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RAMIFICATION OF KLEIN COVERINGS

CABIRIA ANDREIAN CAZACU

The aim of this paper is to extend the Hurwitz formula on the ramification of the
covering surfaces [7],[8], as well as its generalizations by S. Stoilow [11], [12], ourselves
[3] and I. Barzi [6] from Riemann coverings to Klein coverings. In what follows we
shall use definitions and notations due to N. L. Alling and N. Greenleaf [2].

1. Let Z=(X, o) and ¥ =(Y, ) be connected Klein surfaces, orientable or
non-orientable, with or without border: X and Y will be connected two-manifolds
with countable bases (surfaces) «/={(U, z)} and #={(W, w)} dianalytic atlasses,
By and By the border (boundary) of X and Y, respectively, [2], Section 2.

A morphism of Klein surfaces T: ¥—~% is a continuous mapping T: X—Y,
with the properties that T(By) By and that for all points P€X there exist diana-
lytic charts (U, z)é«/ and (W, w)€Z about P and p=T(P), respectively, and an
analytic function F on z(U)cC*={zeC: y=0}, such that T|U=wTlogoFoz.
Here ¢: C—~C* is the folding mapping ¢(z)=x+i|y| that folds C over C*, [2],
Section 4.

Evidently, if By=#, it follows By=0 and one may give up ¢, but if
By 0, even for Riemann surfaces, i.e., for X and Y orientable surfaces, this concept
of morphism differs from the classical one ([9], I, II) since it permits the folding over
By . Starting from Stoilow’s topological theory of Riemann surfaces [12], it was nat-
ural to compare this concept with that of the interior transformation (continuous,
open and O-dimensional (light) mapping) and we proved [5]:

Theorem 1. Non-constant morphisms of Klein surfaces are topologically equiv-
alent to interior transformations in the sense of Stoilow.

It is obvious that a non-constant morphism is an interior transformation, but
Stoilow’s methods extend, so that we generalized his local inversion theorem for in-
terior mappings T: X—Y between surfaces X and Y as above. Namely, if P€
X\T~1(By), then in the neighbourhood of P the map T is topologically equivalent to
w=z" and if PET~1(By), to w=@oz" which corresponds to the local normal
form of a morphism ([2], p. 30). If 7: X—Y is an interior map, and if we organize
Y with a dianalytic structure as a Klein surface %, this structure is lifted by means of T’
in a unique way to X yielding a Klein surface Z such that T becomes a morphism
%Y.
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On the model of Stoilow’s definition of Riemann covering ([12], Chapter II, I,
2 and Chapter V, III, 4) we call each triple, (X, T, Y) where T: X—Y is an interior
transformation between the surfaces X and Y a Klein covering.

The problem of the ramification of a Klein covering being of topological nature
we shall not further refer to the Klein structure of our surfaces X and Y, which we
always suppose to be connected and of finite Euler characteristic gy and gy, respec-
tively.

2. Let us first shortly resume the previous results: the Hurwitz formula and its
generalizations in the case of the coverings without folds, i.e., 771(By)=By, in
particular in the case By=0.

1) Hurwitz formula ([7], p. 54) is proved in Kerékjartd’s book ([8], p. 158—159)
for both orientable and non-orientable, compact surfaces with or without border
X and Y under the hypothesis 7~1(By)=Bx. The ramification number r of the rela-
tively unbordered n-sheeted covering T: X—Y satisfies the relation
1 r = 0x—noy.

(See also Ahlfors’ generalization of this formula [1], p. 168, and [10], p. 324.)

In Stoilow’s theory X and Y are orientable surfaces without border and the Hur-
witz formula holds for the total covering, which is realized by any interior mapping
T: X—Y with the following property: for each infinite sequence of points P,€X
which tends to the ideal boundary 0X of X (i.e., has no accumulation point in X,
notation: P,—0X), its projection p,=T(P,) tends to Y. This is in particular the
case when X and Y are compact ([12], Chapter VI, II—III).

2) In 1933, [11], Stoilow extended formula (1) by introducing the partially regular
covering T: X—Y, characterized by the existence of a finite family of mutually
disjoint Jordan curves y on Y with the following properties: (8,) for each sequence
P,—~0X, its projection p,~yudY (i.e., p, has accumulation points only on y), and
(By) the set T~(y) is either compact or empty. Then the family y decomposes ¥
into a finite number of regions Y; of finite characteristic g; and totally covered with
n; sheets by T~1(Y;). For such a partially regular covering Stoilow obtained the for-
mula ([11], [12], Chapter VI, IV)

2 r=ox—2'n;0;.

3) In 1960, [3], we considered — again in the orientable, unbordered case — a
family y on Y, consisting of a finite number of mutually disjoint Jordan curves and of
a finite number of Jordan arcs with the end points in well-determined points on Y,
which we called knots, or elements of 9Y. An arc of y can meet another arc or curve
of y only in a knot. The set of knots will be denoted by A.

We supposed that the interior transformation 7. X—Y satisfies the condition
(B)) but we gave up the condition (B,) and introduced the local condition (Lfy):
a point p€y satisfies (LB,) if there exists a neighbourhood v of p such that the pre-
image of the component of vy, which contains p, is either relatively compact in X
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or empty. In this way it was natural to define the exceptional points pcy which do
not satisfy (Lf,), and we proved that the set & of these points is finite or empty.

The surface Y is again decomposed by 7y into a finite number of regions Y; of
finite characteristic ¢; and totally covered by #; sheets.

We chose a family y” of mutually disjoint Jordan curves from y, which contains
all Jordan curves of y\(§uU A)¥). Let &, be the set of exceptional points of y” with
respect to itself (i.e., the set of the points p€y” for which T~(vny’) is not relatively
compact in X for every neighbourhood v of p). The curves y” with &, =0 are decom-
posed by &, into open Jordan arcs and similarly (y\y)\(6'uA") consists of open
Jordan arcs. We called these arcs cross cuts and denoted them by y7, the family con-
tained in y” by {y]}* and the rest by {y]}*. Every cross cut y is covered by s; sheets.

Further, we denoted by v(p) the number of sheets of the covering over a point
p€ Y**), designated by p, the points of the set &, U (U A™\y") and wrote v(p,)=V,.

Then we obtained the following generalization of the Hurwitz-Stoilow for-
mula (2):

3) r=ox— 2 mi0i— 2 St 2V

Its importance is due to its wide application possibilities, for instance to the
regions of the exhaustion of a Riemann surface and thus to the study of the ramifi-
cation of Riemann coverings in general [4].

4) The formulae (2) and (3) remain valid for non-orientable surfaces without
border, as it was proved by I. Barz3 [6].

3. We shall now consider the general case of a Klein covering T: X—Y and
obtain in Theorem 2 the formula (4), which, assuming the particular hypotheses
presented above, reduces to the results 1)—4). It thus remains to concentrate on the
case T~ 1(By)#By, X and Y being orientable or non-orientable, By=0 but By
being empty or not. It should be mentioned that even in the case T~1(By)=By for-
mula (4) will bring new information since the assertions 2)—4) have been established
only for By=@ but according to (4) they are also true if By=0.

3.1. Since X and Y have finite characteristics, we can represent them by means of
homeomorphisms which do not influence the ramification of the Klein covering
T: XY as subsets of compact surfaces X and Y with the same genus as X and Y.
Here X is orientable if and only if X is orientable; the same holds for ¥ and Y.
Under these homeomorphisms the ideal boundaries of X and Y correspond to a
finite set of points FyCx and FyCy and their borders to a finite family of
mutually disjoint Jordan curves and arcs By on X and By on Y, the arcs ending in
points of Fy and Fy, respectively. For X we shall write By=Byu By and
Fy=F3u Fg, where By contains the Jordan curves of By and By its Jordan arcs,

*) We denote by y the family of curves and arcs, one curve or arc of the family as well as the
set of the points of these curves and arcs; the same remark holds about y’.
#%) y(p) is the number of points in T~ 1(p) counted with their multiplicities.
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F} the isolated points of Byu Fy and Fy the end points of the arcs from Bj.
Moreover — without influencing the ramification of the covering — we can suppose
([5)) that B2 U FZ consists of a finite number of mutually disjoint Jordan curves on
X, each point of F2 giving exactly two end points of arcs of By. Similar notations
will be used for Y.

3.2. On Y we shall consider a family y like that of 3) but we let arcs from y
have end points on Byu Fy. The points of yn By will also be called knots and the
set of all the knots will again be designated by A7 The covering (X, T, Y) will satisfy
the condition (B,) for y U By U Fy. Further, & will designate the set of the exceptional
points of y. Obviously &n Byc. /. Besides & the covering can present exceptional
points on By relatively to By itself. For such a point p€ By the pre-image T (v By)
is not relatively compact for any neighbourhood v of p. The set of these points will be
denoted by E.

3.3. Another important set will be £ — the set of the projections of the ramifi-
cation points of the covering 7T: X—7Y.

The new type of coverings we are now considering may be characterized by one
of the following equivalent conditions:

(i) T~*(By)#By, and

(ii) the covering presents folds over By.

If #n By=0, then these conditions are fulfilled.

Before writing formula (4) we shall discuss in 3.4 and 3.5 the two new aspects
that occur for the covering.

3.4. The case & By#0. Let p be a point of By. Its pre-image 7 ~*(p) consists
of points Q jEX’ =X\By, j=1, ..., i(p), with the multiplicity /; (i.e., where locally
T is topologically equivalent to the mapping w=¢ oz"), and of points P;€By,
j=1,...,b(p), with the multiplicity k; (i.e., where locally T is topologically equivalent
to one of the mappings w=¢@oz* or w=g¢o(—z4)).

Let v be a sufficiently small open neighbourhood of p and /, I* the two open
Jordan arcs in which p divides the component of v By that contains it. For each Q;
the corresponding component of 7 ~1(v) is a normal region (in Stoilow’s sense [12],
Chapter V, II) which covers v under T with 24; sheets and /U [* with #; folds. Simi-
larly, for each P; the corresponding component of 7~*(v) is a normal region and
covers v under T with k; sheets and /ul* with (k;—1) folds and 2 borders. More
precisely, if k; is odd, each of the arcs / and /* will be covered by (k;—1)/2 folds and
a border, and if k; is even, one of them will be covered by k;/2 folds and the other by
(k;—2)/2 folds and 2 borders.

In order to preserve the form (1) of the Hurwitz formula for total coverings, we
shall define the ramification order of a point Q; as usual by (4;—1) but the ramifica-
tion order of a point P; by (k;—1)/2,*) so that the ramification of the covering at

*) This definition has also an interpretation in connection with the double coverings.
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p will be
r(p) =32 (=1 +5 252 ;=1

=

A special role will be played in what follows by %;,={p€Z%n By: h;=1 for
each Q;€ T-1(p)n X and k;=1 or 2 for each P;¢T~*(p)n By, with at least one
k;=2}. If p€%y,, then the number of the points P; with k;=2 in T~ '(p)n By
will be 2r(p). Thus 2r(p) represents also the number of the folds that cover one of
the arcs / or [* but transform at p into two borders covering the arc [* or I, respec-
tively.

At a point p€ Y= Y\ By the ramification will be taken as usual

r(p) = 32 (=),

where T Y(p)={01, .- Qi(p)}c)of and Q; has the multiplicity /; (i.e., locally T is
topologically equivalent to w=z") and the ramification order (;—1).
Evidently, p€£ if and only if r(p)>0 and the ramification number of the cov-

ering r=2, .4 r(p).

3.5. Folds “ending at a point” of Eu Fy. If p€E, there are folds or borders
(at least one) which cover one of the arcs / or /* without covering p. Let f(p) and
b(p), respectively, be the numbers of these folds and borders. Such a fold (border)
represents an asymptotic way in X (on By) for T with the asymptotic value p and
will be called fold or border “ending at p”.

The same notations f(p) and b(p) will be introduced for the points p€ Fi.
(If we do not suppose, as indicated in 3.1, that BjUF} consists of Jordan curves
and in a sufficiently small neighbourhood v of p one has exactly two arcs / and /*
of B2 ending at p, then p can be an end point for more than two arcs like / or for a
single one, and f(p) as well as b(p) will be the numbers of folds or borders “‘ending
at p” over all these arcs. The sum ,¢r2 f(p) is independent of this [5].)

3.6. With these remarks and notations we can formulate

Theorem 2. Let T: X—~Y be a Klein covering, y a family of curves and arcs as
in 3) but which, if By#0, may have end points on By, too, and suppose that T satisfies
the condition (B,) with respect to y U By L Fy (if P,~Bxu Fy, then p,~yU By U Fy).
The family y decomposes Y into the regions Y; with the characteristics ¢; and number of
the sheets n;: YN\(yu By)= U Y;. We choose a family y" of mutually disjoint Jordan
curves from v, so that it contains all those curves from y without exceptional points with
respect to themselves (i.e., if a curve y has &,=9, then it will be included in the family
y’).¥) As in 3) we determine the cross cuts yj covered by s; sheets. Further, let p, be the
points of the set &, U[(EU NN\’ U By)] and g, the points of EU FZ, vi=v(py)

*) There is a difference between the actual construction of y* and that of 3) but this does not
influence the result.
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and f,=f(q)). Then the ramification number of the covering is given by the formula
4) "ZQX—ZniQi_ZSj‘f‘ZVk‘%Zfl-

Remark 1. We can admit that y contains, besides curves and arcs as before,
a finite number of points p€Y such that for each neighbourhood v, its pre-image
T ~1(v) is not relatively compact in X. These points will be interpreted as curves y’
reduced to a point and be considered in &, hence denoted by p,. Formula (4) holds
in this case too, with the mention that the sum Xv, contains also the terms correspond-
ing to these points p,.

Remark 2. Evidently (4) refers also to the case of the total covering with folds:
y=0. If f(p)=0 for each p€Byu Fy, then (4) takes the form (1). This case may also
be proved directly by counting the simplexes of the covering as for the classical Hur-
witz formula ([10], p. 324). This was done in [2, p. 43], for the case of the unramified
double covering of a compact Klein surface.

The proof of (4) will be given in the next two sections, 4. and 5., by adapting
the method we used in [3] in order to prove (3). Ahlfors’ formula for the addition of
the characteristics will remain the main tool.

The finiteness of the sets &, E, # as well as the total covering and the finite num-
bers of sheets 7;, s;, v, over each Y;, 7], p;, respectively, and the finiteness of the
numbers f; are proved by similar devices as in [3]. (For details see [5].)

4. Let us first prove Theorem 2 in the special case #0(yU By)=%,, and
suANy UBy.

Besides the cross cuts {y}}, we shall also consider a family of cross cuts {B,}
on By, namely, the family of Jordan arcs which appear on By, when one takes out
the points of #,,, U E. These arcs have their end points in the set M=2,, U EuU F}
and each B, is covered by g, sheets.

We denote by X, and X}, the components of X\T71(y’uBy) and
X\T~*(yu By), respectively, where X, are the components of X,nT7(Y;), and
remark that (X, T|, ¥;) is a total covering in Stoilow’s sense, so that we can
apply the Hurwitz formula (1) to get

(5 Fai = Oui—Nui 05

where r}; is the ramification of the covering, 7, the number of sheets and g?; the char-
acteristic of X;.

If g, is the characteristic of X, and N, or Ny, respectively, represents the number
of cross cuts in the decomposition X\ 7 ~1(y” U By)= U X, which comes from 7~1(y")
and T ~1(By), respectively (we remark that y n By=0), then by Ahlfors’ formula

(6) QX:ZQu+N1+NB'
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Further, let N, be the number of cross cuts which appear when we continue the de-
composition: UX,NT({y]}»)= U X};. The same formula gives

(7 2 0= 2 QuitNe.
By repeating the device used in [3], we obtain again
(®) Ni+Ny= 3s;— 2 v

(N, =231 5;,— 3 v, Ny=272s;, where >*' and >? extend to the families {y;}* and
{7y} J% respectively, and p,€é&,).

In order to evaluate N we remark that a cross cut from 7 ~*({B,}) determines
a fold and counted with its end points contributes with 2 to the sum ¢, (2r(p)+
f(p)). Therefore

©) Ny =2 3,cn 2r(@)+£(p).

Since r=2rt+,en r(p) and ey f(p)=2 fi, formula (4) follows from
(5)—0).

Remark 3. By the device used in the calculation of Ny, [3], one proves that

2(Z 0w Zpem V(D) = 2penm (2r (D) +1(0)+ b ()

5. The general case. In order to obtain from the general Klein covering T: X—~Y
with the condition (B;) for a family yu By u Fy a covering from the special case 4,
we suitably modify the method used in [3], 8. Namely, we introduce the sets #*=
(R AYVNEVAN), B*=(RNBy)\Zy)2 and A=(R*0 EUAN)\ By, and we choose
a set of sufficiently small. open neighbourhoods v for the points p€A4uZ**, such
that the closed neighbourhoods & are mutually disjoint and the following conditions
are fulfilled : For each p€ A, #CY, #is a Jordan domain bounded by a Jordan curve c;
{pHN(EVANUR)=0 and Ny consists of a finite number of Jordan arcs
with an end point at p and another on c; these arcs decompose v into sectors; any
non-compact component of T-1(#) does not intersect T~1(p). For each pe#**,
NByCY, 5 By is a Jordan arc apb while 7 is a Jordan domain bounded on y by
apb and a Jordan arc ¢ which is contained in Y except for its end points a and b;
\{p) (U ANUZRUE)=0, and 5y has the same properties as in the case p€4;
any non-compact component of 7 ~1(#) does not intersect 7'~(p) and every compact
component contains a single point of 71(p).

First we take out of X the union of the non-compact components of 7 ~1(?)
for all p€A4 and obtain a surface X™*.

According to [3], 7, these components are either simply connected and separated
from X* by a cross cut or doubly connected and separated from X* by a Jordan
curve, such that we have

*

(10) Ox = QOx+ and r=r 5
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where gy« means the characteristic of X* and r* the ramification number of the cov-
ering (X*, T|, Y).

Secondly, we take out of X* the non-compact components of 77-1(?) and the
relatively compact components of T-1(v) for all pc#**, obtaining a surface X
with the characteristic gg, and take out from Y the neighbourhoods v for all p€ Z**,
obtaining the surface Y.

By a direct computation we prove that the non-compact components of 7' ~1(?),
PER**, are again of the same type as described for ped.*) If T (p)=
{015 s Qisy> P1s o5 Pyy)s QjE)o(*, P;€By«, as in 3.4, the component of T ~1(?)
containing Q; will be a Jordan domain included in X* and the component contain-
ing P; will be homeomorphic to a half disc separated from X by a Jordan arc projected
by T on c. Therefore with Alhfors’ formula we have

@an 0% = 0x+ 2 pear= (D).

On the other hand, taking out a relatively compact component of 7' ~*(v) for
PER** which contains a point Q; with the multiplicity /;, we have 24; new ramifi-
cation points of order 1/2 projected over a and b. Similarly, if the component contains
a point P; with the multiplicity k;, we have (k;—1) new ramification points of order
1/2 projected over a and b.**) Therefore the ramification number 7 of the covering
(X, T|, ¥) will be given by the relation

(12) 7= V—I—Zl,gg}**i(p).

However, the covering (¥, T|, ¥) satisfies the condition (8,) with respect to the
family of curves and arcs 5=\, c 4uas V)Y (Upeq ) and to By U Fy, the family
7 consisting of the curves ¢ for p€ 4 and the former curves y” which do not intersect
A. Let us remark that &,=0 for each p€A, hence &, =0. Further, By is obtained
from By replacing the arc apb by the corresponding arc ¢ for each p€ 2**. It follows
that Fi=Fz. We denote by E the set of the points of By which are exceptional with
respect to By. Obviously E is obtained from E replacing each point pc#Z**nE
by the corresponding pair {a, b}.

In order to apply (4) to the covering (X, T|, ¥), let us denote by ¥, the compo-
nents of ¥\(§u By), by 7, the cross cuts (of the type {y}}?) determined on #\¥’, by
8, the characteristic of ¥,, by 7, and 3, the number of sheets over ¥, and §,, by § a
point of £U FZ and by f(§) the number of folds of (X, T, ¥) ““ending at §”. In this

*) Let ¥ be the interior of such a component. The covering (¥, T/, v) satisfies (8,) with respect
to (yNwv)Udv and v is decomposed by the arcs from y N into sectors. The number of the sheets
over a sector is at least equal to the number of the sheets over each arc from yNv on its boundary
and at least twice the number of the folds over one of the arcs pa and pb on its boundary. The pre-
images of these arcs and of pa and pb give cross cuts of ¥. The assertion follows using Ahlfors’
formula for the characteristic of #” and the Hurwitz formula (1) for each covering of the sectors.

**¥) One sees why it was necessary to consider %,,, in Section 4.
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way formula (4) gives
(13) F=0x— 3 M8~ 2 5u—5 27 @).

It remains to express (13) in terms of the covering (X, T, Y).
One sees immediately that

(14 Sf@ =2

Indeed, if ¢,€(Eu FHN\Z**, then it is a point § with f(§)=f;, and if g,=pER**,
then it is replaced in £U FZ by the corresponding pair {a, b} and f,=F(a)+/(b).

A region Y, is either a neighbourhood v for a point p€ 4 and in this case §,=—1
while 7i,=v(p), or it is included in a uniquely determined region Y;. Then §,=g;,
Ai,=n; and there exists a bijection between the regions ¥, of this last type and the
regions Y;, [3], 8. Consequently

(15) D20, = 2 10— 2 pea V(D)

The curves y” which do not intersect 4 have no contribution to >§, nor to >s;.
Let y; be the family of curves y with &, =0 but which intersect 4. Write A4,=
Anvy;. The curves y; have no contribution to Xs; but yield >, , v(p) in >5,.
The other curves y” with &,,#0 decompose into cross cuts of the family {y7}* and
these cross cuts as well as those from the family {y}}* yield cross cuts §,. Namely,
if a cross cut y; contains the points p€4, then y; contributes with s;+>v(p)

to >§,. Hence
(16) 25‘4 = 2 Sj+2p€A1UA2 V(p),

where A,=ANy” and y” is the family of all the cross cuts y].
Therefore (11)—(16) imply

a7 r=0x— 2 10— 28+ 2lpe aN4,U4y) V(P)—% 2/

and it is easy to verify that AN(4;UA4,)={8, V[([EVA)\YI]\By, so that
>v(p) in (17) is equal to v, in (4).

6. Finally, let us establish Theorem 2 in the case mentioned in Remark 1 in
3.4 when 7 also contains a finite number M of points of Y. As indicated in 3.4, we
consider these points in &,., denote them by p, and suppose (if necessary by a change
of numeration) that they correspond to the indices k=1, ..., M. Set for each of
these k&, T (p)={0u> ---» Qkik}ci’ , every point Qy; having the multiplicity
hyjs X=X\UL, T*(py and Y=Y\{p1, ., Pu}-

We can apply formula (4) to the covering (X, T'|, ¥) so that the corresponding
ramification number 7 is given by

F= QX‘Z"iQi_Zsj‘I‘ZbM Vk"%Zfla
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where g, is the characteristic of X and Y; are the components of Y\(yu By), the
points py, ..., py, being included in 7.
On the other hand,

r= f+224=1 (Zijk=1 (h;—1D) = f+2kM=1 vk—ZkM=1 i

and g¢=0y +2,1‘"= 1 e so that the formula (4) is true for the covering (X, T, Y), too.
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