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lf f , I" are discrete Möbius groups acting discontinuously in the upper half
space (I:(J'+1, and if there is a homeomorphism fr: 4:f\U'4':l\a, then

the situation induces a mapping f : U*U with the compatibility property

f o A oJ-r17' (all A(f),
and an isomorphism @:f -f in which A*f oAof-|. It may happen that f
extends to Rn:0(Jn+L, inducing there a mapping f : R"*Rn (the boundary

mapping) with the same compatibility property, at least for the restriction of A to
Rn. Since a Möbius transformation which fixes Un+1 is completely determined by

its values on Rn, the status of the isomorphism @ is the same whether/orf is used.

Theorems of Mostow-rigidity type draw conclusions about/of @ from various

assumptions aboal Q, f ,fo. It is not my purpose here to review all the relations

amongf, @,fs as this has been done in many places in the literature. However, it is
appropriate to point out that @ determines/to the extent that/maps the attractrng
(respectively repelling) flxpoint of nonelliptic A€f on that of @(A), and so at best,

@ determines/only on the limit set, which is the closure of the set of fixed points.

Therefore, while the most general type of conclusion would be that @ is conjugation

by a Möbius transformation, in the context thatf is continuous and i- is of the first

kind, the appropriate corresponding conclusion is that / itself is Möbius.

While no doubt the primary motivation for Mostow-rigidity theorems was the

conclusion abott fo (hat fo: Q*4' is homotopic to a conformal map), this in-

ference as well as the labor involved in establishing the appropriate properties of

/ (existence, uniqueness, continuity, univalence, quasiconformality), ate a distrac-

tion. I shall therefore refrain from further comments in this area, and simply assume

for/the property whose consequences I would like to study.

In this note I wish to clarify a remark by G. D. Mostow which is to be found

on page 178 of his book [5]:If n:1, if l- has finite covolume, and if/has a deriva-

tive which is finite and nonzero at euen a single point, lhen/is linear fractional.

The situatiot for n:l is of special interest because of the striking contrast

to the cases n>2, where if I has finite covolume, /is always Möbius [4]. The effect

is to render discrete the Teichmiiller spaces for many manifolds of dimension >3.

The fertility of Teichmiiller spaces of Riemann surfaces (dim 2) supports the contrast.
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A rigidity theorem for the case n:l was proved by Kuusalo [3], in what seems

to me to have been the pioneering paper. He showed that if l- acts ergodically on

RXR * there are only the two alternatives: either/is linear fractional, or/is singular
(f':O a.e.).

Variations of this have continued to appear in the literature. For example, in
a posthumous article in 1979, the late Rufus Bowen l2l gave a 'onew proof" that if
9t is compact, l- without torsion, and if/is absolutely continuous, then/is linear
fractional.

At issue in the present note is the question of whether, as remarked by Mostow,
the existence of a positive finite derivative at a single point, suffices to force/to be

Möbius. And if not always, then to what points or groups can such a statement be

applied?
We make two steps toward a resolution of this question by showing: f always

has finite, positive derivative at every parabolic fixpoint; however, the statement

does apply to hyperbolic fixpoints in general, and to all points for those groups for
which fr is compact. The latter argument was largely provided to me by Dennis

Sullivan during his 1982 visit to the IMA in Minneapolis.
To make this article completely self-contained, we begin with a review of pro-

cedures by which the Bowen/Kuusalo theorem can be proved, using an early (1931)

density theorem of P. J. Myrberg [6].

l. The Theorems of Myrberg, Bowen, and Kuusalo. We shall work in .F, the

one point compactification of R. The Möbius group M(R) may be identified with
SLQ,R)/{I,-Ilr through the homomorphism iD:SL(2,R)-M(R\, in which

l:'oJ,*n,where A(x):# Ix(R
Iad - bc - 1-.

The topology is induced by the entry-wise topology in SL(2, R). Thus M(R) is a
3-manifold.

These Möbius transformations have extensions in M(a), the Möbius trans-
formations of the upper half plane. It is only necessary to replace x by the complex

variable z. As such, the fixpoint classification is familiar: A is hyperbolic if it has

two fixpoints in F; parabolic if it has one fixpoint (necessarily in R); elliptic if it has

two fixpoints outside R (necessarily complex conjugates). In these cases I is respec-

tively conjugate n M(R) to a dilation h^: x*Ix, )">l; a translation to: x+xlq,
a(R; or a mapping whose @-inverse contains a matrix in SO(2). Denoting the classes

respectively by H, P, E,we have the disjoint decomposition M (R) : g v1 p u E u {id},
and Pu $d\:fl8:69.

* This condition is equivalent to the property known as "divergence type", and is implied by
finite covolume.
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Regarding hyperbolics, I will denote by Aru(p, qcE) the set of mappings ,4 with
attractrngfixpoint p: P(A), and repelling fixpoint q:N(A). The number )":1(A)
is known as t}lre multiplier.

The non-Euclidean lines in IJ are the intersections with U of circles or lines

perpendicular to R. For p, q€R., the one joining p and 4 will be denoted by loo.

Aray r:la,p) is desigrrated by that portion of /ro between aQlpq^U and pQR.

Of course the lines are permuted by A(M(a), as are the rays. The lines are globally
parametrized by their endpoints as the subset {(p,q):p=q=-}CRxf, with a
topology inherited from the latter. To say that a sequence ofrays lao, P) converges

to a hyperbolic line / will mean that pn*p, an*q, and l:loo.
It is clear that if a sequence {A,}=M(R) has A,-A(M(R), then A"(z)*/(21

for every z€C, and that A,(l)-A(l) for any hyperbolic line /.

We usually assume that a subgroup f gM@) is discrete in the topology of
M(R), in which case .f acts discontinuously it U; the 2-manifold @:T\U is a
Riemann surface; the projection n: U*fr is a covering branched at the elliptic
fixpoints of f ; and the mappings A(f are the cover transformations. We say that f
is of they'rst kindrf the hyperbolic fixpoints are dense in R. This is a consequence

of several possible assumptions, the most common being either that f has finite
couolume, or that fr is compact. The first means that the coset space \M(R)
has finite invariant measure, and implies among other things that the non-Euclidean

area for each fundamental region for f is finite. It allows a finite number of inequi-

valent parabolic fixpoints, and is implied by the compactness of 4,which however

excludes all parabolics. Finite covolume implies as well the algebraic condition that
f is finitely generated. First kind and finite generation are utterly unrelated, but
together imply finite covolume.

We introduce three definitions:

(i) A point pe.R ts a
ray r:la, p) are dense in

(ii) A point pe.R is a

for at least one q+p.
(iii) A point pe.R is a

patible with r, f ' (p)€ (0,

Myrberg-density point (pe Mr(D) if the f -images of some

the hyperbolic lines of U.

Mostow-density point (p€Mo(D) if r Aen is dense in M(R)

Mostow-rigidity point (p€M,(l-)) if the conditions : f com-

-); imply that f is linear fractional.

Remarks. First, it is clear that for any A€M(R), and any of the sets M;
(i:y,o,r), that Mi(Af A-L):A(M{f)). This observation allows us to normalize
many situations. Next, we observe in connection with M", that if I(r) is dense in
lines, then by projection on &, n(r):v(71r)) is dense in Q. Becaase any two rays

la, p) and [å, p) (collinear or not) are asymptotic at p in the hyperbolic metric, the

condition that n(r\ be dense on Q is independent of a. This is a crucial observation,

because by contraposition, if z(r) is not detse on Q for some ray r:fa,p), then
p4My(r).
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Theorem l. My-Mo=M,, .fo, ony discrete group l- 
= 

M(R).

Proof. To show My=Mo, suppose that p(Mr(f), that Q*p, and that
r:la,p)Qlon is a ray whose images are dense in lines. Given AQM(R), label
s:A(p), t:A(q), and select A,<f with An(p)*s, Ao(a)-1. Thus, relative
positions on r are stretched by An away fuom p and toward 4. Using premultiplica-
tion by suitable elements B,€Aeq with compensating multipliers tending to -,
the convergence AnBr*l is easily achieved.

Conversely, if f Aeqis dense in M(R),if la,p)El:|,", and if a target line /o
is selected, fix some A€M(R) wrth A(p):s, A(q):t, and obtain sequences Ao(f ,
Bo€req with AoBn-l' Under Bothe ray la,p) is merely contracted along /. But
because f is discrete, the multipliers ,1(.8") must tend 1e o, so the contraction is
right down to p itself. Thus -Bo-1 stretches r out (in the limit) over all of /, and we see

A,(r):A,Bo(s;t1r1)-a(/):/",. Thus p(Mr(f), and we have shown M,EM..
Finally, to understand the inclusion Mog_M,, suppose p€Mo. We. may

assume p:0, that fr|o- is dense in H,that /'(0):c((0, -), and as well thatf
fixes 0, 1, -. Observe that Ao* may be identified with the inverse dilations

{h;O=)"=l}. Because i-,,10- is dense in M(R), there exist numbers ,1n€(0, 1),

and elements An€f , with Anhr^-id. We may assume by discreteness that ,l,n*0.
Consider this diagram, in which the progress of 0 ( o) and - (x) are noted:

0

/ i,,
[:

\j,
Vn

#
an bn

Here, kn(M(R) is a
cifically

x
68n

x 

-_-å>
oof

-:

I

I ou^

,1,

ox
0oo

I

| " 
tn'l

,l'

-.>
f f(b,)f(a,)

normalized mapping carrying f(a,),-D, f(b")p@, spe-

k,(x) --f(b")[m),
with a simple modification if f(å,) is already oo I kn(x)- x-f(a).
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We observe that ko(x)*v, (uniformly on compact sets) precisely because

f(a)-0, f(b)*-, which facts are assured by the continuity of f and the condition

t,*id. The numbers pn ate then completely determined by h;l:k"O(1"). lt
follows from the two representations

h;Lof ohx,: go: knof or[n

and the established convergences, that

tu^ "f(!,'x) : f@).r+6 F"

' Next, it follows from the condition c:f'(O), and by pruning the sequences

so that ).,f p^ has a limit Z (finite or infinite) that

Lcx : lim 
l'* 

" 
: limln* f!'!) : f(x).

Fn lr" Anx

Precisely because c is positive, it now follows that L is finite, and f(x\=Lcx=x,
the last because f(l):I. Finally, when the previous normalizations are taken into
account, we have the relaxed conclusion for the original context: f<M(R). n

Remarks. (i) As soon as Möbius groups M(R), n>2, are considered, the

classification HvPvE needs to be revised. In addition to hyperbolics, one needs

to consider loxodromics (Z), which are conjugat e in M (N) to mappings of the form
uh'wherc r is orthogonal. The terminology hyperbolic for the case z:id is used

to some advantage still in n:2, but rarely (exceptions in I l]) to advantagein n>3.
For our purpose, a decomposition

M(R'): ZuPu.Eu{id}

is preferred. (Now only Z has codimension zero.)
As for the set M,,it is appropriate to replace the hypothesis /'(p)€(0, -) by

the hypothesis that/have nonsingular total differential, and the conclusion f(M(R)
by the condition thatf be conjugate in M(R") to a linear map. With these modifica-
tions, there is little problem to carry through the proof of Theorem I in any dimen-
sion [].

(ii) P. J. Myrberg [6] proved that M, has full measure in R for certain special

kinds of Fuchsian groups (n:l). Mostow proved that Mo has full measure in Rn

assuming finite covolume. The flrst treatment of the case n: I occurs in his book

[5], which includes other generalizations not directly relevant here. It is precisely

the extensive scope ofhis book which has obscured the situation as regards the case

n : 1. Lost in the shufre, one might say.

(iii) Sullivan [9] introduced the term Mostow-rigid to describe groups for which,
in the context of the introduction, @ is always conjugation n M(R"). It was the
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main thrust of Mostow's earlier paper [4] that this is so for groups of finite covolume
in dimensions n>2. The proof required three steps: (1) the boundary mapping

/ is quasiconformal, therefore (if n>2\ differentiable with positive Jacobian a.e.;

Q) M" has full measure in .R', hence at least one of the points with nonsingular total
differential belongs to Moe M,, and therefore/is conjugate n M(R") to a linear
map; finally (3) a linear map which is compatible with a discrete group having at
least three points in the limit set, is necessarily conformal. See []. Thus the sim-
plicity of the case n: 1 is that step (3) is not required. The problem is that step (1)
has an inapplicable inference, but the saving feature for Teichmiiller space theory,
is that f'(x):Q a.e. is a possibility.

(iv) To explain his stronger remark, Mostow in essence asserted ([5], page 178)*
that under the circumstances, any point p was a density point (M"), and thus inferred
that even a single point with f'(p)<(0, -) was sufficient to conclude that/was linear
fractional. This has to be an oversight, because it is clear that fixpoints cannot be
Myrberg density points. Indeed, if r is a ray terminating at a parabolic fixpoint,
then a(r) tends to the corresponding "puncture" on 4. Likewise, tf p, q are fixed for
A(l nH, then n(lnn) is compact on Q, as is n (r) for any ray r lying in /ou. In either
case a(r) is not dense on Q, andp is not in Mr.

(v) On the other hand, as soon as f'(p[(0, -) on a set of positive measure,
then one of these points belongs to M.QM,, nd feM(R). Thus Bowen's theorem
follows from Myrberg's, since the groups Myrberg considered included compact Q,l
without torsion. Kuusalo's theorem, with its sharp dichotomy, also follows for any
groups for which Mrhas full measure. This now includes groups of divergence type

[], and probably more [9].
(vi) It is of interest to note that rigidity of the group, while no longer prevalent

in case z:1, still occurs. For example, the modular group J-o and its congruence
subgroup are both rigid. Sheingorn [7] is investigating ways to characterize the points
of Mr(f i, and has in particular found ways of identifying some points (other than
fixpoints) which are definitely notin Mr(fo). His method promises to be very difficult
to apply to other groups. Myrberg himself reported that (at least for genus zero)
the complement of M, is always an uncountable set of Cantor type, from which it
would follow that more than fixpoints are involved.

2. Fixpoints. We study the behavior of the boundary map near fixpoints for
the group. Observe that no assumptions about the group are required in this section.

Theorem 2. Let f be the boundary map for
that f is not ltnear fractionol.
(1) If pe n is ony porabolic fixpoint -fo, f , then
(2) If p€R is fixed fo, hyperbolic A€.f , then

the isomorphism @ ond ossume

f ' (p) exists, and lies in (0, oo).

* In Mostow's notation, lA(q,p) is what I have called Aon.
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(a\ f'(p):o if )'(A)=)'(@(A)),
(b) f'(p):- if l(A\=)'(@(A)),
(c) f'(p\ does not exist if )'(A):1(61,a,11.

proof. First suppose p is a parabolic fixpoint. By various conjugations h M(R),

we may assume p: -:f(p\, that f , f' both contain the translation T: x.+xJ-|,
and that @(T):?d. we may further assume that 0 is not equivalent to - under

I or l'and that ,f(0):0. The effect of these normalizations is to ensure that f(n):n
forallintegers n:0, +1, l.2,...' Itfollowstriviallythatas lxl*-, limf(x)lx:l'
When this is filtered back through the normalizations' it says precisely that f'(p)(
(0, -).

As regards (2), the first observation is that an attractingfixpoint for I is repelling

for A-r. But I and A-Lhave the same multiplier, as do @(A) allid @(A-L). Therefore

it suffices to treat an atttacting fixpoint. We may then proceed as above, this time

assuming that p=o:f(p\, and that A,@(A) are respectively hn,hs, where

1(,11-t-o=1. But 0 is also attractingfor hp, and we now know that l(@(A))-L:

B<1. We also know f(-):- (repelling fixpoints fot ho,hp\ and therefore/is a

homeomorphism of .R.

Now fix x€[-1, -afvlu,l]:E. Then y:f(x) also lies in a compact set

f(E\not containing 0. If we define xn by u"x, we see that f(x,)lx*:(pla)ylx' ln
case (a), we have B<.u, and ?s tt+6; limf(x)lx,:o uniformly for x€E' It fol-

lows that -f'(0):0. Similarly f'(0):* lf B>a' Finally, 7f a:f, then it follows

that the collection of all limit values for f(x)lx as rc*0 coincides with the closed

set {f(x)lx:x€E}. This can be a single point only if f(x):-cx, which is the linear

fractional case. n

Remarks. Teichmiiller space theory assures that the three cases above for

hyperbolic fixpoints can all occur in a single example. A question raised, however,

is this: Can the case L(A)=-^(@(A)) persistfor allhyperbolic A,I The question of
equality for all A has been much studied. For example, Sorvali [8] showed that

equality holds for all A only if @ is conjugation in M(R). Tukia has vastly generalized

his result [1 1], allowing arbitrary dimension, and even relaxing discreteness. I have

borrowed Sorvali's method in dealing with hyperbolic fixpoints.

Finally, we can rephrase the conclusions of Theorem 2 in the language of Sec-

tion l:

Corollary. For discrete f 
=M(R), 

all hyperbolic fi'xpoints lie in M,\Mv
whereas no parabolic fixpoints can belong to M,-

3. The case of compact 4. It is first necessary to introduce a tool which Sullivan

has shown to be very useful. This is the notion of Bounded Distortion (BD). we
consider a family ! of rcal valueri functions of a real variable' each f(9 defined

on a closed interval 9r. We say that / is of bounded distortion if eachf belongs to



SrrpHnN Ac.lno

G', is monotone increasing, f'(*)20, and there is some K with

ffi = * (all x, y(hy, arl fe g).

Following is a list of obvious properties:

(BD 1) A family t is BD if and only if the family I -': {f -L : f€ g} is BD.
(BD 2) If the domains have comparable lengths, and the images likewise have
comparable lengths, and if / isBD, then it is also uniformly bilipschitzian, hence
equicontiuous, normal with compact closure, and all limit functions are bilipschitzian.
(BD 3) If the images all lie in a finite interval E, and if rp: E-E' (q€G') has its
derivative bounded and bounded away from zero, then the composition E o 9:
{E"f:f€9} is BD whenever ;[ isBD.
(BD 4) If for f€/, l:lr is an affine rescaling t*c/*dr of lVr(Of) onto 91,
then the rescaled family yt,:{folr:f€./} is (BD) if and only if / is (BD).

We shall prove that tf Q is compact, then every point is a Mostow-rigidity
point. For simplicity I will assume i- is without elliptics. The assumption is inessential.
One might appeal to Selberg's lemma and work with a torsion free subgroup of
finite index (still with compact manifold and the same boundary map), or one may
study the proof of Lemma I below, and observe that the requirement B,(H is
inessential there. The lemma is only harder to state, not to prove. Thus, we now set

out two lemmas on contracting and expanding maps, and indicate how the theorem
is proved. The lemmas will be proved in their turn (Section 4).

Lemma l. If B, is a discrete sequence in H, and to each B, is associated an
interual I,cR with In-Io:la,bj, and B,(1,)*p((a,b), then the family Jf :
{B"lr^l} is BD if and only if the repelling fixpoints N(8,\ cluster only outside Io.

Lemma 2. ff q is compact, and p€R, then there exists a sequence of interuals
Jn:|,p, pnl (p,*p), and a sequence A,(1, with A,(J,\ conuergent to a nondegmerate
interual Io, andsuchthat 9:{A"lr^l} rsBD.

Theorem 3. Suppose fr is compact, f'(p\((0, *). Then f is linear fractional.

Proof. Let us apply Lemma 2 at p. Because f is of the first kind, there is lo€i-
with po:Ao@) interior to 10. Take Bn:lsA;L, Io:a"(,I"), and consider the
families 9:{BÅ,^l\, V:{@(8,)lnr"ll}. It is clear that the set-up of Lemma I is
in force for both families. However, I isBD because g isBD, in view of (BD 3).
Therefore the repelling fixpoints of Bo are bounded away from .Io. Hence in turn,
and because/is a homeomorphism, the repelling fixpoints of @(8") are bounded
away from/(I), and therefore f- is also BD. We consider the following diagram,
which is quite comparable to the one in Section l, except that ln is an affine rescaling
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B,(1,):lpo, Qnf (qn: Ao(p,) * Ao@) -po)
rescaling of f(8,(1")) to an interval [0,

H(
0t

/ I'to-,(
\ 

PoQn

\1.
?

Vn

to the unit interval [0, 1], and i, is an affine
crl using the same scale factor as ln.

---.>
8n

-=>
f

H
0cn

I'
o--)(

f@i f(q,)

tt

| 
"ru,,I

ko

In view of the properties (BD l-4) the mappings ,ltn may be assumed convergent
to bilipschitzian ry'. We also easily see that c, : (f (q 

") - f (p )) I @ 
" - 

p ) has limit /' (po) :
@(Ar)'(f(p))f'@)lAlob)e(0, -), so that kn also may be assumed to converge to
bilipschitzian k. Of course gr converges to the linear map x+ft (ps)x, andwe arrive
at the formula f(x):k(f'@Jrl,(*)), which shows thatf is absolutelycontinuous on
.Io. By the Kuusalo/Bowen theorem, /is linear fractional. n

It is perhaps worth noting that this argument applies even if we only know that

f has a positive, finite, one-sided derivative at p.

4. The Lemmas. A moment's reflection will convince the reader that if the
lemmas can be proved in the context of the circle S, that the results will transfer to
R, thanks to (BD 3). One interprets the derivative with respect to arc length, but
this is the modulus of the ordinary complex derivative anryay. An inverval ,I becom-
es a subarc of 

^S, 
with length [rl. The upper half plane U becomes the unit ball B.

One advantage of course is that 
^S 

is compact, and each Möbius transformation
is class 6' over all of 

^S, 
vrith derivative bounded and bounded away from zero, and

second derivative bounded. A second advantage is that none of the mappings are
Euclidean translations, and all have isometric circles. For hyperbolic B(M(B), the
isometric circle 1(,8) is the locus {z:lB'(z)l:l}, and its interior 1(,8)o contains
the repelling fixpoint, and is known as the expanding zone. In the context of a dis-
cretegroup fgM(B), the intersection of the exteriors of the isometric circles is a
fundamental region Ffor f. If 4:\B is compact, then Fhas compact closure
in .B, which is a way of saying that the expanding zones form an open cover of S.
This observation is the key to Lemma 2.
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r: lt(0)1, f,("): #, re-i| --.8-t(0), dn: B@-r,l).

It is a simple matter to calculate

lB, 1et<o- 0t111 : lli @,*\l : ffig : s,,(e),

where g, has the foltowing general appearance (Figure l):

l+r
lr

Y : gr@)

1

l.-f
l+r

0 cos-t (- r)

Figure I

Figure 2
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It follows that on intervals expilp,E*äl of length å on S, that maxlfil arra
minlfil are assumed at opposite ends except (a) when the interval contains -l
(n-6=-tp<n) in which case max:(l+r)10-r) and min is at whichever end is
farther from -1, or (b) when the interval contains I (-ö=cp<0) in which case

min:(l -r)l1*r), and max is at the end farther from l. The possibilities -ä/2=
E<n-ö12 are representative, and we find that the ratio

K(r, E) : max {lJ',' (t")l: 0 (lE, E+ äl}
min {lji @'v)l:V(lE, E+öl]t

is increasing as r ,/ I, with limits

11

(2t@
K(d :ryp K(r, E) -) 

1*cos E

lT+cos1E+a)i""

(-*= E= o)

(0= E<n-ö)

["-ö= E=TE-+)

It follows that K(r, E) is bounded as r /l if and only if E is bounded away from
zu-ä, which is really to say that expi[q,q*öl must be bounded away from -1.

Returning to our sequence B* the consequence of discreteness is that the
parameters ro must tend to l. In the context of our B)r^€/, the interval 1o:
expifupo,gn*önj (E,*Eo,än*äo) is rotated through the angle fo onto the arc
Jo:eir"Jo wheref," acts. In view of (BD 4) / isBDif and only if {f,,lr^) is BD,
hence if and only if the intervals,In are bounded away from -1, or if and only if
the numbers -e-if^ cluster away from 10.

Now the parameters dn, frn, rnfor 8,, and as well the attractors pn:P(Bo),
and the repellers q,:N(B,) lie in compact sets, and we may assume them conver-
gent with limits ao, fo, l, po, qo. The relations are

sian-g-t?n : rn(Pn+ q), -ei(+-F) : Pnnr,

and letting rt*-, wo firrd

giao_g-iPo : por' Qo, -"i(ds-F) : pogo,

from which it follows that po, q, are (in some order) ei"o and -e-iqo. One problem
is to sort them out, but it is clear from Figure 2, that if pofQo, then et\ eo- -1,
and hence Qo:-e-ito.

If we now invoke the additional hypothesis that.B,(1,) contracts to p€Int(/o),
then Bo(In), vastly smaller than,I,, includes some points in the expanding zone for
Bn-l, hence points within distance cos-l/o of pn. It follows that po:pqlnt (10).

Now if / is BD, the numbers -e'ifn cluster outside.Io, and n"n"" -"-ifo{Io.
Hence pq must be eino and the repellers In*eo: -"-ifo{Io. Conversely, if the q,
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cluster outside 10, then qn,pnate bounded away from each other, and therefore

eo:lim-e-i8", the latter numbers being therefore eventually bounded away from
Is, and / isBD. n

Proof of Lemma 2. As we have observed, S is covered by the expanding zones

for {,Be l-}. Extract a finite subcover, and by elementary continuity considerations,
obtain a finite cover of S by closed intervals {Ii: j(F), with associated mappings
Aj€f , such that there are numbers c, ö with the properties:

(i) lAiQ)l=-c>l for z(Ii, and
(ii) every interval of length å lies entirely inside some -I,.

We now take an interval Jo:lp,prj of length<ö and find Jr€F such that
Jscli,, and eonsider J1:Ai,(Jo). Either 

"I1 
has length more than ä, or ii lies in

f, (some iz€F). This process eventually terminates (say at stage n: lJ"-tl<.ö<lJ))
because lengths are expanded by a uniform factor c at every stage. Having reached
the conclusion, we replace Jo by a subinterval lp, prl and relabel the successive

intervals so that "I, has length exactly å. We then have a uniform bound on the total
lengths. Indeed, from l,I1*rl =-cplJnl, we find

cö---c-lZX=olrkl= Z;=,(*)",

We shall denote the mapping Aj^Aj^_,...A.;rl;, simply by A, and the final
interval J,:A(Ju) by L Considering that our factors come from the finite pool

{A,:j(F}, there is a uniform upper bound M for 11,Ai@l: jQF,z(S}, and of
coursewestillhave le]@l>c forallzunderconsideration. Nowsuppose zr,wt€Jo.
Define zi,wiinductively by zr*r:Ai.(zi), wi4l:Air(w;). We estimate:

"tffi: zl,tor#ffi: t =,*"$_',ffio,l

= zi=- I,,W8v4 = + zi=-: 1t 1 = fr .

This argument is a close adaptation of Lemma 1 in [0]. It seemed that no economies
were to be gained by the reference, since the set-up required explanation in any case.

If now in place'of ,Is, we have a sequence of intervals J^:lp,p^l (p*-p),
we obtain by this process a sequence a@)El,with final interval 1. of uniform length
ä. It is clear that we may require that l*be convergent upon a nondegenerate interval
of length å. Thus it only remains to see that the sequence {A@lr^} is BD, but this
follows from the estimate above, which is independent of the length of the original
interval Js and the number of factors in the word ,,4. !

Addeit October 1983: Since the submission of this article several months ago,
I have received a preprint "Rigidity theorems for Möbius groups" by Pekka Tukia.
He has closed the gap between M, and the complement of the parabolic fixpoints
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i, by showing that M, quite generally includes the so-called "radial set", or limit set

i of conical approach; moreover, for n:l and i- of finite covolume, the radial set

' excludes only parabolic fixpoints. These results taken together make a theorem more

general than the present Theorem 3.
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