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ON THE FIXED POINTS
OF MöBIUS TRANSFORMATIONS IN ft'I

It has been

expressed in the

(1)

LARS V. AHLFORS*

known for a long time that Möbius transformations in R" can be

form

gx: (ax*b)(cx*d)-t

where the coefficients a, b, c, d are Clitrord numbers subject to certain restrictions,

but very little use has been made of this observation. The writer has become con-

vinced that this approach to Möbius transformations has very important advantages.

It is not only a natural generalization of the use of two by two matrices in the classi-

cal case, but the formula (l) also yields an automatic extension from n to n*1 di
mensions. In this paper, which is still a preliminary report, we shall address the

problem of finding and classifying the fixed point structure of g in terms of the

coefrcients.
To my knowledge the first use of Clifford numbers in this connection was by

K. Th. Vahlen [Va] who, in 1902, derived necessary and sufficient conditions for (1)

to represent a Möbius transformation. His paper was forgotten until revived by

H. Maass [Ma] in 1949. For more recent applications of Clifford algebras to Möbius

groups see [Lo-La], [Fi] and [Ah 1,2].
The relevant facts about Clifford numbers are reviewed in Section l, mostly

without proofs. Details can be found for instance in [Po]. Section 2 is a slightly

different approach to Vahlen and Maass. The main part of the paper is in Sections

4_6 and deals with the identification of hyperbolic, elliptic, and parabolic transfor-

mations. This identification will be purely in terms of the coefficients a, b, c, d' In
other words, when the coefficients are given the paper will provide the means to

determine whether the transformation g is or is not hyperbolic, elliptic, or parabolic.

Section 7 illustrates this through an example worked out in some detail.
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1. Properties of the Clifford numbers

The Clifford algebra A,shall be the associative algebra over the reals generated
by elements €1,..., en subject to the relations ei:-l and eneo--eoer, hlk,
and no others. Every a(A, has a development of the form

(2) a : ao* )anEn
where ao and an are real and the sum ranges over all multi-indices v:(yr, ...,yo)
with 0<vr=v2<...<.vp=n) and Er:enr,..eyp, The term ao, referred to as the
real part of a, is regarded as corresponding to the empty multi-index with p:0.

Anis a vector space of dimension 2o.Itis a sum of the spaces lf spanned by
the E, with fixed p. The sum of the A! with even p will be denoted by Ao,, while Al
refers to oddp. ,1f;) is a subalgebra of ,4n.

We shall identify R'with the subspace spanned by l,€t,...,€n_r. This is
Vahlen's choice, similar to the identification of X2 with C:At. For other reasons
it has become more common to identify fto with Af,. Each choice has its advantages
and disadvantages, but we prefer to follow Vahlen in spite of the unsymmetric
role of 1. We shall refer to the x:xo* xre1t...*x,-re,_, as t)ectors to be regarded
as elements of An-, or -Rn as the case may be.

The algebra A, has three important involutions, similar to complex conjuga-
tion. The first, or mqin inuolution, is the isomorphism a*a' obtained by replacing
eachelby -en, thereby replacing each a(.AI by a':7-l)pa. It is obvious that
(a*b)' : q' ab' and (qb)' : a'b'.

The second involution, or reuersion, is an anti-isomorphism a*a* obtained
by reversing the order of the factors en, in each d. It satisfies (ab)*:S*a*, and
a€Ae" implies a*:(-l)p@-Dl2a. The third involution is a combination of the
two others, and we shall wite d:a'*:a*'. It is again an anti-isomorphism, (ab)-:
5a ana d:(-l)p@+L)l2a tf a(Ae_. The notations a'oe*,d aretaken from Vahlen
and Maass; they are not standardized.

For vectors, x*:x amd x':ii out of habit I prefer to use f. Furthermore,
xi:lxlg, the euclidean square norm. It follows that every non-zero vector is inver-
tible with x-L:-xllxll. For two vectors,

(4) xy*yt,:2(x, y)

where (x,7) is the inner product. The square norm extends to Aoby writing

(5) Ial,: a\+Z a?,

when a is given by Q).However, it is not universally true that lal2:a6:-aa.
The Clffird group f n consists of all a(A,_, which can be written as products

of non-zero vectors in R". It is obviously a subgroup of the multiplicative group
of A,-1. Elements of the Clifford group do satisfy lalr:aa, from which it follows
that labl:lallbl. We draw attention to the seeming inconsistency in the choice of
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subsbripts, which is due to a preference for working with Rn rather than -Ro-l.
Again, our notation is not standard.

There is another characteruation of ,l-" which plays a central role and is often

taken as the primary definition. It is seen by repeated use of (4) that if a is in the

Cliffordgroupandxisavector, then axa'-L isagainavector.Themapping x*axa'-r
is obviously linear, and since laxa'-'1: lxl it is a euclidean isometry. What is more,

it is always sense-preserving. In other words, to every a(f n there corresponds

a matrix S(a)e SO(n) such that axa'-':Q(a)x for all x€.Rn. Conversely, every

matrix in SO(n) can be obtained in this way. The mapping atQ(a) is a homomor-
phism with center R\{0}.

To connect with Vahlen I start from an algebraic definition which makes little
sense by itself. The name Clffird matix is historically unjustified, but I have chosen

it to pay homage to an important thinker and originator, without thereby wishing
to detract from Vahlen's just share.

17

Definition. The matrix

following conditions are fuffilled:

(i) o, b, c, d€f ,u {0},
(ii) ad* -bc* - 1,

(iii) oc-L and c-L d€R"
(iii') db-r and b-t o€.R

r:(1 ,) is a ctffird matrix in dimension n if the

iJ' c #0,
if b #0.

Some preliminary comments are in order. Condition (ii) makes it impossible

for two elements of g in the same row or column to be simultaneously zeto. The
condition ac-LCR" is equivalent to c*a:a+c(Rn This follows from (c*';-r:
cllclz and c*a:c*(ac-1)c. Similarly, cd*, b*d, ab*€R".

lf b and c are both #0, conditions (iii) and (iii) are equivalent. For instance,
(ii) and (iii) imply b:ad*c*-t-c*-L-ac-ld-c*-r and hence bd-L:ac-r-
(dc*)-rltr1" which proves db-l€.R" if b+0. If b:c:O, (i) and (ii) are the only
conditions.

We wish to show that the Clifford matrices form a group under matrix multi-
plication. For this we must first make sure that a product grgz inherits properties

(i)-(iii). For (i) we write, as a sample, a1a2*b1c2:bt(brLar*crart)a2 which is

obviously in i-" u {0}, the case where bl or ar:g being trivial. As for (ii) one shows

that the pseudo-determinant /(g):ad*-bc* is multiplicative as long as it is real.

This makes Å(grgr):A(gr)/(gr):1. In contrast, it is not obvious that grg, shares

property (iii), and this part of the reasoning will be postponed.

The unit matrix (å ?) is an obvious identity. Condition (ii) together with

ab*:ba* and cd*:dc* gives

(6) (:',)(-f. -:) :(å 
?)
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which shows that s-r: ( -!: 
-2.) is a right inverse. As soon as the group prop-

erty has been proved it is then also a left inverse. This can also be seen directly by
showing that d*a -b* c :1.

The missing observation will become clear through a different characteruation

of Clifford matrices. The matrix t:(1 UO) is made to act on vectors x according

to the rule

(7)

(8)

gx - (axf b)(cx*d)-t

In order for this to make sense it is necessary to pass from Rn to the compactification
Fn:Rnu{-}. The rules for including @ are exactly the same as in the complex
case. The numerator can be written as c(x*c-ld\ and is thus visibly in f"u{0}.
The value gx is never indeterminate, for ax*b:cx*d:O is incompatible with
ad*-bc*:|. We note that g--ac-L and g-1-: -c-Ld except when c:0,
in which case both are -.

We shall show that g is a Clifford matrix if and only if (7) determines a bijective
mapping g:E'*-R'. The first step is to verify that gr(g2x):(ggz)x showing that
grgs is bijective if gl and 92 are. The second step is to note that g has the factorization

(:',): (å "';')[';':) t? 
-å)(å '-;o)

The flrst and last factors represent parallel translations by the vectors ac-r and c-rd.
The second is a stretching by the factor c-2 if c>0, a rotation represented by the
matrix q(c') if lcl:1, and a product of both, in either order, if neither is the case.

Finally, the third factor stands for a sense-preserving inversioll n+ -x-L. All
these matrices represent simple bijective mappings of ft-' which are in fact genera-

tors of the sense-preserving Möbius group M(Rn)+. It follows that every Clifford
matrix induces a Möbius transformation. Conversely, every sense-preserving Möbius
transformation is represented by a product of factors like the ones in (8) and will
therefore induce a bijection. In particular, the product of the matrices will be such
that g*-ac-1 and g-1-: -c-Ld are vectors. In other words, condition (iii)
is fulfilled. If c:0 an even simpler argument proves (iii').

All told we have sketched a proof of

Vahlen's theorem. The Clffird matrices form a group whose quotient modulo

tfl 9) isisomorphicto M(R")+.(u r/
A Clifford matrix in dimension z is also a Clifford matrix in dimension n *l

(and in all higher dimensions). As such it automatically extends the corresponding
transformation in M(R")+ to one tn MlRo+t}+ given by the same matrix, but v/ith
x(Rn replaced by x*x,en€R"+l. Because both mappings are sense-preserving

the extension maps the upper half space .EIo+l on itself and is in fact a motion in
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hyperbolic (n*l)-space. This aspect is by itself a strong motivation for the use of
Clifford numbers.

For later use we record the formula

(9) sx - s! : (cx + d)* -'(x - y)(cy * d) -t

(see [Ma]), or in infinitesimal form

d g x : (cx i d)* - | dx (cx -f d)-L

from which we deduce that g'(x) is the matrix lcx*dl-zq((xc1-d)') with the opera-

tor norm lg'(x)l : lcx* dl-z.

3. General renarks on fixed Points

A vector u€Rn is afixedpoint ot a:(X un) ,, **u:u(cu*it). Because of

the lack of commutatinity this equation is not trivially solvable. However, if the

unknown is replaced by cutheequation already looks more like an ordinary quadratic

equationn and if we go one step further and introduce the unknown ).:cu*d the

equation takes the surprisingly simple form

(10) 12 - (cac-r1 ilL* cc*-t : 0,

provided that c*0. If u is afixed point then L is a solution of (10). Conversely, if
,1is a solution of (10), then u:c-l().-d) is a fixed point provided that c-LAis a

vector.
In what follows we shall use the same letter for a matrix g and the transforma-

tion it induces. The fact that g and -g induce the same mapping is usually irrelevant

and can be ignored. If å is another Clifford matrix, then g and hgh-r are conjugate.

Ifg has the fixed point u, then hgh-L has the fixed point ha. For this reason the whole

fixed point problem is the same for conjugate matrices, and in fact for the whole

conjugacy class.

The point - is a fixed point of g if and only if c:0, and 0 is a fixed point if
å:0. If both are fixed points g will be of the form f* ,9-rl. A matrix g is diago-(U ,t--'l
nalizable if it is conjugate to a matrix of this form. Suppose that ngn-:(t ,.9-t)
Then g has the fixed points u:h-L| lnd u:h-r*. Here å is not unique, but we

make the specific choice

t9

(1 1) (r],r-, - (u-",r-,,)'h - hu,u:
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An easy computation, which makes use of a and u being fixed points, leads to

(r2)

(1 s)

(16)

hu,, gh;,!, : (r"- u)U" *:)(u - u)-' 
,uo+ d) 

.

Because dd*-bc*:l for all Clifford matrices it follows from (12) that culd
and co*d are simultaneously real, and that lcutdl:l implies lcu+dl:I. This
will play an important role.

The isometric sphere S(g) is the set of points where lg'(x)l:1, i.e., lcx*dl:1.
It is an ,S'-1 with radius lcl-1 and center B-1-: -c-Ld. Similarly, S(g-1) has

the same radius and the center g*:ac-r. As in the complex case, g maps Sfu)
isometrically on S(g-1). A fixed point which lies on one of the isometric spheres will
necessarily lie on their intersection.

Conjugation by parallel translation has a particularly simple effect and can be

used to achieve an interesting and helpful symmetry. If p is a vector one finds

(13) (å

where the element marked with a star is unimportant. The important observation
is that c has not changed, and neither has the quantity g--g-1-:ac-r+c-Ld.
It is convenient to introduce the notation o:(ll2)(ac-t1-s-rd). With this notation
(10) is replaced by

(r4) Az -2(co) 1+ cc* - 1 : 0.

If we choose B:Ql2)(c-1d-ac-1) in (13) the matrix on the right will be of the
form

f) '(å 
-'): (':u' _,u*o)

so:f: oco;:.-')

where the element on the upper right has been calculated from / (gJ: l. We shall
say that gois normalized, and we have shown that every Clifford matrix with c*O
is conjugate to a normalized matrix. If go has a fixed point uo, then the original has

the fixed point uo*(l l2)(ac-L-c-1d). As far as fixed points are concerned it is

therefore sufrcient to consider normalized matrices.
If g is normalized an easy calculation shows that u is a fixed point if and only

if it satisfies the condition

c(u*o)c*(u-o):-1.

The symmetry is complete if c:c*. In that case u and -a are simultaneously fixed
points. Condition (16) replaces (14), but in some connections (la) is easier to use.
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4. The hyperbolic case

A Clifford matrix, and the corresponding Möbius transformation, is called

hyperbolicifitisconjugate to a matrix (å ,9r) where.l is real and different from

t L Except for changing the sign or interchangng I and 1-1, it is the only diagonal
matrix in its conjugacy class.

If g has the fixed points u and a it follows from (12) that cu*d and co*d
are, except for sign, equal to )" and ).-L in either order.

21

Theorem A. The matrix

co is real and (co)' > 1. When

solute ualue >2.

with c *0 rs hyperbolic if and only if
is also true that a+d* is real and of ab-

r:(7 i)
this is so it

Proof. If g is hyperbolic with fixed point u we may assume that culd:)">O.
It follows that c-t:1-L(u+c-Ld) is a vector, and hence that c:c*. From
(10) we conclude that 2co:cac-r+d:).+,1-1 which is real and greater than 2, so

that (co)z >1. Furthermote, ac-L : s* -14* so that cac-L * d: a* { d: a I d* >2.
Conversely, co rcal implies that c is a vector and c:c*. Together with (co)z=l
it becomes clear that (14) has two real roots .1, ,t-1 which correspond to vectors
u, o, and (12) shows that g is hyperbolic. n

From the explicit solutions )": co X((co\z -l)tt2

u, o : |(ac-t-r-'61+| g-r((alil*)z 4)'t',

in close analogy with the complex case. If g is normalized the first term is missing.
The inequality lcol>l expresses the fact that the isometric spheres do not

intersect. The sphere wth u and u as the end points of a diameter intersects the iso-
metric spheres at right angles.

R e m ar k. If c - 0 but b *0 the theorem is

is conjugate to g. If b - c - 0 we know from the start
points 0 and oo, if and only if a and b are of the form

5. The elliptic case

It is natural to say that aClifford matrix is ellipticif it is conjugate to one of
the form (3 l), l,tl:l, ).*xl.In this formthedefinition is ambiguous, unless

one specifies in what dimension the conjugation has to take place. Our choice is to
say that a Clifford matrix g in dimension n is elliptic in R' if there exists a matrix

appricable to (-! 2) which

that g is hyperbolic, with fixed
A, 7-t with ). real and * Xl.
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h, again in dimension n, such that hgh-t is of the required form. It is of course per-

missible to consider the action of g in 4n+1, and it can happen that g is elliptic in
4n+1, but not in Rn.

If g is elliptic in R' the discussion in Section 3 has already shown that g has at

least two fixed points u and u.lf c*0 they are both finite, and we conclude from
(12) that lcu+dl:lcu*dl:1. In other words, all fixed points must lie on the inter-

section of the isometric spheres ^S"-t(C) and Sn-1(g-1). Because the intersection

must contain at least two points, all hyperbolic matrices satisfy the basic condition

locl=1.
We assume again that g is normalized, ac-r:c-rd:o- The case o:0 is

exceptional and will be treated separately. When ol0 the intersection of the iso-

metric spheres is an ^S'-2, situated in the hyperplane through the origin perpen-

dicular to o, with center 0 and radius r given by rz:ltl-'- lol2. In the sequel,

S'-'(r) will refer to this particular (n-2)-sphere; it reduces to two points when

n:2.
The axis of an a(ln consists of all x€ft'\{O} with x:axa'-L, i'e', the

eigenvectors of q(a) for the eigenvalue 1. The axis will be denoted by V(a). Because

q(a) is sense-preserving, the codimension of V(a) is even. Therefore dimV(a)=n-2
except when a is real, in which case V(a):R'\{0}. It is a purely algebraic task

to determine V(a) explicitly when a is given, for instance as a product of vectors in ltn.

Theorem B. Assume that g is normalized and oc*0. Let E denote the

angle between o and its orthogonal projection on V(oc). Then g is elliptic in R' if
and only if dim V(oc)>2 and locl=sss q;

The set of fixed points is the intersectiotn of S'-2(r) and -o*V(oc). If
dim V(oc):k it is a sphere 

"t-z- 
5n-2(r) with radius r cos E. For k:2 it reduces

to two points.

Proof. We know that u is a fixed point if and only if it satisfies (16). If g is
elliptic we also know that u lies on Sn-t(r), which means that u is perpendicular

to o and lu+o1:lu-ol:lcl-l. Subject to this condition (16) can be replaced by

an equivalent property with a more obvjous interpretation.
The fact that u is perpendicular to o is expressed by ou: -u6, ot uo-L: -o-Lu.

This leads to

Itl-r@-o)-t - (uo-l- I)o_ - (o-tu+I)o - -o-t(u*o)o,

and it follows that (16) can be replaced by

(I7) oc(u * o)(oc)' -1 - t) + o.

In other words, u*o lies on the axis of V(oc), as asserted in the second part
the theorem.

of
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If g is elliptic there are at least two fixed points. It follows that -o*V(oc)
must meet S" .2(r) in more than one point. this is impossible unless V(oc) is of
dimension k>1. lt is readily seen that the parallel to V(oc) through -o intersects
the ball B"-t(r) if and only if loltanq=r, which is the same as locl=sssg.
Under this condition it will intersect S'-'(r) in a (k-2)-sphere of radius r cos g.
This is the set of fixed points.

Forthe converse, all oneneeds is to observethat locl<cos E and k>l guaran-
tees the existence of two points u and a which lie on Sn-z(r) and satisfy (17). It can

then be read off from (12) thatg is conjugate to a matrix (å t) with l,tl: I and

is thus elliptic. !

The result is particularly simple if o belongs to the aros Y(oc), in which case

Q:0.

Corollary. The uector oQV(oc) if and only
the condition locl=l is necessqry and sfficient for
euen, in Rn+r if , is odd.

co-(oc)'. When this is so,

to be elliptic in Rn if n ,r
if
oö

We are still assuming o*0. The condition o(V(oc) reads oco:o(oc)' which
is the same u" gq:(oc)'. If n is even, so is k. Since o is in V(oc) it follows that k>2
and, by the theorem, g is elliptic in R".If n is odd z* I is even, and g is elliptic in
.Rn+l. More explicitly, o and en are linearly independent vectors in Y(oc) so that g
is always elliptic in Rn+r regardless of the parity

For n:2, the classical complex case, oc:(a+d)/2 and the corollary reduces

to the familiar fact that g is elliptic if and only if the trace is real and of absolute
value =2.

It remains to consider the case oc:O. If c:0 and b+0 the theorem applies

^ (-! 3) *t"n is conjugate tog by means t (-? å) " 
b:c:o, g is elliptic

if lal:ln and u is a fixed point if it belongs to V(a).
If o:0 and g is normalized the isometric spheres coincide with each other

and with s'-l(lc1-r;. rro- s: (! - "J-') it is seen that u is a fixed point if and

only if lul:lcl-l and q(c)u:-u. The mapping x+-x is sense-reversing

with matrix t:(-å ?"-r) The fixed points will be eigenvectors of q(c)"r for

the eigenvalue l.lf n is even I is an eigenvalue, and g is elliptic in -R'. If z is odd g
is elliptic in Rn+r.
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6. The parabolic case

A Möbius transformation is said tobe parabolic if it has one and only one fixed
point in E. We shall use an alternate definition which is more in harmony with
our preference for normalized matrices. The equivalence of the definitions is stated

as a lemma. The proof follows a suggestion by B. Maskit.

Lemma. A Clffird matrix has a single fixed point if and only if it is conjugate

to s normalized matrix with fixed point 0.

Proof. A norm alized matrix with fixed point

o(.R" and oc(co)* -ococ*:I. This condition can

cc*-t or as oc-(co)' together with lorl- 1. We

fixed points.
A fixed point u would satisfy ocn:acu*aco, from which lol:lu*ol. The

same relation written as ocu_ucu:uco implies lrs-ol:lol. The two conditions
are incompatible unless u:0. Hence 0 is the only fixed point.

Suppose next that g has a single fixed point. As far as the lemma is concerned

we may assume that the fixed point is at -, in which 
"ur. s:(ff 

"!-r). 
In matrix

language a fixed point u would satisfy (I-lal'q(a))u:ba*. If lal=l the matrix
I-lalzq(a) has an inverse and the equation can be solved for u. If lal>l the same

reasoning applies to s-'. It follows tn* t:(3 T') with lal:|, s*:u€Rn.
The axis V(a) is the null-space of l-p(a). The null-space and the range of

I-p(a) are orthogonal complements. It is therefore possible to write tt:up-
(F-aBa'-'1 where uo is the orthogonal projection of u on V(a) and P(R". Trans-
lation by p transforms g into

tå ')
Here uo*O since otherwise g would have the fixed point -8. Conjugation by

(-? å) changes the last matrix tt (-i:,r", 2). Because ttna':anto this matrix

is normalized with fixed point 0 and o: -u;1. We have shown that g is conju-
gate to a matrix of the required type. n

In the following theorem <p will again denote the angle between o and its projec-
tion o, on V(oc). The proof is very similar to that of Theorem B.

o is of the form (rr, :") with

also be written either as (oc)z -
show first that there are no other

Theo rem

V(oc)*O and

,(å -r):(; ua'-:f*u"): 
t; "å!')

c. The matrix r:(7 

")
lorl-cos g. The fixed poin

with oc *0 is parabolic if and only if
t,r -o*locl-'oo.
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Proof. It is no restriction to assume

the only fixed point of g. Conjugation by

and results in

normalized. Suppose that a is
1\ /1

;) throws the fixed point to oo

that g is

h-t_l

("f o 
o-;,): ('nf ' @-ir,)

h4h-1 -

As in the proof of the Lemma this implies lu+o1:lu-ol:lcl-l so that u lies on

the intersection S'-2(r) of the isometric spheres. In addition, c(u*o)c*(o-u):1,
which is nothing else than (16).

Exactly as in the proof of Theorem B, a point u€Sn-2(r) is a fixed point if
and only if u*o(Y(oc). Therefore, if g is parabolic S'-2(r) and -o*V(oc)
meet in a single point. Since ol -o it follows that V(oc)+0. It is also geometri-

cally evident that t:loltan E, or locl:cos g. Conversely, if this is so there is a
single common point u which must be a fixed point. It follows by (12) that any other
fixed point z would satisfy lcu+dl:1 and hence also lie on S'-2(r) and on

-o*V(oc). The contradiction proves that g is parabolic. tr

7. An illustration

Sections 5-7 provide a recipe for recognizing hyperbolic, elliptic, and parabolic

transformations. It is nevertheless useful to consider an explicit example which
shows how the nature of a Möbius transformation changes with a varying parameter.

Because o is a vector it is of course always possible to choose coordinates so

that o is real and >0. From our point of view it is essential that the change of coor-
dinates be given in terms of the coefficients. We assume o+0. A rotation by e(q),

lal:l, repraces t:(i'r) * (Y:r 
"!!;;) 

and hence o by q,oc.*. rhis is

positive if aoa*: lol, or Aa' :ollol. If a is a vector this becomes uz:ollol. There-

fore, if the square root exists and is a vector, the choice a:(6llol)ttz leads to the
desired result.

It is a basic result that every vector s has a square root which is itself a vector.

To see this we denote the real part of s by se and observe that ls-ssl2:-(s-ss)z.
If slso there are two square roots given by the formula

y's : r[( I'tt " 1'e+t'+ ( I'1.* 
)"').

The verification makes use of lsl':så+ls-"ol'. A positive number has its usual
two square roots, and a negative number has infinitely many if n>2, namely

lsl(lre, + ... * to-po-) with ltl - l. We have shown that there is no loss in generality
in choosing o to be real.
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Our example will be a normalized Clifford matrix with n:3, o=0, and c:
(I*er)er. Note that !tl:/T. We shall also need cc*: -2er, c€yc* : -2, cerc* -
-2€2, c€sc*:2e" from which it follows that

( o-t oo\l-r o ool
Q(oc):S(t):l O 0_1 01.

Io o o1J

Theaxis V(oc)nRsisspannedby l1e. andtheaxisin.R4by lae, ande". In
either case e:45o.

We shall determine all fixed points h Rn, and for this purpose we make use

of (16) which we prefer to write as

(18) cQt*o)s*--(u-o\-t:-,':L.' lr-o1''
With u:uo* urerlu2e2*uses (18) becomes

- a1- (os * o) e1 - a2e 2 i u se g : 
#(- 

(uo - o) + u p 1 I ts 2e 2 I u 

"e 
)

and thus

Uo- C U1 U2 UsuL:ffi' I)o*o

It is clear at once that ur:Q. The first two equations give a'o+a!:6'. If we are

looking only for fixed points in R3, ur:Q 41d ftt-olz:261o-u). This makes

ar:-ll$o and uo:X(fio)(16o4-l)u2 provided that o>-112. For o>112 the
transformation is loxodromic with fixed points Qfio)lt(l6oa-l1ttz-"r} t
o:ll2 it is parabolic with the fixed point -etl2. This agrees with locl>cosg
in the loxodromic case and locl:cos g in the parabolic case. The parabolic example

is particularly important because it shows that the isometric spheres of a parabolic

transformation need not be tangent to each other.
If we look for fixed points in Ra we have to include the case urlO which leads

to lu-ol2:1f2, us:O, uL:-c, and uzu:112-2o2. Fot any 0<o=l/2 it follows
that g is hyperbolic in R4 with fixed points -ot((l -4o2)12)ttz"r.
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