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1. Introduction. In this paper we illustrate a method for deriving information

concerning the derivatives of the conformal capacity of certain extremal rings in

n-space. For fixed n>3 and l=p=n-|, these rings are denoted by &,, where,

fq1 Q<l< l,
R,,r(t): B"\B{/);

that is, Än,, is the ring consisting of the open unit ball in euclidean n-space minus the

closed concentric p-dimensional ball of radius /. Usually we identify .Rp with the

subset {(rr, ..., xr,O, ,..,0): x; real, l=i=p} of R".

The conformal capacity of R:Än,r(t) is defined, as usual, to be

(1) tt : tt,,r(t) : cap Rn,o(t) : iXf 
"f*",, lYul da,

where ar€Cl(R), z:0 onffi, and u:l on Sn-1.

The modulus of R is deffned by

(2) modR:(on-rfpfl@-r), o!,-r: mn-r(Sn-l).

It is well known [1] that mod Ä2,1(l): nK'l(4K\, so that

Pz,Jt) : caP R2,1 (t) : 2nlmod Rr, t (t) : 8Kl K' ,
where

(3) K: K(t):;['Kt-r') (I-tlx\l-Ltz dx, K' : K(t"), t' : (I-t2\u2.

If one can show that among all rings with a certain geometric property a partic-

ular ring is extremal, that i3, has the maximum modulus, then this fact can be used

to determine distortion properties for quasiconformal mappings (cf. [15). The rings

Än,o have the following extremal property (cf. Theorems 4 and 5 in tll). Let Ä be

any ring in .P consisting of the unit ball minus a continuum C, and suppose the pro-
jection of C onto some p-dimensional linear subspace of .P has p-dimensional meas'

ure at least moBe(t), O<t<|. Then mod REmod R,,o(t).
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It is well known [15] that if a ring R has nondegenerate boundary components
then there is a unique admissible extremal function u for the variational problem (l).
By standard techniques of the calculus of variations it may be shown that the.Euler
equation for this extremal problem in R is the quasilinear (degenerate) elliptic partial
differential equation (cf. [5], [24])

(4) div (lVuln-'Yu) - 0,

of which the extremal function a is a weak solution.
Since each of the elliptic integrals K and K' satisfies the ordinary differential

equation t(l -tz)u" 1(l -3tz)u'-ta:0 ([0, Formula I18.02], 19, p. 2ll), where '
denotes differentiation with respect to t, it follows from the theory of ordinary dif-
ferential equations l2ll that w:ltz,r(t) satisfies the differential equation

(5) ^s-(0 - +(tr* t)lQ-l'))r,

where ,S. denotes the Schwarzian derivative (w"fw'\'-(w"fw')212. The differential
equation (5) was originally derived before 1890 (before the introduction of the
Grötzsch ring) without the benefit of the Schwarzian derivative and using only the
properties of elliptic integrals (cf. [13]).

Since an exact formula for the capacity is not known when n >3, it is much
more difficult to obtain information about the derivatives of po,rfor these n than when
n:2. However, in this paper we illustrate a variational technique by means of which
one may obtain integral representations for these derivatives, and then we estimate
these integrals to find asymptotic limits for pi,of) as I tends to 0 and to I and also to
find an inequality satisfied by the second derivative {l,r!).

For the most part we shall follow the notation introduced in [2] and [a].

2. Acknowledgements. The author wishes to express his gratitude to M. M.
Schiffer, who in private consultation contributed the ideas in Sections 6 and 7, and
to T. Iwaniec for assistance with the argument in Section 3. The author also thanks
D. H. Y. Yen and F. W. Gehring for conversations concerning this problem.

3. Snoothness of the extremal function. It has been shown by N. N. IJral'ceva

[22] rhat if z is a weak solution of (a) in a domain QcN wLth \Q€C-,
then u(Cr'4(O]; that is, u(Ct(Q) and Yu is Hölder continuous with exponent

4 =0 in O. An example of B. Bojarski and T. Iwaniec shows that this is a best possible
result as to smoothness [7].

In the present case this degree of smoothness up to ,Sn-l for the extremal func-
tion u for -R,, permits the calculations in Sections 6 andT to be carried out. It is
easy to verify directly that the function 'fr(P):2-r1p1lP l') is a solution of (4) in
the ring -R which is the reflection of Ro,, in ,Sn-1and that r2 has the boundary value
fr:l on ^Sn-l.
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Since lVal=0 on ,Sn-1 by Lemmas 5 and 6 below, we may appeal to Niren-

berg [19] and Morrey [18] to conclude that u is even real analytic in a,,p near ,Sn-l.

Likewise fiis real analytic outside of Än,o near S'-1. Since u:A and Yu:YA on

,Sn-l, the sphere Sn-1 is a removable singular set (as in the plane harmonic case).

Hence u is real analytic in a neighborhood of S'-1. Thus the calculations needed to

justify the formula (54) for the second derivative p" ate valid.

4. Symmetry of the extremal function. we want to show that for each n>3,
I=p=n-\,0<t<1, there is a two-dimensional subset of Ä,,, such that all the

values of the extremal function u in Rn,o may be realwed by appropriately rotating

and reflecting the values of z taken on in this plane set.

Lemma l. If u is the extremal function for cap R,,o(t), n>3, l=p=n-|,
O<t<|, then u has the same symmetries as Rr,r'

Proof. First, suppose p-1. It is convenient to use cylindrical coordinates

(*,y,") in Än, where x:xr,y is the length of the vector (xr,,'.,xo), and e($r-z
(cf.l2l, p. a). If u:u(x,y,e), then the function \t*:u*(x,y) obtained by averag-

ing the values of u(x,y,e) over s,-2 is admissible for capÄ",r(l) and symmetric

about the x-axis. Hölder's inequality implies that

lvr*l = (*l* ,lYu(x, v,e)l'dm,-,,"t"'.

By multiplying both sides of this inequality by olt' raising both sides to the power n,

and integrating over the Plane set

82* : {(x, y); xz*yz = 1, y > 0}

we may show that the integral of lVz*l' over Än,1(/) is at most cap Ä",t(l)' By

uniqueness of the extremal function we conclude that i":u, so that z must be al-

ready symmetric with respect to the x-axis'

We may show further that the extremal function z must be symmetric with re'

spect to the hyperplane x:0 in R". For let u*(x,y):(u(x,y)+u(-x,y))12 n
B\ and extend u* to all of Rn,, by symmetry. Then, by an elementary inequality,

lYu*(x,y)l = $(lvz (x, y)l'l lYu(-x, v)l'))'t"

in B\.It is now easy to show that the integral of lVz*l' over Än,1 does not exceed

capRn,r, and we may conclude that u has the desired symmetry.

Next, if p:n-I, we may achieve the analogous result concerning symmetry

about the y-axis and the hyperplane /:0 in R" by taking y-x, and x to be the

length of the vector (xr, ..., xn-) in the above argument.

Finally, if 2=p=_n-2, we may use the procedure suggested by J. Sarvas in

12,p. I2lto represent any point (xr, ...,x,)€R' in coordinates (x, y, €t, €z), where x
and y are the lengths of the vectors (Jrr, ..., x) and (xn,.r, ..., x), respectively, and

31



32 GrsN D. ANpnnsoN

eL and €2 belong to (p - 1)- and
tively. For any er€ Sr and e2€ 52

the two-dimensional set

(r-p-l)-dimensional spheres S, and Sr, respec-

we may think of Rn, r(t) as being obtained from

Q(et, ez; t) : {xe1l yer: xz * yz = I, x = 0, y = 0\{xer: 0 = x < r}

by rotation around 51 and 52.If u:u(x, !, €r, e) is extremal for cap R ,r, then the
function u*(x,y) obtained by averaging the values of u(x,!,et,ez) over &X^gz
is admissible for cap -R,,, and symmetric with respect to S, and &. By the same argu-
ment used above we may then show that u*:u in Ro,r, so that u must have the
same rotational symmetries as the ring .Rn,r. tr

Remark. Lemma I implies that the Euler equation (4) for c,ap R,,o may always
be reduced to a partial differential equation in two independent variables in a set
g:{(x,y); x2ay2=1, x>0, y=0}.

5. Acoordinateformof theEulerequation.For k:t2, z:xti!, and (:aaiB, 1s1

,:f(O:{E sn((, k) be the plane conformal mapping of the rectangle {(: O=q=K,
0<.8<K'12\ onto the open first quadrant g of the unit disk in the z-plane, with
boundary values 0, t, l, i at 0, K, K+iK'12, iK'f2, respectively. Here sn denotes the
Jacobian elliptic sine function ([9, Chapter 5], [0, Formula 119.01]) and K and K'
are the elliptic integrals in (3). It will be particularly convenient to write the Euler
equation (4) using the variables u and f inherited from this conformal mapping. The
coordinate curves c:constant and B:ssnstant in I arc known as bicircular quar-
tics [9].

When working with the ring &,, it is appropriate to employ a cylindrical coor-
dinate system having the xr-axis as the axis of symmetry. The relationship between
rectangular coordinates (xr, ...,xo) and such cylindrical coordinates (x,y,0r, ...,
0"-r) in -Rn may be written in detail as

xt: x,

*, j., sin 01 .. . sin 0, -, sin 0" - r,

*t j., sin 0t .. . sin 0, -, cos 0o-, *, ,

xn- ycos0,

(cf. [1], p.237\.In our case, for the ring Rn,r, we want to take x:Ref(O and
y:rmf((\, wherc (:d+ip.

We may write the gradient and divergence operators in the curvilinear coordinate
system (o, f,0r,...,4-r) as

(6) Y E - h;t eo€o+ h e' E p t e + Zi -_l lr;,' eei€oi
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and

(7) divv : r-ffr urtns*ft yu"1h,) + z;:: ft rn,rtodJ,

where hn,hp,he.,i:1,...,n-2 are the scale factors and H is their product (cf. t6]).
In the present 

-case, 
rotational symmetry implies that all partials of the extremal

function u in the directions eo. ate identically zero, so that we can drop all but the

first two terms in (6) when Elu or when g has the same symmetries as z.

Next, åo:å p:lf'\, while we may show that H:y"-'lf'l'O, where @ is inde-

pendent of a and B. Hence if we put

V : lYul-zyu : lf'lt-"(uf,+uft1<"-zttz(uoen* upep)

in (7) the Euler equation (4) becomes

(8) Qnu: div (lVul"-'Va)

+ $ @' t I r' l)' - 
2 (u!, + uzp)(n - 2') I 2 

u p)l : o.

When we carry out the computations on the right in (8) and simplify and then use the

obvious modification (lls\':-g-s(g\12, where g:lf'lly and' is 0l0a or 010f,

we arrive at

Lemma 2. The Euler equation for the extremal problem (l) for Ro,, may be

written as

(9) (n-2)(ulu**2uoupunp*u2puuu)-l(u?* uzp)(u** upp)

- ! 6 - z1 1,,, + u?e) o n f ' l), lfi K r v ry) 
" " 

+ # (l f ' 
I I y)) * J 

: o

in cylindrical coordinates (u, f, e) with x-axis as axis of symmetry, where (u, B) are

bicircular quqrtic coordinates in B\ and e(Sn-z.

For the ring &,n-r we need to interchange the roles of the x- and y-axes in Ä2,

making the x"-axis the axis of symmetry in R". If we c:lrry out the above computa'

tions for this ring we obtain

Lemma 3. The Euler equation for the extremal problem (l) for Ro,n-r may be

written as

(10) (n-2)(u!,u*t2unupuop-lt$upp'1+(u?+ul)(u**upp)

1

-|(n-z)(u!+uzp)(xllf 'l)'1ft {lf 'V.l')u,+hKf 'llx)z)uo!:o

33

- vz -' I f ' f 'l|,; @ I lf ' l)" -' (u? * uzu!t'. -'1 1 z 
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in cylindrical coordinates (a,fl,e) with y-axis as axis of symmetry, where (a,B) are
bicircular quartic coordinates in the right half of the unit disk in the xy-plane, and
e< S"-2.

Remark. For later reference it is important to note here that Qou:
div (lVzl"-'9Vu) is a positiue (non-constant) multiple of the left side of the equations
displayed in (9) and in (10).

Finally, for the rings "tRn,r, 2=p=n-2, we may modify the above procedures
to obtain a coordinate system based on the ideas discussed in the proof of Lemma I
above. The Euler equation (a) foi Ro,o in this coordinate system becomes

where
,1,

However, rather than
another technique in
Rn,r-L'

6. A surface integral representing p. It has been shown by Gehring [6] and
Ziemcr [24]that if z is extremal for a ring Ä, then for almost all a€[0, l],

a (tu,)-h({,up)- o,
0a

- (x I lf ' l), -' 0 I l.f ' )" - 
p -' (ul * ufi)t" -2) tz .

to make estimates based on this equatiofl, we shall employ
Lemma 6 of Section 9 to compare these rings with An,1 and

I,-r*rlYuln-t dH"-1 - cap R'

y - (lYul"-'Yu)u do- I ̂
udiv 

(lvul"-'Yu) do,

(1 1)

(t2)

where f/n-1 denotes the (n- l)-dimensional Hausdorff measure. We show here that
an equation of type (l l) holds for the rings Äo, o when d: l, that is for u-1(1), which
is Sn-l by the maximum principle.

Theorem l. For fixed n>3 and 1=p<n-1, let R:&,o(r), 0st<1.
If u is extremal for trt:cap R, then

u: f ,*'u!-rdo'
Proof. If a is extremal for p:s6p A, then by Green's theorem (sometimes

called integration by parts) [2, p. 69]

[ *lY ul" dco - [ u*

where v represents the unit outer normal. But the last integral in (12) is 0 by the Euler
equation (4) for cap.R. Since a:0 on no@ and u:l on Sn-l, (12) reduces to

lYrl" d, lYrl"-'u, do.: 
.[ ,,-,T^

Since a is constant on Sn-r the tangential components of Vz are 0 there. Finally
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u,>0 on,Sn-l since 0<u=1 in R l24,Cotollary 3.11] and u:l on Sn-1'1) Thus

lYul:u, on ,Sn-1 and the theorem is proved' n

7. L surface integral representing P'. We next prove

Theorem 2. For n>3 and l=p=n-\, let R:Rn,o(t), }'t'l' If u is

extremal for p:caP R, then

p, :(n_I)rL f s^_,ddo,

where ' denotes dffirentiation with respect to t.

proof. Deform R into a ring R*:8"(l +s)\Em by means of a radialbound-

ary defoimation. Let u and u* be extremal for Ä and Ä*, respectively. Take u*:
u*ea*(ez) and use the binomial expansion to obtain

lY tt*|" : lY ul + ne lY ul'-zY u. Vu + (e').

Then for p*:capR* we have

p* : f ** lY ul' da * nt f ** lY ul'-zY u'Yu da * (ez)

: t ̂
lvul' 

da*e I r^-,lYul" 
do+ne [ *vur-'vu'Yudo*(e\

: [ ̂ lv"f 
da*e l r,_,lYul" 

do-fne f u^ulYul"-zu,do

- nr l *u div (lVal"-zYu) do*(ez)

: t * lv ul' da * e f ,,-, lY ul" ilo * ne f r*-, o lYul -z u, do * (e2),

where in the last two steps we have invoked Green's theorem and employed the Euler

equation (4) as in the proof of Theorem 1.

If P€ S"-1(r), we write P:(r, e) in spherical (polar) coordinates, where r: lP I

and e€So-l. Then for r:l*e we have

| : u*(lle, e) : u(L*e, e)+eu(l+e, e)+(e2)

: u(1, e\*eu,(\, e)+eu(\, e)+(ez),

so that t):-ur when r:1. Then insertingthis value of u into the expression for

p* obtained above and using the fact that lYul:y, on sn-l, we arrive at

(13) p* : p*e(!-n\ I*-,t$do*kz).

r) It has been shown by F. W. Gehring, in some unpublished notes, that if the components of
the complement of R are starshaped with respect to the origin then z is radially nondecreasing in rR.
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Finally, by conformal invariance of the capacity we have

(14) p* : p(tl(t *e)): p(t)-etp'(t)*(ez),

and comparison of the coefficient of e in (13) and (14) yields the theorem. n

8. An application. It has been shown by Gehring [4] that for a ring A:
:R,,n(t) the function modR*logt is monotone decreasing for 0=t=1. We
now show how this monotoneity follows from Theorems I and 2 above.

By Hölder's inequality,

f *-, 4-' do < olt!r([ *-, ui do)@-Dt".

Raising both sides of this inequality to the power nl@-l) and substituting the expres-
sions for p and p' obtained in Theorems I and 2, we obtain

pnt(n-t, = t(n-l)-r p, of,r!1-rl.

Rearranging, we may write this as

-(n-l\-ro!(n-t) /nl(L-n) p'+t-l = 0,

whichbecauseof (2)reducestothefact that mod-R*logt has a nonpositive de-
rivative with respect to t, 0<t<1.

9. Bounds for a, on ^Sn-l. In estimating p'itwillbe important to have upper
and nontrivial lower bounds for the radial derivative of the extremal function on
,Sn-1.

Lemma 4. If u ,r extremal for cap R,,1 (/t 1, then on ,Sn-l

(15) (!+k1tt<t-o1n;'+# = ur=T#a#,
where

n-2

Ao: f1nfjt-)"-' oPJo \srcr,l
and

s : sn (c, k), c : cn(a, k), d : dn(a, k),
(16)

sr: sn(fi, k'), cr: cn(f , k'), dr: dn(f , k').

Here K':K((f -r'1v1 is as in (3) and sn,cn,dn are Jacobian elliptic functions.

Proof. First put e:E(f):2flK' in the quarter disk g:{(x,y): x2+y2<1,
x>0, y>0), where x and y are the real and imaginary parts of/($ , (:a*ifr (see
Section 5 above), and extend E to all of -Rn,1 by first reflecting in the imaginary axis
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and then rotating about the xr-axis in Ä'. Then g has the same boundary values as

the extremal u in Rn,r. Moreover, referring to (8) and (9) we see that Q,9 has the
same sign in 9 as does -AbfKlf'llD').

Earlier we have shown (cf. (12) in [a]) that

(17) (+)':ffi*ffi,
where s, c,d,s1,cr,drhave the meaning assigned in (16). But then

fu {rl ru r>') : (- 1 -t 2s?- k'z sf) I (slcl)

by [9, p. 9] or [0, Formulas 731.01-.03]. Next,

Å
+(_t+2s?-kzs!):2(t-k zsfl) = 04si

for Q<.P<.K'f2, while -l*2sl-k""i:0 when s?:snz(K'12,k'\:ll(I+k)
([9, p. 14], [10, Formula I22.l0l). Since also sl increases with B for 0=P=K'f2, we

conclude tnat AQf((lf'llr)')=O in g,') so that Q,E=-0 in Äo,1. Noting that E:11
on åR ,r and Q,u:O h R,r, we may invoke the comparison principle for quasi-

linear elliptic operators (cf. [6, Theorem 9.21; see also [8]) to conclude that E=u
in Rn,r. We now see that if P€Sn-l, then

(1 8)

(1e)

u,(P): jiT- W=,l5n ry:E,(P)'
We wish to determine E,(P) for P€,Sn-1. For this we note first that

))
e, : T fr, : +rrm(eie 

g' (z)) : +mffi ,

where g(z):(:sn-t(zl/E,k), z:f(O:re'q. Using the derivative formula f'(0:
{Ern((,k)dn((,k) (19,p.91, [10, Formula 731.0U) and then the Gauss transfor-

mation (19, p. 721, [10, Formula 164.01]) we may reduce (19) to

a': (r#Kr-rn [cr 
+o(.+i#)'#l

when r:1, where tn denotes snlcn. By [9, p' 38] or [10, Formula 125'01] this is

2 D,.S1Q,:@ r. s?.DE'

,) The geometric meaning of this inequality is that the hyperbolic density of the rectangle

l(a,F):, lal=K, Q<f<K,l is nonincreasing as a function of f in the subrectangle {(u,P):
Q<q.<ItQ< P< K'12I.
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where

s: sn(tr*o;o, #), D:a,($+Do,#),
(20)

Å : sn (<t* otl, #), D, : a,(t+ D+, #)
Since K((l -k)ll+k)):(l +k)K'12 by [9, p. 73] or u0, Formula 164.021it fol-
lows from [9, p. 9] or [10, Formula l22.O2lthat Sr: I and. Dr:)lIEl0+n\. fn"s
when r:1,

QD q,: (rå86
by [9, p. 9] or [0, Formula 121.00], where D has the meaning assigrred in (20). But
another use of the Gauss transformation reduces (21) to

(221 2 I+ kszQ':(l@R

on ^Sn-l, where s is as in (16). Combinng (22) with (18), we have proved that the
second inequality in (15) holds.

To establish the first inequality in (15) we take

n-z

q:E(p):*l:Gffi)"-'0,
in 9, and extend E to all of Äo,, by symmetry as before. Then g:9 on 3r@ and
g:l on So-r, and wewishtoshowthat Qng=O hR,r.ByLemma2and(17)we
see that this reducäs to showing that

Q3) (n-t)q"-|a-r(#.#)-'(#)' E'=o

in 9, where' denotes differentiation with respect to f. But (23) is equivalent to

1 g-Zn

(#)' [(ä)-- (ä)- ffk. #)-'l = o

Since we have already seen that (drl6rcr))'=0, the problem is reduced to showing
that

(ä)'-(#.5!Å '=o

But the last inequality is obviously true. Thas Q,E=0 in Äo,1.
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Finally. since E-u on åRo,, the comparison principle for Q, says that cp>-u

in Ä,,r. Then as in (lS) we may show that u,>-Q, on Sn-1. But on Sn-1,

n-2

'' 
: |(#) 

o-' 
P' : f {t*ul''"-' +#

by [9, p. 14] or u0, Formula l22.lol and (22) above. Thus the first inequality in (15)

is established. !
Lemma 5. If u is extremalfor capRn,n-r(fn), tn"n on Sn-r

(24) å*#=u,=<r*or#t;'-l$,
where 

n-z

nr: I['''(-!"J"-' of.

Proof. The function z satisfies the equation (10) in Lemma 3' When E:E(P)
we see that Q,E:div(lV9l"-'gVq) has the same sign as does

(2s) (n-r)E" - + @ - 2)(x1lf 'l)'# (lf 'llx)')E' .

Now put E:q(f):201K' n the open fi.rst quadrant I of the unit disk in the

z-plane, and extend E to all of Än,n-. by reflection across the segment {(x,y\:
t < x <1, .y : 0) and then rotation about the y-axis in R'. Then qt :y on the boundary

of Rn,o-r, and (25) is nonpositive in I if and only if Abfi((lf'Vx)2)=0 there'

By (11) of [4] we may write

(26) (+l- 1+-t2s4-ry,

where s and d, are defined in (16). Then

(27) h(+)' :2k''s(rit;s(dl-kz) > o

by the derivative formula for d.r(19,p. 9l or [10, Formula 731.031) and the fact that

dr={E for 0<B=K'12 (19,p.141,[10,Formula l22.l}]).Th:us Q,cp=0 inÄn,n r,
the comparison theorem for Q, shows that u<E in Ro,o-r, and as in (18) we con-

clude that il,>_Q, on sn-x. But g, is givenby (22\ on so-l, and so the first inequality

in Q$ follows.
To establish the second inequality n (24) we set

1 f f ( sn(r, k') cn (r,

t,JolffiE - E(b: EJol@')

n-2

k)lÅ ,,
) 

we
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in 9, and extend E to all of Än, o -' by symmetry as before. Then g has the same bound-
ary values as does u, and we wish to show that Q,E>O in R,,n_1. By (25) and e6)
this reduces to showing that

(28)

3-2n I

u,3(1 + kF Bo' l*f'1 .t- ksz '

4 and 5, respectiuely.

where ' denotes differentiation with respect to B. By the differentiation formulas
([9, p. 9] or [10, Formulas 731.01-.03]) and the squared relations ([9, p. 9], [10, For-
mula 121.001) for the Jacobian elliptic functions as well as Q7) we may show that

(2e)

and

(30)

il
ft: {t, "l ar\ : (l - 2s?* k'2 s!) I d!

fr {to' * oi) I dl) : - 2k'a src,(t - 2s!+ k'2 s) | il!

: - 2k a (s(t1 ary ft 6,cr1 ar1.

Since (29) is nonnegative (see the argument after (lz) above) it folrows from (29)
and (30) that (28) is equivalent to

(31) (1+kzsa)/s2- (k,+d!)ld?-k'aslclld! > 0.

By differentiation it is easy to show that the first term in (31) has a minimum
value of 1+k2. Thus (31) is true in I if and only if
(32) | + k2 - (k, + dD I d?- k'n slcll dl > 0

for 0<B<K'12. But it is easy to show by the squared relations for the functions
s1, c1, d1 ([9, p. 9], [l0, Formula 121.00]) that the left side of (32) is zero. This shows
that Q,cp>0 in Ä,,o_., and by the previous reasoning involving the comparison
theorem fot Q, and an analog of (18) we see that u,<E, on ,Sn-l. But

e, : B;t(srcrldL)(n-2)l@-L) p,

in 9, and because ;lcrfdr:U0+k) when fr:K'12, and since p,:(l+k)-r.
.(l+/cr')/(l-ks2) when r:l (see (22)), we see that (33) reduces to the upper
bound for u, in (Z+j wtren r:1. tr

Lemma 6. Let 2=p<n-2, where n>3. If u is extrernal for cap n,,o({E).
then on Sn-L

(33)

(34)

where Ae and Bo are defined in Lemmas
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Proof. lf u@ and u@+L) ate extremal for cap.Ro,, and cap Ro,r,r1, respectively,

where 1 =p=n-2, then Qrub):Q,u@+D-0 in Rn,r*r, where Qn is the differen-
tial operator in (S). Moreover, uto)-ub+D-l on Sn-l, while ub)=u(p+r)-g on

E*Td Hence by the comparison principle for Q,, vtd2vQ+L) in 4,,p+r, and the

technique used in (18) shows that ufd=ufe+l) on Sr-1. The bounds in (34) then follow
from Lemmas 4 and 5. n

Remark. As an immediate consequence of Theorem l,Q), and the proof of
Lemma 6, for each n>3, l=p=n-2, and for each f€(0, l),

mod R ,,-r(/) = mod R ,o*t(t) < mod &,p(t) 
= 

mod Ä",t(r).

Alternatively, these inequalities area consequence of the monotoneity of the modulus

ll4, Lemma 2f.

10. An asymptotic Iimit for the derivative of cap R",o(t) as / tends to 0. We

may now combine Theorem 2withthe bounds for z, obtained in the last section to
derive bound s for pi, oQ) that are asymptotically sharp as I tends to 0.

Theorem 3. For each n>3 and l=p<n-|, and for t:{8, 0<k<1,

(35) A;" (1 + k)r11r-n) Crr 1 lti,1(/) = (21 K')" (L + k)t-n Co,

(36) (2lK')"(1 + k}t-"Cr, € lt'n,n_L7) =_ 
Bk'(1 + k)Gz"z*4n-L)1(n-1) Co,

(37) An"(1 + k)t11t-n)Cn € p'n,rQ) =- Bk '(1 + k)Gz"z+4n-L)t(n-1) Co,

where A1, and Bo are as in Lemmas 4 and 5, respectiuely, and

c*:2(n- r)o,_2k-1, I:(e@1"-' ffia,.
Proof. By using the derivative formula for sz ([9, p. 9], [10, Formula 731.01D,

expressions for the modulus of the elliptic functions ([9, p. 4l], [10, Formula l2$.0U),
the values when p:19'12 (19, p. 147, [10, Formula 122.001\, and the squared relätions
([9, p. 9], [0, Formula 121.00]), we may show that

(38)

when p - K' 12 (r - 1).

(3e)

there. Thus by Theorem

lf,G)l:(1 +k)m
Likewise we may show that

y-rmf(o - #
2, Lemma 4, Fubini's theorem, (38), and (39) (see also [2,
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Section 3l) we have

tl,, r(t\ > (n - l) k- L | 2 A ;' (! + kY t $ - o f ,* -,(ffi)' O "

: (n - t) k-| tz A; n (r * k)n t e - nt 2o n -, I : (#)' r" -, IJ' G)l da

: (n - t) k-tt 2 A k' (r + k)u Q - n) ro, -, I { (#*)" -' ffi a".

This establishes the first half of (35). The second half of (35) follows from the upper

bound for u,in (15) by the same reasoning. Likewise (36) follows from Lemma 5.

When 2=p=n-2, (37) follows from Lemma 6,the first half of (35), and the second

half of (36). n

Theorem 4. For l<p<n-|, n>3,

Proof. Since s2< | and cd=l it is easy to see that (1+/cr)/(l -ksz)=(l+k)l
(l-k) and cdl(l-ks\=-1111-k\ (19,p.91, [10, Formula l2l'02]). Thus Lebesgue's

dominated convergence theorem and the fact that the integrand in Co reduces to

cosn-2d when k:0 ([9, p. l0], [0, Formula 122.081) allow us to conclude from (37)

that

(40) liminf fkAtp!",r({E = 2(n-t)o,-rfi'' cos"-zada.

Since the integral in (a0) is on-rfQo,-) (l2Zl, cf. [4, (3)) we see that

(41) timrpf t/E &u'",r([k) > (n-l)oo-1

and

(42) lig*.rop lE alpi,r({n) = (n-t)o,-,.

Finally, by Landen's transformation ([9, p. 721,U0, Formula 163'01]),

(43) ful(qc): (11k)isn((t+k)p, (r-k)l(t+k)) > 1+k

for 0<fr=Y'12. Since lim,,-oK':*- ([9, p. 10], [l0, Formula lll.OsD, we con-

clude also that lime-6 At: I -. Then l'Höpital's rule together with the special

values of q, c1, d, when f :K'12 ([9, p. 14], [10, Formula 122-l0D imply that

(44) Li!tAkl(K'12) 
: 

llj$(1+k)(n-s)/(D-1) - 1'

Next, (43) and the factthat the graph of sn(u,ft) is concave down for 0=a=K
imply that

(45)

1gå 
r(ros +)" t!,,,(r) - (n-r)on-'.



(46)

Moreover by 19, p.

(47)
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for g=_B=t(12. since K((l-k)l!+ft)):(l +k)K'12 ([9, p. 73], [10, Formula
164.021), it follows that limp-q-Bp:*-. Then, as n (44), an application of
I'Höpital's rule shows that

ItS Bol(K'12) : ItS 
(1 + k)(z-ntt(n-1) : 1.

2ll or [10, Formula 112.0U

1*g (K'lz)llos $fln:1,.
Recalling that t:{E , we see that the limit in the theorem now follows from (41),

(42\, (44), (46), and (47). !
Corollary l. Let Ro,"(l) denote the n-dimmsional Grötzsch ring consisting of

the open unit ball in P minus the segment {P: O=xr=t, xj:O, 2=-i=n}. Then

m r(t*1)' *"uoRc,"(r) 
: (n-r)on-1.

Proof. There exists a conformal mapping of -R",t(a) onto Au,o(l), where

t:2al(l*az) or d:(l -(1 -rz1trzlt. Then the corollary follows from Theorem 4

with p:l by a short computation. n

11. Behavior ofthe derivative of cap R ,eQ) as I tends to l.

Theorem 5. For each n>3 and l<p=n-|,

liplnf (t - t) p;, 
e 
g\ 

= 
(n - t) o n -'(l :'' (sin p)tz-'rrto -'t a fl),

lim-Eup (t-t)p;,e7) = (n-r)on-'(l:'' (sinp)tr-zv<"-" af) ,

lim-s}p (l-t)p:",Jt) = 
(2ln)(n-l\o,-, = liminf (1- t)pl,',,-t(t).

Proof. These estimates will follow from Theorem 3 when we have determined the

asymptotic behavior of the bounds found there for the derivatives.

First, by [9, p. 10] or [10, Formula lll.02],

(48) ItS 
K'12: Tcl4.

Then by (43) and (45) we may take the limit under the integral sigrrs in A1, and B;
by [9, p. l0] or [10, Formula 122.081, (48), and a simple change of variable of inte-
gration we have

(4e)

and

(s0)

ItS Ar,: 2Lr<t-, I:'' lsin P)Q-n)t@-L) dP

ItE Br,: 2@-2n)t@-r) I:,' (sin P)@-L)|@-L) dP.
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Next, we determine the behavior of Cp. Using the Gauss transformation ([9,
p. 721, [10, Formula 163.01]), we see that

(51) I:(fffi)'-'++# dq, : (r*k)-r 
1x. cn -2(r, k*)dnL-,(r, k*)dr,

where t:(1 *k)u, k*:21/El0+O, and K*:K(k*):(l +k)K. By the change of
variable

1' : (k* k*' m(r, k*)ldn(r, k*))2, d( : 2(k* k*')'snG, k*)cn(r, k*) dn-\(r, k*) dr

in the last integral, where k*': (l -k)10*k), ndthe squared relations for the ellip-
tic functions ([9, p. 9], [0, Formula 121.00]) we may reduce the second integral in
(51) to

(52) ff,- cn"-'(r, k*) dnL-n (r, k*) dr : (2k*n-z 1a'rr1-r f 
k*' 

{k*z - E)@-s)tz C-uz dC.

By the monotone convergence theorem, the second integral in (52) converges to

/ot {t -€)t'-3)t2 (-u2' d( - 2l:'' cos"-20 d0 : on-lon-2,

where we have made the change of variable (:sin20. Thus

(53) [ig(l-l.)Ck : (n-l)oo-1.

Finally, by combining Theorem 3 with (48), (49), (50), and (53), we obtain the
estimates in Theorem 5. tr

Corollary 2. For the n-dimensional Grötzsch rtng Ro,,(t) the following esti-
mates hold:

liminf (1 -t)$caeno,"(r) = !A-!)o,-r(,f." frt" fl)(.-n)tt-L) 4f)-',

lim slp (1 - t7 $ "up 
R,-'Q) < !-tv-n (n - l) o,-r.

Proof. This follows from Theorem 5 in the same way that Corollary I follows
from Theorem 4. n

12. Ä surface integral representatio n for p". Carrying the method of Section 7 a
step further we are able to prove the formula

(54) tt" : (t-n)r, f ,._,tgdo-n(n-t)rr lr*,t{-La,do
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for the second derivative of trt:sap R,,nU) with respect to I, where u is the coefr-
cient of e in the expansion u*:uleul(ez) of the extremal function for capR*
(see Section 7). The proofis analogous to the proofofTheorem 2 but includes some

additional difficulties.
Since pl'(O-f ):P'(l-): *- by Theorems 4 and 5 and since p'is continuous,

p" cannot have constant sign. However, the proof of (54) shows that the last term in
(5a) is nonnegative, and if we appeal to Theorem 2 then we conclude that

(55) tp"+p'=o.
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