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DERIVATIVES OF THE CONFORMAL CAPACITY
OF EXTREMAL RINGS

GLEN D. ANDERSON

1. Introduction. In this paper we illustrate a method for deriving information
concerning the derivatives of the conformal capacity of certain extremal rings in
n-space. For fixed n=3 and 1=p=n—1, these rings are denoted by R, , where,
for 0<t<l1,

R, () = B™\B*(1);

that is, R, , is the ring consisting of the open unit ball in euclidean n-space minus the
closed concentric p-dimensional ball of radius z. Usually we identify R? with the
subset {(xy, ..., X,,0,...,0): x; real, 1=j=p} of R"

The conformal capacity of R=R, ,(t) is defined, as usual, to be

(1) W=t ,()) = capR, () =inf [ [Vu"do,

where u€ CY(R), u=0 on BP(r), and u=1 on S" .
The modulus of R is defined by

(2) mod R = (O.n—l/#)l/(n_l)a Op—1= mn—l(Sn_l)'
It is well known [1] that mod R, ,(#)=7nK’/(4K), so that

Ha,1(f) = cap Ry ; (f) = 2n/mod R, () = 8K/K’,
where

B K=K@®= f; [(1—x)(1—£x?)])"V2dx, K =K(), t=1-r)"

If one can show that among all rings with a certain geometric property a partic-
ular ring is extremal, that is, has the maximum modulus, then this fact can be used
to determine distortion properties for quasiconformal mappings (cf. [15]). The rings
R,,, have the following extremal property (cf. Theorems 4 and 5 in [1]). Let R be
any ring in R" consisting of the unit ball minus a continuum C, and suppose the pro-
jection of C onto some p-dimensional linear subspace of R" has p-dimensional meas-
ure at least m,BP(t), O0<t<1. Then mod R=mod R, ,(?).
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It is well known [15] that if a ring R has nondegenerate boundary components
then there is a unique admissible extremal function u for the variational problem (1).
By standard techniques of the calculus of variations it may be shown that the Euler
equation for this extremal problem in R is the quasilinear (degenerate) elliptic partial
differential equation (cf. [15], [24])

“ div (|[Vu|*~2Vu) =0,

of which the extremal function u is a weak solution.

Since each of the elliptic integrals K and K’ satisfies the ordinary differential
equation t(1—2%)u”+(1—-3t2)u’'—mu=0 ([10, Formula 118.02], [9, p. 21]), where *
denotes differentiation with respect to ¢, it follows from the theory of ordinary dif-
ferential equations [21] that w=py, ;(¢) satisfies the differential equation

©) S, () = 5 ((L+D)/—P),

where S,, denotes the Schwarzian derivative (w”/w’)’ —(w”/w")?/2. The differential
equation (5) was originally derived before 1890 (before the introduction of the
Groétzsch ring) without the benefit of the Schwarzian derivative and using only the
properties of elliptic integrals (cf. [13]).

Since an exact formula for the capacity is not known when n=3, it is much
more difficult to obtain information about the derivatives of , , for these n than when
n=2. However, in this paper we illustrate a variational technique by means of which
one may obtain integral representations for these derivatives, and then we estimate
these integrals to find asymptotic limits for g, ,(¢) as ¢ tends to 0 and to 1 and also to
find an inequality satisfied by the second derivative u, ,(¢).

For the most part we shall follow the notation introduced in [2] and [4].

2. Acknowledgements. The author wishes to express his gratitude to M. M.
Schiffer, who in private consultation contributed the ideas in Sections 6 and 7, and
to T. Iwaniec for assistance with the argument in Section 3. The author also thanks
D. H. Y. Yen and F. W. Gehring for conversations concerning this problem.

3. Smoothness of the extremal function. It has been shown by N. N. Ural’ceva
[22] that if u is a weak solution of (4) in a domain QCR" with dRcC™,
then u€C%"(Q); that is, u€C*(Q) and Vu is Holder continuous with exponent
n>0 in Q. An example of B. Bojarski and T. Iwaniec shows that this is a best possible
result as to smoothness [7].

In the present case this degree of smoothness up to S"~* for the extremal func-
tion u for R, , permits the calculations in Sections 6 and 7 to be carried out. It is
easy to verify directly that the function #(P)=2—u(P/|P|?) is a solution of (4) in
the ring R which is the reflection of R, ,in S"~'and that # has the boundary value
#=1 on S"°L



Derivatives of the conformal capacity of extremal rings 31

Since |[Vu|=0 on S"~! by Lemmas 5 and 6 below, we may appeal to Niren-
berg [19] and Morrey [18] to conclude that u is even real analytic in R, , near N
Likewise # is real analytic outside of R, , near S"~*. Since u=# and Vu=Vi on
S"-1 the sphere S"~'is a removable singular set (as in the plane harmonic case).
Hence u is real analytic in a neighborhood of S"~". Thus the calculations needed to
justify the formula (54) for the second derivative u” are valid.

4. Symmetry of the extremal function. We want to show that for each n=3,
l=p=n—1, 0<t<l, there is a two-dimensional subset of R, , such that all the
values of the extremal function u in R, , may be realized by appropriately rotating
and reflecting the values of u taken on in this plane set.

Lemma 1. If u is the extremal function for cap R, (1), n=3, l=p=n—1,
O<t<1, then u has the same symmetries as R, ,.

Proof. First, suppose p=1. It is convenient to use cylindrical coordinates
(x, 7, e) in R", where x=x,,y is the length of the vector (x5 ..., X,), and e€ S"?
(cf. [2], p. 4). If u=u(x, y, e), then the function u*=u*(x,y) obtained by averag-
ing the values of u(x, y, ¢) over S"~* is admissible for cap R, () and symmetric
about the x-axis. Holder’s inequality implies that

1/n
vl = (e [ IVt v, O dm, @)

n—2

By multiplying both sides of this inequality by ¢}",, raising both sides to the power n,
and integrating over the plane set

B ={(x,y): x*+y* <1, y =0}

we may show that the integral of |Vu*|" over R, ,(¢) is at most cap R, ,(¢). By
uniqueness of the extremal function we conclude that w*=u, so that u must be al-
ready symmetric with respect to the x-axis.

We may show further that the extremal function # must be symmetric with re-
spect to the hyperplane x=0 in R" For let u*(x, y)=(u(x, y)+u(—x,y))/2 in
B2 and extend u* to all of R,; by symmetry. Then, by an elementary inequality,

Vur(x, )| = (& (IVuCe, 2"+ [Va(=x, n)I)"

in B2. It is now easy to show that the integral of [Vu*|* over R, does not exceed
cap R, ;, and we may conclude that u has the desired symmetry.

Next, if p=n—1, we may achieve the analogous result concerning symmetry
about the y-axis and the hyperplane y=0 in R" by taking y=x, and x to be the
length of the vector (xy, ..., X,—;) in the above argument.

Finally, if 2=p=n—2, we may use the procedure suggested by J. Sarvas in
[2, p. 12] to represent any point (xy, ..., x,)€R" in coordinates (x, y, e;, e,), where x
and y are the lengths of the vectors (xi, ..., x,) and (X,41, ..., X,), Tespectively, and
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e; and e, belong to (p—1)- and (n—p—1)-dimensional spheres S; and S,, respec-
tively. For any e,€S, and e,€S, we may think of R, ,(¢) as being obtained from
the two-dimensional set

Q(er, er; 1) = {xe;+yes: x*+3y2 <1, x=0, y = 0N\ {xe;: 0 =x =1}

by rotation around S; and S,. If u=u(x, y, e, ;) is extremal for cap R, ,, then the
function u*(x,y) obtained by averaging the values of u(x, y, e;, e;) over S;X.S,
is admissible for cap R, , and symmetric with respect to S; and S,. By the same argu-
ment used above we may then show that #*=u in R, ,, so that u must have the
same rotational symmetries as the ring R, ,. O

Remark. Lemma 1 implies that the Euler equation (4) for cap R, , may always
be reduced to a partial differential equation in two independent variables in a set

2={(x,y): x*+y*<1, x>0, y=0}.

5. A coordinate form of the Euler equation. For k=12, z=x+iy, and { =a+iB, let
z=f()=Vk sn((, k) be the plane conformal mapping of the rectangle {{: O<a<K,
0<p<K’/2} onto the open first quadrant 2 of the unit disk in the z-plane, with
boundary values 0, ¢, 1,7 at 0, K, K+iK’/2, iK’/2, respectively. Here sn denotes the
Jacobian elliptic sine function ([9, Chapter 5], [10, Formula 119.01]) and K and K’
are the elliptic integrals in (3). It will be particularly convenient to write the Euler
equation (4) using the variables « and f inherited from this conformal mapping. The
coordinate curves a=constant and f=constant in & are known as bicircular quar-
tics [9].

When working with the ring R, , it is appropriate to employ a cylindrical coor-
dinate system having the x;-axis as the axis of symmetry. The relationship between
rectangular coordinates (x, ..., x,) and such cylindrical coordinates (x,y, 6,, ...,
0,_5) in R" may be written in detail as

X1 = X,
Xy =ysinb;...sinf,_;sin0,_,,

x;=ysinb,;...sin6,_;cos0,_;.;,

X, = ycos 6,

(cf. [11], p. 237). In our case, for the ring R, ;, we want to take x=Re f({) and
y=Imf({), where {=a+ip.

We may write the gradient and divergence operators in the curvilinear coordinate
system («, B, 0;, ..., 0,_,) as

(6) Vo = hi' e, +hgtopes+ 3T  ho g €4,
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and

O divy = [ G O ) + 3% g ).

oB

where £, hy, h,, ,j=1,...,n—2 are the scale factors and H is their product (cf. [6]).
In the present case rotatlonal symmetry implies that all partials of the extremal
function u in the directions €y, are identically zero, so that we can drop all but the
first two terms in (6) when @=u or when ¢ has the same symmetries as u.

Next, h,=hgz=|f’|, while we may show that H=)""%|f’|?®, where @ is inde-
pendent of « and . Hence if we put

V= VU2V = |f 12+ i) (e, + upey)
in (7) the Euler equation (4) becomes

®) Q,u = div (|Vul["~%Vu)

= 1 [ (O D e )

(O ue)| = 0.

When we carry out the computations on the right in (8) and simplify and then use the
obvious modification (1/g)=—g~3(g%’/2, where g=|f’|/y and " is 9/do or /0P,
we arrive at

Lemma 2. The Euler equation for the extremal problem (1) for R, . may be
written as

(9) (n - 2) (uﬁ uamz + 2ua uﬁ uaﬁ + u% uﬁﬂ) + (ug + u%) (uaa + uﬁﬂ)

D OIS [ (U (1) 1] = 0

in cylindrical coordinates (a, B, €) with x-axis as axis of symmetry, where (a, p) are
bicircular quartic coordinates in B and e€ S"~>.

For the ring R, ,_, we need to interchange the roles of the x- and y-axes in R?,
making the x,-axis the axis of symmetry in R". If we carry out the above computa-
tions for this ring we obtain

Lemma 3. The Euler equation for the extremal problem (1) for R, ,_, may be
written as

(10) (n _2) (ug Uy + 2ua uﬂ uaﬂ + u129 uﬁﬁ) + (ug + ll%) (uaa + uﬁﬁ)

o (=D i) IS [ ()t (179 ) = 0
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in cylindrical coordinates (a, f, e) with y-axis as axis of symmetry, where (o, B) are
bicircular quartic coordinates in the right half of the unit disk in the xy-plane, and
ec S"2,

Remark. For later reference it is important to note here that Q,u=
div (|Vu|"=2Vu) is a positive (non-constant) multiple of the left side of the equations
displayed in (9) and in (10).

Finally, for the rings R, ,, 2=p=n—2, we may modify the above procedures
to obtain a coordinate system based on the ideas discussed in the proof of Lemma 1
above. The Euler equation (4) for R, , in this coordinate system becomes

0 0
% (!Pua)ﬁLW (Wug) =0,

Y= /L DP LD (g ),

where

However, rather than to make estimates based on this equation, we shall employ
another technique in Lemma 6 of Section 9 to compare these rings with R, ; and
Rn n—1-

6. A surface integral representing . It has been shown by Gehring [16] and
Ziemer [24] that if u is extremal for a ring R, then for almost all a€][0, 1],

(11) f“_l() |Vu["~* dH"~! = cap R,

where H"~* denotes the (n— 1)-dimensional Hausdorff measure. We show here that
an equation of type (11) holds for the rings R, , when a=1, that is for #=(1), which
is $"! by the maximum principle.

Theorem 1. For fixed n=3 and 1=p=n—1, let R=R, (1), 0<i<l.
If u is extremal for u=cap R, then

— n—1
w= o, do.

Proof. If u is extremal for u=cap R, then by Green’s theorem (sometimes
called integration by parts) [12, p. 69]

(12) fR Vu|"do = faR ve([Vu|"2Vu)u do—fR udiv (|Vu[""2Vu) do,

where v represents the unit outer normal. But the last integral in (12) is 0 by the Euler
equation (4) for cap R. Since u=0 on B?(¢) and u=1 on S""%, (12) reduces to

fR |Vul*do = sz IVul"~2u, do.

Since u is constant on S"~! the tangential components of Vu are 0 there. Finally
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u,=0 on S"~'since 0<u<1 in R [24, Corollary 3.11] and u=1 on S"~1.1) Thus
|Vu|=u, on S"~' and the theorem is proved. (I

7. A surface integral representing . We next prove

Theorem 2. For n=3 and 1=p=n—1, let R=R, ,(t), O<t<l. If uis
extremal for p=cap R, then

w = (n—l)t’lfsn_l u'do,
where ’ denotes differentiation with respect to t.

Proof. Deform R into a ring R*=B"(1+¢)\B"(?) by means of a radial bound-
ary deformation. Let u and u* be extremal for R and R, respectively. Take u*=
u+ev+(e?) and use the binomial expansion to obtain

[Vu*|" = |Vul"+ne|[Vu"2Vu - Vo+(e?).
Then for p*=cap R* we have

u* sz* [Vul* dw—i—nsz* [Vu|"~2Vu-.Vodo 4+ (¢%)
= fR [Vul* dco—i—z-:fsn_1 [Vul* d0'+nefR [Vu"~2Vu-Vodw+(e2)
= fR [Vul* da)+sfsn_1 [Vul" d6+n8fax v|Vu"%u, do
_ - n—2 2
nsz vdiv (|[Vul*~2Vu) do+(e?)
= fR [Vul* dw—l—sfsn_l |Vu|"do + nafsn_lv[Vu|"‘2u, do+ (&%),

where in the last two steps we have invoked Green’s theorem and employed the Euler
equation (4) as in the proof of Theorem 1.

If PcS"(r), we write P=(r, ¢) in spherical (polar) coordinates, where r=|P|
and ecS" ' Then for r=1+¢ we have

1=u*(l+¢e) = u(l+e, e)+ev(l+e, e)+(e?
= u(l, e)+eu, (1, e)+ev(l, e)+(e?),

so that v=—u, when r=1. Then inserting this value of v into the expression for
* obtained above and using the fact that |Vu|=u, on S"~', we arrive at

(13) ur = #"‘3(1—")/5,._1 ul do +(e?).

1y It has been shown by F. W. Gehring, in some unpublished notes, that if the components of
the complement of R are starshaped with respect to the origin then u is radially nondecreasing in R.
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Finally, by conformal invariance of the capacity we have
(14) i = u(tf(1+9) = p() -t () + (&),
and comparison of the coefficient of ¢ in (13) and (14) yields the theorem. [J

8. An application. It has been shown by Gehring [14] that for a ring R=
=R, ,(t) the function mod R+log¢ is monotone decreasing for 0<r<1. We
now show how this monotoneity follows from Theorems 1 and 2 above.

By Holder’s inequality,

n—1 = 1/n n (n—1)/n
‘/'S"_1 u~tdo = o3, (fsn—l ur da) .

Raising both sides of this inequality to the power n/(n—1) and substituting the expres-
sions for p and p’ obtained in Theorems 1 and 2, we obtain

M= = t(n—1)"1y gl/ -1,
Rearranging, we may write this as
—(n=D71g/ GO 17 = 0,

which because of (2) reduces to the fact that mod R+log ¢ has a nonpositive de-
rivative with respect to ¢, O<r<1.

9. Bounds for u, on S"~'. In estimating u’ it will be important to have upper
and nontrivial lower bounds for the radial derivative of the extremal function on
SrL

Lemma 4. If u is extremal for cap Rn,l(VE)9 then on S"1

1+ ks? 2 14 ks?
1/(1—n) -1 = =
(15) (1+k) Ak l_ks2 _u,,_ (1+k)K/ l_ksza
where
n—2
K’[2 dl i
Ak:fo (slcll ap
and
s =sn(a, k), ¢ =cn(o, k), d =dn(a, k),

(16)

s, =sn(B, k"), ¢, =cn(B, k), dy=dn(B, k).
Here K’iK((l—tz)l/z) is as in (3) and sn, cn,dn are Jacobian elliptic functions.

Proof. First put ¢=¢(f)=2p/K’ in the quarter disk 2={(x,y): x2+y2<I1,
x>0, y=>0}, where x and y are the real and imaginary parts of f({), {=a+if (see
Section 5 above), and extend ¢ to all of R, ; by first reflecting in the imaginary axis
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and then rotating about the x;-axis in R". Then ¢ has the same boundary values as
the extremal u in R, ;. Moreover, referring to (8) and (9) we see that Q,¢ has the
same sign in 2 as does —a/0B((|f"|/»)?).

Earlier we have shown (cf. (12) in [4]) that

(lf/| ]2 _di | ks
y ) s c2ad?’

where s, ¢, d, s, ¢;, d; have the meaning assigned in (16). But then

(17)

0 , ,
= ((F119)?) = (1425t =KD/t s
1
by [9, p. 9] or [10, Formulas 731.01—.03]. Next,
E%(—l+2s§—k’2s§) =2(1—-k?sH) =0
1

for 0<p<K’/2, while —1+2s2—k"?si=0 when s}=sn?(K'/2,k)=1/(1+k)
(9, p. 14], [10, Formula 122.10]). Since also s increases with g for 0=B=K"/2, we
conclude that 9/0B((|f’|/»)?)=0 in 2,?) so that Q,¢=0 in R, . Noting that p=u
on OR,, and Q,u=0 in R,,, we may invoke the comparison principle for quasi-
linear elliptic operators (cf. [16, Theorem 9.2]; see also [8]) to conclude that ¢p=u
in R, ;. We now see that if P€S"~', then

L=2Gh) _ ().

1—u(aP) - lim

(18) u,(P) = lim ———— = lim ——

We wish to determine ¢,(P) for PcS"'. For this we note first that

2 2 o, 2
(19) ¢ =27 B =5 Im (78’ (2) = 2 Im—rjf:,(fz) ,

where g(z)=({=sn""(z/ VE, k), z=f({)=re®. Using the derivative formula f’({)=

Vk cen (¢, k) dn (¢, k) ([9, p- 9], [10, Formula 731.01]) and then the Gauss transfor-
mation ([9, p. 72], [10, Formula 164.01]) we may reduce (19) to

K’)’ 2VEJ

2) 1+k

2
=TTk

when r=1, where tn denotes sn/cn. By [9, p. 38] or [10, Formula 125.01] this is

Im tn [(1+k) (cx—i—i

2 DS,
= A1K 1-52D%°

2) The geometric meaning of this inequality is that the hyperbolic density of the rectangle
{(, B): lel<K, 0<B<K’} is nonincreasing as a function of B in the subrectangle {(c, f):
0<a<K,0<pB<K’'/2}.
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where

D =dn ((1+k)06, 1ok

2V"/€]

2y’E}
1+k)’ ’

S = sn [(1+k)oc,
(20)
_ K’ l—k] _ ( K’ l—kJ
Sy ~sn[(1+k)7, %) D, =dn|(1+k) 2 11k)
Since K((1—k)/(14+k)=(14+k)K’/2 by [9, p. 73] or [10, Formula 164.02] it fol-
lows from [9, p. 9] or [10, Formula 122.02] that S;=1 and D,=2Vk/(1+k). Thus
when r=1,

@1 " 2

~ A+kK'D

by [9, p. 9] or [10, Formula 121.00], where D has the meaning assigned in (20). But
another use of the Gauss transformation reduces (21) to

_ 2 1+ ks?
P T ATRK 1—ks?

(22)

on S""1, where s is as in (16). Combining (22) with (18), we have proved that the
second inequality in (15) holds.
To establish the first inequality in (15) we take

| dn@e k) "
o=0B) = _A—k-ftf [ sn(t, k') en(x, k’))

in 9, and extend ¢ to all of R, ; by symmetry as before. Then ¢ =0 on B?(¢) and
¢=1 on S"%, and we wish to show that Q,¢=0 in R, ;. By Lemma 2 and (17) we
see that this reduces to showing that

dt

, 1 d k'4s2]‘1( d3 ] ,
@3) (n=1¢"— 3 (=2 + 2 0

sici

0

1A

in 9, where " denotes differentiation with respect to . But (23) is equivalent to

1 3—2n

) ll) -2 i) =0
5161 d; d, sic: ' c2d? =

Since we have already seen that (d,/(s;¢;))’ =0, the problem is reduced to showing

that
[slc1]2_( ;1%2 + k/4s2]—1 20'
d, sic?  c%d?

But the last inequality is obviously true. Thus Q,0=0 in R, ;.
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Finally. since ¢=u on R, ; the comparison principle for 0, says that ¢=u
in R, ;. Then as in (18) we may show that u,=¢, on S"1. But on S"77,

n—2

1 dI]"‘l 1 N
(p’_A_k[slcl b= Ay (1+h) 1— ks?

by [9, p. 14] or [10, Formula 122.10] and (22) above. Thus the first inequality in (15)
is established. O

Lemma 5. If u is extremal for capR,,,,,_l(VE), then on S"1

2 ltkst _ o 1tk
TFOK T—k = = UFR" BT

24

where
n—2

n—1
_ rrpe|5ia
B, = fo [—dl ] dg.

Proof. The function u satisfies the equation (10) in Lemma 3. When ¢@=¢(f)
we see that Q,@=div([Vp|" 2Vp) has the same sign as does

@5) (n=10" 3 (1= DG D5 ()

Now put @=¢(f)=28/K’ in the open first quadrant & of the unit disk in the
z-plane, and extend ¢ to all of R, ,_; by reflection across the segment {Cx, »):
t<x<1, y=0} and then rotation about the y-axis in R". Then ¢=u on the boundary
of R, ,_;, and (25) is nonpositive in & if and only if 0/0B((|f’/x)¥)=0 there.

By (11) of [4] we may write

(If’|)2 _ 1kt ktdi
X

52 a

(26)
where s and d, are defined in (16). Then

a 71 \2 , B
@) 2 (L) — 2 e @t-i =0
by the derivative formula for d; ([9, p. 9] or [10, Formula 731.03]) and the fact that
d,=Vk for 0=B=K’/2 ([9, p-. 14], [10, Formula 122.10]). Thus Q,¢=0 in R, ,_,
the comparison theorem for Q, shows that u=¢ in R, ,_;, and as in (18) we con-
clude that u,=¢@, on S"~*. But ¢, is given by (22) on $"~%, and so the first inequality
in (24) follows.
To establish the second inequality in (24) we set
n—2
_ _ Lo (S"(T, K)en(z, k’)]"—1
(p'_(p(ﬂ)_ _B;-fo dn(‘t, kl) dt
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in 9, and extend ¢ to all of R, ,_; by symmetry as before. Then ¢ has the same bound-
ary values as does u, and we wish to show that Q,¢=0 in R, ,_;. By (25) and (26)
this reduces to showing that

1+ k25t k2+d§][s1c1)’ 1[s1c1)(k2+d§J’>
%) [F5- a g ) 20 ) eE ) =0

where * denotes differentiation with respect to f. By the differentiation formulas
([9, p. 9] or [10, Formulas 731.01—.03]) and the squared relations ([9, p. 9], [10, For-
mula 121.00]) for the Jacobian elliptic functions as well as (27) we may show that

29) diﬁ (reafdy) = (1 — 252+ K2 s/ d?

and
2‘% ((k2+db)/d3) = —2k" sy ¢, (1 — 2524 k"2 s%)/d?
(30
4
dp
Since (29) is nonnegative (see the argument after (17) above) it follows from (29)
and (30) that (28) is equivalent to

(1) (14 k2 s%)/s2 — (k2 + d4)/d2 — k' s23/d2 = .

= —2k" (s, ¢1/dy) = (51 ¢4/ dy).

By differentiation it is easy to show that the first term in (31) has a minimum
value of 1+k2 Thus (31) is true in @ if and only if

(32) 1+ k2—(k24d})/di—k*sic3/d3 = 0

for 0=p=K’/2. But it is easy to show by the squared relations for the functions
515 €1, & ([9, p. 9], [10, Formula 121.00]) that the left side of (32) is zero. This shows
that Q,¢=0 in R, ,_,, and by the previous reasoning involving the comparison
theorem for Q, and an analog of (18) we see that u,=¢, on S"'. But

(33) @, = B ' (sy¢,/d) "I =D B

in 9, and because s,¢i/dy=1/(1+k) when B=K’/2, and since f,=(1+k)"1.
(L +ks?)/(1 —ks?) when r=1 (see (22)), we see that (33) reduces to the upper
bound for u, in (24) when r=1. OO

Lemma 6. Let 2=p=n—2, where n=3. If u is extremal for cap R,,,,,(]/E),
then on S"~*

1 3—2n

— 1+ ks? — 1+ ks?

1—n -1 == = n—1 —1_ M
(34) (DT AT o = 0, = (1K) B

where Ay and By are defined in Lemmas 4 and 5, respectively.
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Proof. If u® and u®*? are extremal for cap R, , and cap R, ,1, respectively,
where 1=p=n-2, then Q,u”=Q,u®?*V=0 in R, ,,,, Where Q, is the differen-
tial operator in (8). Moreover, u®=u®*Y=1 on S"%, while ¥P=u?*Y=0 on

BP*1(Jk). Hence by the comparison principle for Q,, u®=u®* in R, ,.,, and the
technique used in (18) shows that u® =u®*? on $"~*. The bounds in (34) then follow
from Lemmas 4 and 5. [

Remark. As an immediate consequence of Theorem 1, (2), and the proof of
Lemma 6, for each n=3, 1=p=n—2, and for each €(0, 1),

mod R, ,—1(f) = mod R, ,+:(!) =mod R, ,(?) = mod R, ; ().

Alternatively, these inequalities are a consequence of the monotoneity of the modulus
[14, Lemma 2].

10. An asymptotic limit for the derivative of cap R, ,(¢) as ¢ tends to 0. We
may now combine Theorem 2 with the bounds for u, obtained in the last section to
derive bounds for p;, ,(¢) that are asymptotically sharp as # tends to 0.

Theorem 3. For each n=3 and 1=p=n-—1, and for t=Vk, O<k<l,
(3% A" A+ ROEDC =y 1 (1) = QK (L+E)"Cy,s
(36) QK (1 + k) "Cp = py por(f) = Bi" (14 k)3 +=DIO-D O
(37) Al:n(l-l-k)l/(l n)Ck :un p(t) Bk "(l—i-k)( —2n24+4n—1)/(n— l)C

where A, and B, are as in Lemmas 4 and 5, respectively, and

do.

cd n_21+k52
Ci=2n—1)a, ok [ ¥ (1_ks2) 1—ks®

Proof. By using the derivative formula for sn ([9, p. 9], [10, Formula 731.01]),
expressions for the modulus of the elliptic functions ([9, p. 41], [10, Formula 125.01]),
the values when B=K’/2 ([9, p. 14], [10, Formula 122.00]), and the squared relations
(9, p. 9], [10, Formula 121.00]), we may show that

38 FOl = A+h 1=K
(38) £l = W+ T
when B=K’/2 (r=1). Likewise we may show that

cd

(39 y=ImfQ) ==

there. Thus by Theorem 2, Lemma 4, Fubini’s theorem, (38), and (39) (see also [2,
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Section 3]) we have

2\
Hna (D) = (n—D)k=2 A (L4 k)" fs"—l [ i t i;] d

e 1+ks2Y" o .
=(m—1)k=12A7"(1 + kM@ >2a,,_2j;‘(1_—ks2—] VRSO da

n—2 2

et g 10 —n) K cd ] 1+ ks
(n ].)k Ak (1+k) 2O.n—2f0 [1——’(52 I_kSZ da'

This establishes the first half of (35). The second half of (35) follows from the upper
bound for u, in (15) by the same reasoning. Likewise (36) follows from Lemma 5.
When 2=p=n—2, (37) follows from Lemma 6, the first half of (35), and the second

half of (36). O

Theorem 4. For 1=p=n—1, n=3,

. ., o
tim (10g ) 1, ) = (=10, .

Proof. Since s>=1 and cd=1 it is easy to see that (1+ks*)/(1—ks?)=(1+k)/
(1—k) and cd/(1—ks®)=1/(1—k) ([9, p. 9], [10, Formula 121.02]). Thus Lebesgue’s
dominated convergence theorem and the fact that the integrand in C, reduces to
cos" 2 when k=0 ([9, p. 10], [10, Formula 122.08]) allow us to conclude from (37)

that
(40) lim inf Vk Az, (VE) = 2(n— 1o, [ 0"’2 cos" 2 do.

Since the integral in (40) is 0,_,/(20,_5) ([23], cf. [4, (3)]) we see that

(41) liminf Vk 4y, , (Vk) = (n—1)0,
and
(42) lim sup Vk B p;,, (V) = (=10,

Finally, by Landen’s transformation ([9, p. 72], [10, Formula 163.01]),
43) dy/(sy¢) = (1+k)/sn((L+Kk)B, (1—Kk)/(1+k)) =1+k

for 0=p=K’/2. Since lim;_, K’ =+ ([9, p. 10], [10, Formula 111.05]), we con-
clude also that lim,_,A4,=+<. Then I’Hopital’s rule together with the special
values of s;, ¢;, d; when B=K’/2 ([9, p. 14], [10, Formula 122.10]) imply that

(44) lim A4,/(K’[2) = lim (14+ K=/ = 1.

Next, (43) and the fact that the graph of sn(a, k) is concave down for 0=a=K
imply that
(45) : sici/dy = BIK((1—K)/(1+K))



Derivatives of the conformal capacity of extremal rings 43

for 0=f=K’/2. Since K((1—k)/(1+k))=(1+Kk)K’/2 ([9, p. 73], [10, Formula
164.02]), it follows that lim,_,B,=-+ . Then, as in (44), an application of
I’Hopital’s rule shows that

(46) }E% B,/(K']2) = }(1_{101 (1+k)@Em/e=1 =1,
Moreover by [9, p. 21] or [10, Formula 112.01]
(47 lim (K"/2)/log (1/Vk) = 1.
Recalling that 1=}k, we see that the limit in the theorem now follows from (41),
(42), (44), (46), and (47). O
Corollary 1. Let Rg,,(t) denote the n-dimensional Grotzsch ring consisting of

the open unit ball in R" minus the segment {P: 0=x,=t, x;=0, 2=j=n}. Then

. 1Y d
ltl_{l(’)l t[logT) 7 cap Rg.() = (n—1)o,_;.

Proof. There exists a conformal mapping of R, ;(a) onto Rg,(t), where
t=2a/(1+a? or a=(1—(1—1¢?"?)/t. Then the corollary follows from Theorem 4
with p=1 by a short computation. O

11. Behavior of the derivative of cap R, ,(t) as ¢ tends to 1.

Theorem 5. For each n=3 and 1=p=n-—1,
lir}lilnf A=ty ,()=(n—1)0,- [f:’z (sin B)—m/—1) dﬂ)_",
lim sup (1—0) 4, , (1) = (1= 1), ([ (sin pY" =2/ )",
lim sup (1—1) g5, 1)) = @/ (1—1) 0, = lim inf (1= 1) 5,010

Proof. These estimates will follow from Theorem 3 when we have determined the
asymptotic behavior of the bounds found there for the derivatives.
First, by [9, p. 10] or [10, Formula 111.02],

(48) ’l‘mll K’[2 = n/4.
Then by (43) and (45) we may take the limit under the integral signs in 4, and By;

by [9, p. 10] or [10, Formula 122.08], (48), and a simple change of variable of inte-
gration we have

: — ~1/@-n) =2 (g (2—n)/(n—1)
(49) lim 4, = 2 fo (sin p) dp

and
: _ A@—2n)/(n—1) /2 (n—2)/(n—1)
(50) lim B, = 262/ f0 (sin B)—D/¢=D) gp.
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Next, we determine the behavior of C,. Using the Gauss transformation ([9,
p- 72], [10, Formula 163.01]), we see that

G ]H S = (R [ e k) dnt (e, ) de
o U1 —ks? 1— ks? - 0 ’ ’ ’

where t1=(14+k)a, k*=2Vk/(1+k), and K*=K(k*)=(1+k)K. By the change of
variable

& = (K*k* sn(t, k*)/dn(t, k*))?, d& = 2(k*k* ) sn(t, k*)cn(t, k*)dn=>(t, k*) dv

in the last integral, where k* =(1—k)/(1+k), and the squared relations for the ellip-
tic functions ([9, p. 9], [10, Formula 121.00]) we may reduce the second integral in
(51) to

(52)  [X ez, k) dnt = (z, k) do = kR [ (k- g drme 1 g,
By the monotone convergence theorem, the second integral in (52) converges to
1 _p\m=8)2£-1/2 g¢ _ w2 | n—2 —
fo (1-8&) ET1R ¢ 2f0 c0s""20d0 = 6,_1/6,_s,

where we have made the change of variable &=sin?6. Thus
(53) ,lcin}(l—k)Ck =m—-1o0,_,.

Finally, by combining Theorem 3 with (48), (49), (50), and (53), we obtain the
estimates in Theorem 5. [J

Corollary 2. For the n-dimensional Grétzsch ring Rg,,(t) the following esti-
mates hold:

i d =1 2 (sin B)@-M/(—1) 48]~ "
liminf (1 £)—-cap Rg (1) = 5 (1= 1D, (fo (sin B) ap)™",
lim sup (l—t)—d— cap Rg.,() =2""1n7"(n—1)o
10 dt G,n = n—1-
Proof. This follows from Theorem 5 in the same way that Corollary 1 follows

from Theorem 4. O

12. A surface integral representation for u”. Carrying the method of Section 7 a
step further we are able to prove the formula

(54) w = —n)t'zfsn_l zl;‘cz'o—n(n-l)t—2/'sn_1 u' v, do
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for the second derivative of p=cap R, ,(¢) with respect to ¢, where v is the coeffi-
cient of ¢ in the expansion w*=u+ev+(e?) of the extremal function for cap R*
(see Section 7). The proof is analogous to the proof of Theorem 2 but includes some
additional difficulties.

Since p'(0+)=p'(1—)=+ by Theorems 4 and 5 and since p’ is continuous,
u” cannot have constant sign. However, the proof of (54) shows that the last term in
(54) is nonnegative, and if we appeal to Theorem 2 then we conclude that

(55) "+ =0.
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