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RAMIFICATION OF KLEIN COVERINGS
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The aim of this paper is to extend the Hurwitz formula on the ramification of the

covering surfaces [7], [8], as well as its generalizations by S. Stoilow [l U' [12J' ourselves

[3] and L Bärzä [6] from Riemann coverings to Klein coverings. In what follows we

shall use definitions and notations due to N. L. Alling and N. Greenleaf [2].

l. Let ff:(X,d) and U:(Y, 9) beconnected Klein surfaces, orientable or

non-orientable, with or without border: X and lwill be connected two-manifolds

with countable bases (surfaces) d:{(u,z)} and 0:{(w, w)} dianalytic atlasses,

B* and B" the border (boundary) of X and I, respectively,l2l, Section 2.

A morphism of Klein surfaces T: 2t*U is a continuous mapping T: X*Y,
with the properties that T(B*)c.B" and that for all points P(X there exist diana-

lytic charts (U,z)(,il and(W,w)(g about P and p:T(P), respectively, and an

analytic function F on z(U)c6+:{z6C: y=0}, such that TIU:w-LoEoFoz.
Here cp; C*C+ is the folding mapping E?):x*ilyl that folds C over C*,127,
Section 4.

Evidently, if Br:9, it follows Bx=$ and one may give up 9, but if
By#$, even for Riemann surfaces, i.e., for X and Y orientable surfaces, this concept

of morphism differs from the classical one ([9], I, II) since it permits the folding over

.Br. Starting from Stoilow's topological theory of Riemann surfaces u2l, it was nat-

ural to compare this concept with that of the interior transformation (continuous,

open and Gdimensional (light) mapping) and we proved [5]:

Theorem l. Non-constant morphisms of Klein surfaces are topologically equiu'

alent to interior transformations in the sense of Stoilow.

It is obvious that a non-constant morphism is an interior transformation, but

Stoilow's methods extend, so that we generalized his local inversion theorem for in-

terior mappings T: X-Y between surfaces X and I/ as above. Namely, if P€

^r-1("Br), 
then in theneighbourhood of Pthemap T is topologically equivalentto

w:zh, and if P(T-L(B), to w:Eözh, which corresponds to the local normal

form of a morphism (121, p.30). If T: X*Y is an interior map, and if we organize
y with a dianalytic structure as a Klein surface 0!, this structure is lifted by means of 7
in a unique way to X yielding a Klein surface ff such that T becomes a morphism

ff*U.
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On the model of Stoilow's definition of fuemann covering ([12], Chapter ff, I,
2 and Chapter V, III, 4) we call each triple, (X, T, Y\ where 7: X*Y is an interior
transformation between the surfaces X and Y a Klein couering.

The problem of the ramification of a Klein covering being of topological nature
we shall not further refer to the Klein structure of our surfaces X and. I, which we
always suppose to be connected and of finite Euler characteristic g* md qr, respec-
tively.

2. L,et us first shortly resume the previous results: the Hurwitz formula and its
generulizations in the case of the coverings without folds, i.e., T-t(By):B*, 1a

particular in the case Br:fi.
l) Hurwitz formula (171, p. 54) is proved in Kerökjärtö's book ([8], p. l5S-159)

for both orientable and non-orientable, compact surfaces with or without border
X and Yunder the hypothes's 7-1(3y):Bx. The ramification number r of the rela-
tively unbordered n-sheeted covering T: X-Y satisfies the relation

(1)

(2)

r - Qx-nQv.

(See also Ahlfors' generultzation of this formula [1], p. 168, and [10], p.32a.)
In Stoilow's theory X and Y are orientable surfaces without border and the Hur-

witz formula holds for the total covering, which is realued by any interior mapping
T: X- f with the following propertyr for each infinite sequence of points P"€X
which tends to the ideal boundary 0X of X(i.e., has no accumulation point in X,
notation: Pn-\X), its projection p":T(P") tends to åY. This is in particular the
case when X and I are compact (ll2l, Chapter VI, II-III).

2) In 1933, [11], Stoilow extended formula (1) by introducing the partially regular
covering T: X*Y, charucteraed by the existence of a finite family of mutually
disjoint Jordan curves y on Y with the following properties: (fJ for each sequence
Pn-7X, its projection putyv0Y (i.e., pn has accumulation points only on y), and
(fl) the set Z-l(y) is either compact or empty. Then the family y decomposes I
into a fnite number of regions Y, of finite characteristic q; and totaliy covered with
n; sheets by T-L(Y;). For such a partially regular covering Stoilow obtained the for-
mula ([l], [12], Chapter VI, IV)

r-Qx-ZnrQr.
3) In 1960, [3], we considered - agatn in the orientable, unbordered case - a

family y on Y, consisting of a finite number of mutually disjoint Jordan curves and of
a finite number of Jordan arcs with the end points in well-determined points on Il,
which we called knots, or elements of 0Y. An arc of y can meet another arc or curve
of 7 only in a knot. The set of knots will be denoted by "tWe supposed that the interior transformation T; X*Y satisfies the condition
(BJ but we gave up the condition (B) and introduced the local condition (ZB):
a point p€? satisfies (LP) if there exists a neighbourhood a of p such that the pre-
image of the component of u ny, which contains p, is either relatively compact in X
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or empty. In this way it was natural to define the exceptional points p6y which do

not satisfy (Lf ,), and we proved that the set E of these points is finite or empty,

The surface I is again decomposed by y into a finite number of regions Ir of
finite characteristic gr and totally covered by n; sheets.

We chose a family 7' of mutually disjoint Jordan curves from 7, which contains

all Jordan curves of \(du.,4r)*). Let Er, bethe set of exceptional points of y' with
respect to itself (i.e., the set of the points p€y' for which Z-l(un y') is not relatively
compact n X for every neighbourhood u of p). The curves y' with Et,+g are decom-

posed by Er, into open Jordan arcs and similarly (f\y')\(du"zf) consists of open

Jordan arcs. We called these arcs cross cuts and denoted them by l'j , the family con-

tained in 7'by {ytj}t and the rest bV b'j\'. Every cross caty'jis covered by s, sheets.

Further, we denoted by v(p) the number of sheets of the covering over a point
p<Y**),designated by p1,the points of the set Er,v(Ev-,f\') and wrote v(po):vo.

Then we obtained the following generalization of the Hurwitz-Stoilow for-
mula (2):

(3) r - Qx- Z r,Qi- Z ti* Zuo.
Its importance is due to its wide application possibilities, for instance to the

regions of the exhaustion of a Riemann surface and thus to the study of the ramifi-
cation of Riemann coverings in general [4].

4) The formulae Q) and (3) remain valid for non-orientable surfaces without
border, as it was proved by I. Bärzi 16l.

3. We shall now consider the general case of a Klein covering T: X*Y and

obtain in Theorem 2 the formula (4), which, assuming the particular hypotheses
presented above, reduces to the results 1)-a). It thus remains to concentrate on the

case T-L(B')+B*, X and I being orientable or non-orientable, By*0 bat B*
being empty or not. It should be mentioned that even in the case T-L(B'):B* lov-
mula (4) will bring new information since the assertions 2)--a) have been established

only for By:$ b:ut according to (4) they are also true if By+O.

3.1. Since X and Yhave finite characteristics, we can represent them by means of
homeomorphisms which do not influence the ramification of the Klein covering

T: X* I as subsets of compact surfaces X and Y with the same genus as X and Y.

Here X is orientable if and only if X is orientable; the same holds for Y and Y.

Under these homeomorphisms the ideal boundaries of X and 7 correspond to a
finite set of points Frcx and Frcy and their borders to a finite family of
mutually disjoint Jordan curves and arcs B* on X and B, on Y, the arcs ending in
points of F* and Fr, respectively. For X we shall write Bx:BlvB] and
Fx: Flu ff, where B] contains the Jordan curves of .8" and ,Bf its Jordan arcs,

*) We denote by I the family of curves and arcs, on€ curve or arc of the family as well as the

set of the points of these curves and arcs; the same remark holds about y'.
**) v(p\ is the number of points in T-t(p\ counted with their multiplicities.
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lrl the isolated points of -8" u F* and f] the end points of the arcs from .Bf .

Moreover - without influencing the ramification of the covering - we can suppose

(51)that BlvF] consists of a finite numberof mutually disjoint Jordan curves on

X, each point of ,F? giving exactly two end points of arcs of B|. Similar notations
will be used for I.

3.2. On I we shall consider a family y like that of 3) but we let arcs from y

have end points on 3, u Ft. The points of y n .8" will also be called knots and the

set of all the knots will again be designate d by fi The covering (X, T, Y) will satisfy

the condition (fr) for y v B, v F, . Further , E will designate the set of the exceptional
points of y. Obviously dn Btc-,[ Besides E the covering can present exceptional
points on .81, relatively to B, itself. For such a point p€By the pre-image T-t(u n Br)
is not relatively compact for any neighbourhoodo of p. The set of these points will be

denoted by .E

3.3. Another important set will be fr * the set of the projections of the ramifi-
cation points of the covering T: X-Y.

The new type of coverings we are now considering may be characterized by one

of the following equivalent conditions:

Q) T-L(B)4B*, and
(ii) the covering presents folds over By.
lf QnBylg, then these conditions are fulfilled.
Before writing formula (4) we shall discuss in 3.4 and 3.5 the two new aspects

that occur for the covering.

3.4. The case 4 n By+O. Let p be a point of B".Its pre-image T-L(p) consists

of points Q;€*:\B* , j:1,..., i(p), with the multiplicity hi (i'e.,where locally
? is topologically equivalent to the mapping w-Eozht), and of points Pj€Bx,
j:1, ...,b(p), with the multiplicity k, (i.e., where locally T is topologically equivalent
to one of the mappings w:rp ozki ot 1,v:E "(-zkt)).

Let u be a sufficiently small open neighbourhood of p and I, l* the two open

Jordan arcs in whichp divides the component of u n By that contains it. For each Qt
the corresponding component of f -LQ:\ is a normal region (in Stoilow's sense [2],
Chapter V, II) which covers u under f with 2ht sheets and I v I* with h j folds. Simi-
larly, for each Pi the corresponding component of T-L(a\ is a normal region and

covers u under ?with k; sheets and /u/* with (ki-l\ folds and 2 borders. More
precisely, if k; is odd, each of the arcs I and l* will be covered by (kt-l)12 folds and

a border, andif kt is even, one of them will be covered by k1l2 folds and the other by
(kj-2)12 folds and 2 borders.

In order to preserve the form (l) of the Hurwitz formula for total coverings, we

shall define the ramification order of a point 0.; as usual by (hi- 1) but the ramifica-
tion order of a point Ptby (kr-l)/2,*) so thatthe ramification of the covering at

*) This definition has also an interpretation in connection with the double coverings.
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p will be

, (p) : Z',!,Qr, - t> * * Zl":i(k i - D.

A special role will be played in what follows bY Qrtz:{p€%nB": hi:l fot

each Qr(T-t(Dn* and kr:l or 2 fot each PiQT-t(p)nB*, with at least one

ki:2\. If p(ar1z, then the number of the points P.; with ki:2 rn T-l(p)nB*
will be 2r(p). Thus 2r(p) represents also the number of the folds that cover one of
thearcs lorl* buttransform atpintotwoborderscoveringthearc l* ot I, respec-

tively.
At a point p€i:\By the ramification will be taken as usual

r(p): Z',\{n,-g,
where ?-1( p\:{Qr, ..., Qr6,}c* and, Qi has the multiplicity h, (i'e.,locally f is

topologically equivalent to w:zhl and the ramification order (å;-l).
Evidently, p(A if and only if r(p)>0 and the ramification number of the cov-

efing r:)near(p).

3.5. Folds "ending at a point" of .Eu F?. If p€.E, thete are folds or borders

(at least one) which cover one of the arcs / or /* without covering p. Let f(p\ arÅ

å(p), respectively, be the numbers of these folds and borders. Such a fold (border)

rep.resents an asymptotic way in j' (on .Br) for f with the asymptotic value p and

will be called fold or border "ending at p".
The same notations f(p) and å(p) will be introduced for the points p<F?.

(If we do not suppose, as indicated in 3.1, that BlvF! consists of Jordan curves

and in a sufficiently small neighbourhood a of p one has exactly two arcs I and l*
of .Bf ending at p, then p can be an end point for more than two arcs like / or for a
single one, andf(p) as well as b(p) will be the numbers of folds or borders "ending
at p" over all these arcs. The sum Zper?f(p) is independent of this [5].)

3.6. With these remarks and notations we can formulate

Theorem 2. Let T: X-Y be a Klein couering, y a family of curues and arcs as

in 3) but which, if By *0, may haue end points on By , too, and suppose that T satisfies

the condition(ft) with respect to yv Brv Fy (if P"-Byv F*, then pn*yv Brv Fy).

Thefamily y decomposes Y into the regions Yi with the characteristics pi and number of
the sheets n; : I\(y u .Br) : w Yi. We choose a family y' of mutually disjoint Jordan

curaes from y, so that it contains all those curoes from y without exceptional points with

respect to themselaes (i.e., if a curoe y has Er:fi, thm it will be included in the family
y' ) ,*) As in 3) we determine the cross cuts ylj couered by s i sheets' Further , let po be the

points of the set Er,u[(du./r)\(y'vBr)l and q, the points of EvFl, v1,:v(P*)

+) There is a difference between the actual construction of y' and that of 3) but this does not
influence the result.

51
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and fr:f(qr). Then the ramification number of the couering is giuen by the formula

Remark 1. We can admit that 7 contains, besides curves and arcs as before,

a finite number of points p€i such that for each neighbourhood u, its pre-image
T-i(u) is not relatively compact in X. These points will be interpreted as curves 7'
reduced to a point and be considered in Er,, hence denotedby pr.Formula (4) holds
in this case too, with the mention that the sum ^f,vo contains also the terms correspond-
ing to these points po.

Remark 2. Evidently (4) refers also to the case of the total covering with folds:

t:0. If f(p):O for each p(Byv F!, then (4) takes the form (1). This case may also
be proved directly by counting the simplexes of the covering as for the classical Hur-
witz formula ([0], p. 324). This was done in[2,p.43], for the case of the unramified
double covering of a compact Klein surface.

The proof of (4) will be given in the next two sections,4. and 5., by adapting
the method we used in [3] in order to prove (3). Ahlfors' formula for the addition of
the characteristics will remain the main tool.

The finiteness of the sets E, E, fr as well as the total covering and the finite num-
bers of sheets z;,J;rvp ov€r each Yi, T'j ,p*, respectively, and the finiteness of the
numbersf are proved by similar devices as in [3]. (For details see [5].)

4. Let us first prove Theorem 2 in the special case 9a(yvBr):4r,, and
Ev.,f cy'v 8".

Besides the cross cuts fujl), we shall also consider a family of cross cuts {,Bj}
on 8", namely, the family of Jordan arcs which appear on B, when one takes out
the points of %r,rv,E These arcs have their end points in the set M:1Lrnv Ev Fi
and each Bi is covered by o- sheets.

We denote by Xu and Xl, the components of \Z-1(y'u-8") and

^7-1(1lu.Br), 
respectively, where Xi, are the components of XunT-L(Y), and

remark that (Xi, Tl, Y) is a total covering in Stoilow's sense, so that we can

apply the Hurwitz formula (l) to get

(4)

(s)

r - Qx- Z ,rQi- Z ti+ Z r1,-* Zf,

r?ri : ai'i-nlnQi,

where r/, is the ramification of the covering, ni, the number of sheets and qirthe char-
acteristic of Xir.

If q, is the characteristic of X, and Äi, or -ly'r, respectively, represents the number
of cross cuts in the decomposition A7-t(y' v Br): u X, which comes from T-'(y)
and T-L(B"), respectively (we remark that y'^By:0), then by Ahlfors'formula

(6) Qx : Z e"+^ä*Nr.
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Further, let Nj be the number of cross cuts which appear when we continue the de-

composition: uX f-l(b'j\'):vXit. The same formula gives

Z Qu: Z ei',+Nr'

By repeating the device used in [3], we obtain again

^ä+Nz: 
Zti-Zro

(ÄL:Zts;-Zvo, Nr:Zzs;, where )L and )2 extend to the families ft!)1 and

{lf }', respectively, and p1,€Er')

In order to evaluate N, we remark that a cross cut from T-|({BID determines

a fold and counted with its end points contributes with2 to the sum 2or*(Zr(p)+
fb)). Therefore

(e)
^h - * Z ,€M (2r (p) +f(p)).

Since r:Zri,*)eear(p) and Zre*.f(p):)f1, formala (4) follows from
(5)-(e).

Remark 3. By the device used in the calculation of Nr, [3], one proves that

2(2, -- Z o r* t (n)) : Z, eu (2, (p) +f(p) + b (p)).

5. The general case.Inorder to obtain from the general Klein coverin g T: X-Y
with the condition (p) for a family yv Brv F, a covering from the special case 4,

we suitably modify the method used in [3],8. Namely, we introduce the sets Q*:
(4n7)\(du,/r), 4**:(4nBr\\Q112 and A:(4*wEv.t)\Bt, and we choose

a set of sufficiently small. open neighbourhoods u for the points p(Av fl**, such

that the closed neighbourhoods D are mutually disjoint and the following conditions

are fulfilled: For each pe.A, Dci', D is a Jordan domain bounded by a Jordan curve c;

(\tp))n (Evlfv*):O and Dny consists of a finite number of Jordan arcs

with an end point atp and another on c; these arcs decompose u into sectors; any

non-compact component of Z-1(ö) does not intersect f-L(p). For each P€4**,
\B"ci unB" is a Jordan arc apb while u is a Jordan domain borinded on 7 by

a p b and a Jordan arc c which is contained in i except for its end points a and b;
(\{p})n (Ev,tfvQvE):fi,and Dn7 has the same properties asin thec,ase p€A;
any non-compact component of Z-l(ur) does not intersect f -t(p) and every compact
component contains a single point of f-t(p).

First we take out of X the union of the non-compact components of T-L(D)
for all p(A and, obtain a surface X*.

According tol3f,7, these components are either simply connected and separated

from X* by a cross cut or doubly connected and separated from X* by a Jordan

curve, such that we have

(10) Qx: Qx, and r : r*,

53
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where ga* means the characteristic of X* and r* the ramification number of the cov-

ering (X*, Tl, Y\.
Secondly, we take out of X* the non-compact components of Z-1(D) and the

relatively compact components of T-L(a) for all p€Q**, obtaining a surface f
with the characteristic Q7, and take out from Ithe neighbourhoods u for all p€fr**,
obtaining the surface f,

By a direct computation we prove that the non-compact components of T-L(ö),
p€Q**, are again of the same type as described for p€A.*) If r-t(p\:
{Qr,.-',Qig,1, Pr,...,Pu<r,l\, Qi(**,Pi€Bv*, as in 3'4, the component of T-L(o)
containing Qi will be a Jordan domain included in ** and the component contain-
ing P, will be homeomorphic to a half disc separated from f, by a Jordan arc projected

by Z on c. Therefore with Alhfors' formula we have

(1 1) QN : Q:xI Z n€s*xi(P).

On the other hand, taking out a relatively compact component of Z-l(u) for
p(q** which contains a point Q, with the multiplicity hr, we have 2h, new ramifi-
cation points of order I 12 projected over a and ä. Similarly, if the component contains

a point P, with the multiplicity ki, we have (ki-D new ramification points of order
ll2 projected over a and å.**) Therefore the ramification number / of the covering
(N, Tl,7) will be given by the relation

(r2) 7 - rt Zr€s**i(p).

However, the covering (,Y, Tl,7) satisfies the condition (B) with respect to the

family of curves and arcs I:(t\Uoe ; sa** n) u (Ure e c) and to Byv Fr, the family

i' consisting of the curves c for pQA and the former curves y' which do not intersect

A. Let us remark that E":fi for each p(A, hence Et':O. Further, .Be is obtained
from -8, replacing the arc apb by the corresponding arc c for each p€q**. It follows
that fp: rtr. We denote by ,E the set of the points of 3y which are exceptional with
respect to By. Obviously ,E is obtained from E replacing each point p€Q**nE
by the corresponding pair {a,b\.

In order to apply (4) to the covering (N, Tl, V1, tet us denote by t^the compo-
nents of f\(i\JBr), by !, thecrosscuts(of thetype fu1l)'z) determined on \!', by

Q^ the characteristic of V^, by fi^ wd.i, the number of sheets over V^ and i, by 4 a
point of .Eu Fl and,AV f@) the number of folds of (X, fl,7) "ending at {". In this

*) Let'fbe theinteriorof suchacomponent. ThecoverinC(f Tlo) satisfies (fr)withrespect
b (y na)v 0t: and u is decomposed by the arcs from y n u into sectors. The number of the sheets

over a sector is at least equal to the number ofthe sheets over each arc from lnu on its boundary
and at least twice the number of the folds over one of the arcs pa and pb on its boundary. The pre-
images ofthese arcs and of pa and pb gsve cross cuts of { The assertion follows using Ahlfors'
formula for the characteristic of { and the Hurwitz formula (1) for each covering of the sectors.

**) One sees why it was necessary to consider @r1, in Section 4.
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way formula (4) gives

(13) F - Qx- Z fit dt"- Zs,,- * Zfg\
It remains to express (13) in terms of the covering (X, T, Y).

One sees immediately that

Zf@ - Zfi.
Indeed, rf qf(Ev Fi)\4**, then it is a point 4 with f@):f,, and if q,:p€fr**,
then it is replaced n EvFi by the corresponding pair {a,b\ and ft:f@)+f(b).

A region 7, is either a neighbourhood u for a point p€A and in this case 0r: - I
while fir:v(p), or it is included in a uniquely determined region Y;. Then dt:Qi,
frt:ni änd there exists a bijection betweenthe regions 7, of this last type and the

regions Yr, l3l, 8. Consequently

Z fr^dt" : Z nrQi- Z oEatt(P).

The curves 7' which do not intersect A haveno contribution to ).i, nor to )sr.
Let yi be the family of curves y' with Et:g but which intersect A. W1jte At:
lnyi. The curves yi have no contribution to )s; but yield )ora,v(p) in )sr.
The other curves y'with Ey,+g decompose into cross cuts of the family bilt urd
these cross cuts as well as those from the family {yj}'zyreld cross cuts fp. Namely,

if a cross cut y.', contains the points p€A, then yjl contributes with si+Zu(p)
to )Sr. Hence

Z Su - Z si* Zo€A{)A,r(p),

(r4)

(1 s)

(16)

where Az: A,-1Y" and Y" is the

Therefore (1 l)-(1 6) imply
family of all the cross cuts ytj

('1) r : Qx- Z nrqr- )si-lZp€,\(,rru,r,) v(il-+ Zf,
and it is easy to verify that ,4\(ltu,4r):{Er,wl(Ev.lr)\ylNBt, so that

>(p) in (17) is equal to 7o in (a).

6. Finally, let us establish Theorem 2 n the case mentioned in Remark I in
3.4 when y also contains a finite number M of points of f. As indicated in 3.4, we

consider these points in Er,, denotethem by p1,and suppose (if necessary by a change

of numeration) that they correspond to the indices k:L,...,M. Set for each of
these k, T-'(p):{Qor,...,Qor.\.*, every point Qr,i having the multiplicity
åe;, f,:\U{=rf-,@) and 

*t:\{pr, 
...,pa}.

We can apply formula (4) to the covering (t,Tl, f) so thatthe corresponding
ramification number f is given by

i - Qx- Z n,Qi- Zti* Zo>Mt4c-+ Z-f,,
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where q" is the characteristic of t and Y, arc the components of \(7 u -Br), the
points pt,...,pu being included in y.

On the other hand,

r : i* Zf:, (ZL, (hoi-t)) : i+ Z{:rrr- Z{:rio
and q*: Qx +Zy=r,io so that the formula (4) is true for the covering (X, T, Y), too.
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