORINEN, M.: Capacity densities and angular limits of quasiregular mappings. Trans. Amer. Math. Soc. 263, 1981, 343–354.
- [23] VUORINEN, M.: On the Harnack constant and the boundary behavior of Harnack functions. -Ann. Acad. Sci. Fenn. Ser. A. I. Math. 7, 1982, 259–277.
- [24] VUORINEN, M.: On the uniqueness of sequential limits of quasiconformal mappings. Math. Scand. 52, 1983, 69-80.
- [25] VUORINEN, M.: The boundary behavior of quasiregular mappings. In preparation.
- [26] ZIEMER, W. P.: Extremal length and p-capacity. Michigan Math. J. 16, 1969, 43-51.

University of Helsinki Department of Mathematics SF—00100 Helsinki 10 Finland

Received 13 March 1984