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Introduction

Euclidean spheres in RP play an important role in classical potential theory,

the theory ofthe Laplace equation. They enter into the picture as soon as one treats

the Poisson formula which is the key to the definition of superharmonic functions'

For the Laplace equation, the fundamental solution N with pole at the origin is in

every dimension p > 1 a function of the euclidean nonn of the point x€ Rp. Hence

spheres with center at the origin can be considered as the level surfaces of N.

The potential theory ofthe heat equation

.- ahlh-fi: o

in Rr+1:RpXR is now well developed. In particular, there are formulas analogous

to the Poisson formula. However, there is one crucial contrast to the Laplace case:

In principle, (p*l)-dimensional balls could be used since all boundary points turn

out to be regular. However, the proof of this fact demands already quite a bit of
potential-theoretic machinery. So, for the definition of supercaloric functions - the

analogue of superharmonic functions -, one usually uses either rectangular domains

parallel to the coordinate axes where the inconvenience ofhaving irregular boundary

points is not serious or truncated rotational cones havipg a base parallel to the

hyperplane Re X {0} and a vertex situated in positive time direction above this base.

In both approaches the formula analogous to the Poisson formula is not easy to

obtain since integral equations have to be solved. In any case, the final Poisson-type

formula contains functions which cannot be written down explicitly.

In view of these difficulties it seems natural to proceed by analogy with the

case ofthe Laplace equation: One considers

W(x, t) :

- which is the fundamental solution of the adjoint heat equation with pole at the

origin 0 - and one studies the level surfaces

K- nt)-Pltsllxllzltt when / < 0
[o when /=o

(x) W(x, t) : d
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where d is a positive constant. This idea, due to Fulks [0], will be fundamental for
us. In [10] Fulks considers the smooth convex surface -8, defined by (x) with inclu-
sion of the limit point 0. It is the boundary of the relatively compact domain Oo

in RP+1defined by
. W(x, t\ > d.

We shall call Qo a heut ball and Bo the corresponding heat sphere. In contrast to the

case of the Laplace equation, the pole 0 of IA fies on the heat sphere Bo. The heat
ball Qo is an egg-shaped domain which has ReX {0} as tangent hyperplane through
0 and which lies in the half-space of all points (x, r) with negative time coordinate l.
In [0] Fulks defines explicitly a continuous function Qo>O on B, which is strictly
positive with the exception of one point. The measure po which has Qa as density

with respect to the surface measure of B, is a probability measure. 'Ihis Fulks measure

trr, is connected with the solutions of the heat equation in a similar way as the normal-
ized surface measure o, of the sphere llxll :r in Rp is connected with harmonic
functions, however with one important difference: For the Laplace equation the

usual mean value property says that integration of a harmonic function with respect

to o, yields the value ofthe function at the origin, hence at the center ofthe euclidean

ball llxll<r. For solutions of the heat equation integration with respect to po yields

the value of the solution again at the origin 0 which is now a point of the heat sphere.

According to [10], solutions of the heat equation can be characterized by mean value
formulas where one integrates with respect to measures which are obtained from
pa by translations. Also these translated measures will be called Fulks meqsures.

Furthermore, Watson U8l, [19] uses these measures for the definition and study of
supertemperatures which correspond to superharmonic functions for the Laplace

equation. However, no attempt seems to have been made to identify these super-

temperatures with the supercaloric (or superparabolic) functions which are defined

by means of the above mentioned rectangular domains or truncated cones, and hence

in agreement with the general definition of superharmonic functions in the theory
of harmonic spaces.

By making essential use of the harmonic space theory for the heat equation,
we intend to show as the main result of this paper that every Fulks measure prd

allows a simple potential-theoretic interpretation: p, is obtained from the unit mass

at 0 by sweeping this mass out to the complement of d2o, i.e.,

(x *) Fa : ti'o.

In the proof we use a result of Boboc and Cornea [6] about cluster values of harmonic
measures, a result which has been improved recently by Luke5 and Malf [6]. Our
main result has several consequences which are interesting in themselves: The result
implies that the origin 0 is an irregular boundary point of the heat ball Qo and that
supertemperatures coincide with supercaloric functions. Furthermore, our result
leads to a probabilistic interpretation of the Fulks measures: po is the distribution
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of the first hit of the heat sphere .Bo (at times l>0) by the Brownian heat transfer

starting at 0, where the Brownian heat transfer in Rp+lis the well-known space-time

modification of p-dimensional Brownian motion. So, altogether, the measures pd

find a very satisfactory and natural potential-theoretic charactenzation.
In order to make our presentation as smoothly accessible as possible, the paper

is organized as follows: After the introduction of the Fulks measures we state our

Main Theorem, namely the characterization of po. Then we immediately give appli-

cations. Finally, the proof of the Main Theorem is presented in the third and last

paragraph of this paper.

fn our presentation the harmonic space associated to the heat equation and the

corresponding potential theory is used constantly and without further explanations.

Standard references are [l], [3] and [7].
The main results of this paper have been announced in C.R. Acad. Sci' Paris,

Sör. A.

1. Definition of the Fulks measures

We shall be concerned with the heat equation

(1.1) n-ff: o

in R?+1-RpXR for p:1,2,.... The points of Rp+1 will be denoted correspond-

ingly by (x,t\:(xr, ...,xp, r) where x:(xt, ...,xp)€Rp and l€R. In particular,

the Laplace operator refers to the firstp coordinates:

/: zLtL.bx?'

The euclidean norm of a point x:(xt, ..., x)€Rp will be denoted by

llxll : (xl+ ...*xz)uz.

Solutions of (1.1), more precisely functions h: U-R defined on an open subset

U of Rp+1 which are of class Cz with respect to the space variable x and of class Cr
with respect to the time variable r and which satisfy (1.1), will be called caloric func-
tions ot temperatures.

We denote by fr the fundamental solution of (1.1) with pole at the origin 0:
(0, 0), i.e.,

(r.2)

(1.3)

fr(*, t): {t*)'''r-,xttzt't when t >

[o when t =
ion W ftom the introduction:

0.

Reflection at 0 yields the funct

W(x, t): W(-x, -t).
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By translation we obtain for every point zo:("0, /0)€Rp+1 the function

Wro(x, t) - W(*o- x) to- t)(r.4)

which is the fundamental solution of the adjoint heat equation

Åh+#- o

withpole at zo, In particular, W:I%.
Given zq€Rp+l and a real number c>0 we denote by Q(zo, c) the set of all

points (r, t)€Re+l satisfying

(1.5)

(r.7)

(1.9)

(r.7')

(1.6)

This set Q(ro,
ary

w"o(x,t) =(*)'''.

c) is a relatively compact domain, in fact a convex body. Its bound-

B(zo, c) : 0Q(zs, c)

is a smooth surface given by the equation

VT,o(x, t): (#)'''
with inclusion of the point zo. More precisely, let us define for c>0 the (continuous)
function F,: [0, c]*R by

0=t<c
/ - 0;

then the surface B(zo, c) is given by the equation

llx-xoll :F"(to-t) with o=to-tsc.
From this it can be concluded that B(zo, c) is a (p-dimensional) Cz-manifold and
that B(zo, c)\{zJ is even a C--manifoldl). The domains Q(zo, c) will be called
heat balls in Ro*t; correspondingly, the manifolds B(zo, c) will be called heat spheres.

1) Denote by f0 the inverse of the strictly decreasing function @o: [o,e-r[ *1e-1/",1)
where @o(z):z' for z=0 and :1 for r:0, and denote by F, the inverse of the strictly increasing
function Q;'!e-t, q-1*fe-rle,1-[ where Qr(t):lt, Then one obtains two charts for neigh-
borhoods of the points zo and 4:(*0, /o-c), respectively. In fact, it is easy to see that the
equations

(a)

and

(b)

,r _ llx-xoll 21

t : to- cYole ZPc ,

1 _ llx-xo ll 2 
1

t : ro - cYrlt- '0" 1 ,
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In what follows o:cB1zo,c) will denote the surface measure of the heat sphere

B(zo,c\. We define a function Q>0 on (Rexl0, +-[)u{0} bV means of

o(v /\ - { llxll 'l4llxll't2+(llxll '-2pt)zf-Ltz when t > 0
Y' \Jv) ''t 

l. t when (x, t) - 0.

71,

Furthermore, for zo:("0, /o)€Rp+r we define a function

Qro(x, t) : Q@o- x) to- t)

on (Rox] - -, /o[) v {zo). Its restriction to B(zo, c)

Qzs,c: QrolB(zo, c)

turns out to be a continuous function which is strictly positive on B(zo,c) with the

only exception of the point zr:(xo,to-c) where q,o(zr):O. By taking e,0," as a

density with respect to o we finally obtain the main object of our investigation.

1.1 Definition. The positiae Radon measLre

(1.9)

(1.10)

(1.1 1)

(r.t2) F,o, " 
: (#)''' n 

"o, 
co B(zo, c)

on B(zo, c) is called the Fulks measure for the heat ball Q(zs, c).

According to Fulks fl}l, trt"'," is a probability measure. In fact, this follows from
the following fundamental result of [10]:

(F) Every caloric function å defined in a domain D of N+r satisfies the following
mean ualue propefiy:

(1.13)

whenever zo(D

h(to)I n d4"u'c :
and Q(tr, c)cD.

in both cases with

describe the neighborhoods

uo:
and

ut:

ttx-.rorl < { 
":,

B(ro, c)n{t", t): t > to-' j[

B(zo, c) n 
t,", 

t): t = to- il
of zs and zr, respectively. The right-hand side of (a) is a Cs-function, the right-hand side of (b)

is a C--function of x. The value t:to-c/e yields the "equator" of B(zo, c) which corresponds

to the maximum of F.:

,"(:): IE
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In [10] Fulks also shows the converse: A continuous function h: D-R on a
domain D of N+L with the above mean value property is caloric. However, (F)
as well as its converse will not be needed in the sequel. They will follow from our'Main Result and its Addendum (see Corollary 2.3 and 2.6, Remark 2).Let us also
remark that the Fulks measures have been rediscovered by Kuptsov [15] in an ana-
lytical presentation which, however, is less convenient for our purposes.

2. The main result and its consequences

We shall now give a potential-theoretic charactertzation of the Fulks measure

trr,.," which will be considered as a Radon measure on RP+l concentrated on B(zo, c).
Potential-theoretic notions for the heat equation should always be understood in
the sense of harmonic spaces. More precisely, 1P+r is considered as the harmonic
space with respect to the harmonic sheaf given by the caloric functions. It is a well-
known fact [1] that this space is strongly harmonic or S-harmonic in the terminology
of Constantinescu and Cornea [7].

We shall start with a simple observation:

2.1 Proposition. All points zlzo of the heat sphere B(zo,c) are regular
boundary points of the heat ball Q(zr,c) (for arbitary zoeRp+L and c>0).

Proof. This can be seen in many ways. A simple procedure is the following:
The boundary point Zr:(xo,lo-c) with the same space coordinate as zo is regular
since. obviously,

u (x, t) : llx-xell 2* 2p(t - to1 c)

is a caloric barrier for zr. For all remaining boundary points 2:((,r) n
B(zs, c)\{ze , zr} there exists a closed euclidean (p * l)-dimensional ball K such that
KaQ(zr, c):{z} and such that ( is not the space coordinate x of the center (x, I)
of K. It then follows from Friedm an l9l, p. 69, property (b), that z is regular. In fact
for a=0 sufficiently large,

where
u(x, I) : R(t)-a--R (x,I)-",

R(x, t) : llx-tll '+U-l)',
is a barrier for z (see also Effros and Kazdan [8], Lemm a 2)').

Our main result is now the following:

2.2 Main Theorem.
is the unit mASS ctt zo swept

(2.r)

For all z ,(Rp +L ond t 2- 0, the Fulks measure Fro, 
"out to the complement of O-Q(to, c), i.e.

trlzs, c _ U:o

2) It is an easy and well known consequence of the Hopf maximum principle that ls - 0u l 0t <0
for a C"t-function in a domain DcRp+L implies that o is supercaloric on D.
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The proof will be given in the next pangraph.It will lead also to the following
addendum:

2.2'Addendum. In euery heat 6o11 g2:Q(zo,c) there exists a sequence

(ze) of points in Q such that the corresponding sequence (Fl) of har*onic measures

conuerges aaguely to the Fulks meosure pzo,c.

Let us remark that this Addendum can also be deduced from our Main
Theorem and a lemma of Köhn and Sieveking [13] (see also [6], p. 356).

The Addendum 2.2' leads directly to the mean value property (F) of Fulks:

2.3 Corollary l. Let h be a function which is caloric in an open set
(J cRP+I. Then the equality

t h dp",,": h(zo)

holds for all heat balls Q(zs,c) for which 8(zo,c)cU.

Proof. Suppose that (zo) is a sequence in Q:Q(zo, c) with the properties

stated in the Addendum. Then

Ioory.:h(z) for all k€N'

From this the result follows for k**- since å is continuous on U.
An immediate consequence of the Main Theorem and Proposition 2.1 is

2.4 CoroTlary 2. zn is the only irregular boundary point of Q(zs,c).

This result can be proved in several other ways. E.g. it follows from Proposition
2.1 and Watson [18], Theorem 9, p. 399. Another proof is indicated in the Remark
following our Proposition 3.1.

We shall proeced now to more important consequences of the Main Theorem.
As pointed out before, we consider RP+1 as a harmonic space with respect to the
sheaf of caloric functions. The hyperharmonic (respectively superharmonic) func-
tions for this harmonic space will be called hypercaloric (respectively supercaloric)
functions. Consequently (see [], p. 127), a hypercaloric function u on ar open set
(JcRP+L satisfies the inequality

(2.2) I "dpY = u(z)

for every point z(U and every relatively compact, open neighborhood VcV c(I
of z. Here pY:e?' denotes again the harmonic measure. In particular, the approach
of Gehring tlll - if extended to lower semicontinuous functions with values in

I - -, * -l - leads to an equivalent definition of hypercaloric functions. This is
an immediate consequence of Köhn [12], p. 5 (Satz 3).

In contrast to the class of hypercaloric functions there is an analogous class

of functions introduced by Watson [8]in his thesis and used in subsequent investi-
gations, in particular in [9]. The definition makes essential use of the Fulks measures:
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A function u:(J-7- ?, a-] defined on an open subset U of Rp+l is called a
hypertemperature on U ii besides being lower semicontinuous, it satisfies the ine-

quality

(2.3)

for all choices of points zo(U and real numbers c>0 for which the heat ball
Q(zo, c) is contained together with its boundary B(zo, c) in U. We claim

2.5 Theorem. An extended real-aalued function u defined on an open subset

U of pe+t is a hypertemperature on U if and only if it is hypercaloric on U.

Proof. Suppose that u is a hypertemperature on U and that V is a regular set

such that VcVcU. It suffices to prove that for every function f€G(|V\, i.e.

continuous real-valued function on the boundary 0V of Z, satisfying f(z)=u(z)
for z€|V one has

(2.4) ff auf = u@) for all z€.v.

But since z*nfQ):lfduf solves the Dirichlet problem for the boundary func-
tion/(according to the definition of a regular set), Hl is a temperature on V and,
consequently, the function

a(z) : u(z)-H{ (z) (z€v)

is a hypertemperature on Z. For such functions the boundary minimum principle

is valid (see [8], p. 397 )): So u>0 follows from

liy'1nf o (z') : lip]lf u (z') - ljg, u/ (z') = u (z) -f (z\ > 0
z'€V z'€Y z'€Y

(z€|V). This proves Q.4). - Conversely, assume that u is hypercaloric on U and

lhat A(zr,c\cU for some zs(U and c>0. Since the closure Q of Q:Q(zo,c)
iscompact,ru isboundedfrombelowon A:uQ)=y forall z€8 and some y€R.

Consequently; there exists a relatively compact open set Uo such that

I "dpro,c= 
u(zo)

(2.5)

and

(2.6)

(2.7)

3) In order to be

inf (u, c) where cr€R

Qc(IoCUoc(I

u(z) > y for all z(Uo.

l,et us assume for a moment that u is even bounded on U0. Then, according to
the extension theorem of [], p. 159, there exists for a given open set Z satisfying

EcVcVcUo a potential p(G(Rp+) which is even caloric on V as well as a
potential fi on RP+L such that

ti(z) - u(z)+p(z) for all z€V.

in formal agreement with [18], Theorem 8, it sumces to replace u on V by

is an upper bound for f.
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It follows from our
on RP+l, we have'

(2.9)

(In fact, RE*=w on RP+l and

according to the definition
an arbitrary set E c.RP* 1,

applied to ii which yields

(2.9')

Since p is caloric on V we also

according to Coroll ary
follows from (2.7) and

Consequently, w€ have

(2.9)

swept-out measure tlo for
The inequality (2.8) can be

Main Theorem that, whenever w is a hypercaloric function >0

< w (to).I * dP"o,"

R?,Q)-lwdelo

of the balayöe Ri and the
in particular for E-CP.)

Iadp"o,rsti(zo).
have

fad\,o,c:pQo)
2.3. Since the Fulks measure lives on B(zo, c)c.V, it then

(2.8') that

I a d4,o,c : I " 
d4"o,"* pQJ = ti(to).

I "d4"u,"s 
u(zo).

If z is not bounded from above, we pass from a to the function rzn:inf (u,n) which
is hypercaloric for every z(N. We then have proved

f u,dr"o," =- uo(zs)

for all n€N and hence, by passing to the limit for n-**,

f rdLt"o,"= u(zs).

This, however, proves that a is a hypertemperature on U.

2.6 Remarks. 1) An immediate consequence of Theorem 2.5 is the result

that the supercaloric functions on an open set U coincide with the supertemperutures

in the sense of Watson [18]. This follows immediately from [18], Lemma 5o byobserv-

ing that finiteness of a function on a dense subset of an open set in Rp+1 implies

condition (är) of[18].
2) Another consequence of Theorem 2.5 are the results of Fulks [10] menticned

at the end of our first paragraph: A function å defined on an open set UcRp+1 is

caloric if and only if the mean value property (1.13) holds for all heat balls Q(zo, c)

for which Q(zs, c)cU.

We close this paragraph with a probabilistic interpretation of the Fulks mdasures.

For this purpose we denote by (X)r=e or, more precisely by (O, fo(P')"Epo*,,
(X)r=o) the well-known diffusion process with Rp+1 as state space which is associ-
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ated to the heat equation (see Meyer [17], pp. 63-64). Hence (Xr)r=o is projected

on the p-dimensional Brownian motion by the first canonical projection 6f 1z+r-
RpX R and on the deterministic movement with constant velocity - I by the second

canonical projection. We will call (X)r-o the Brownian heat transfer.

2.7 Proposition. For euery heat ball Q:Q(zo,c) the Fulks measure F"o,"
is the distribution of the first hit of the complement of A by the Brownian heat trans-

fer starting at zo. More precisely,

Fzo,c: P'o(X;|o)

where T.o denotes the first hitting time of the complunent o.f Q.

Proof. It is well known that the excessive functions of the Brownian heat trans-
fer (or, more precisely, of its transition semigroup) coincide with the hypercaloric
functions >0 defined on Rp+l. (A proof of this factcan be found in Bliedtner [5],
p. 96, where the situation is even more general.) The arguments in the proof of [2],
Theorem 7.l,can then be repeated. As a result one obtains the identification of the

balayöe,Rf with the function

Peu (r) - E' (I {r e<+..} u o X,A) Q €Rp +1)(2.10)

for all hypercaloric functions u>0 on ftP+r and all Borel sets lcRp+r.For A:CQ
the result then follows since the kernel P"ou(z) is just the integral of a with respect

to the hitting distributioll x-pzo(XrLo) appearing in the Propositiona). So we

have, according to our Main Theorem,

f udP",,": RfoQJ: ! uitr

for all hypercaloric functions u--0 on Rp+1. This implies r:F,o," (see [], p. l13)
and proves our result.

3. Proof of the Main Theorem

Let us put A- Qko, c), B-B(ro, c), Q:Q,o and

po - trtzs,c (to - (xo, to), c = 0).

For c'(10, cL the domains Q(zo, c') increase with c' and have O as

(3.1) 
o-V="Q 

(ro, c') - A (zo, c).

Conseeuently, for a given point (x, t)(.A the number c'(f}, cl can

such a way that (x, t) lies in Q(rr, c'); it suffices to choose

to-t <. c' - c.

their union:

be chosen in

(3.2)

4) One has to use the obvious fact that Tco< f oo holds Pzo-almost surely.
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Since c'will be fixed for a while, we put d)':Q(zo,c') and B':B(zo,c'). We

then have

(3.3) O'1{zo} c o.

Finally we introduce for an arbitrary set AcRp+r

(3.4) At: Aa(RP Xl--, /D.

We intend to study the generalized solution Ht:Hf in O for a given boundary

function f$(B). At the beginning we imitate the original proof of the property

(F) in Fulks [0]. The domain Oi is contained with its boundary in O according to
(3.3). The boundary splits into three disjoint sets:

(3.s) AQ;: BivI'(t)vI'oQ)

where

(3.6) I'(t) : {((, t): llf -xoll -. F",(ts-t)}

and

(3.7) I'oQ): {((, r): ll(-xoll : F"'(to-t))

(and where ,F'". is defined in (1.7)). Since u:Ht is a caloric function on O and hence

caloric in a neighborhood of 8i, an application of the Gauss divergence theorems)
yields as in [0]:
(3.8) [ *,orlzi=r(uu1.-uu1)ni*uune+rf do' : o.

Here o'is the surface measure of the smooth manifold

M'(t):29;;"f61'1

and n1,...,np+r are the components of the outer normal field' Furthermore, u is

a solution of the adjoint heat equation in an open neighborhood of {/r. We apply

this formula (as in [10]) to two special functions u: to the constant function I and to
the function k:I4o of (1.4). We then obtain

(3.9) [ *,r,rl- Zi=r u€Ji+ unp+rf do' : o

and

(3.10) ! *,r,rlz!=r{ukr.-ku1)n,+ukno*r]do' 
:0,

respectively. We also observe that

(3.11) rtt:...: flp: 0, rtrp+r : 1 on I'(t),
(3.12) k : d' on B'

5) For an appropriate form of this theorem including "singular" boundary points (in the sense

of differential geometry) like those h I6G) see König [14].



78 HnrNz Baurn

and

(3.13) - Z!=rk1,ni: d'q on B'\{zo},
where

o':(#)'''.
We then obtain, in view of (3.5),

(3.14) f rn uil,o : f ",l2l=rue,n,-unr+rf 
do'

and

(3.15) f roruk dlo : d' f 4lZ!=rue,n,-uno+r\do' * d' f 
", 

uq do',

where l.p is the Lebesgue measure on RpX {r} (so that rntegration with respect to
lP refers to the space variable). From these two equalities we finally deduce

(3.16) f ,,r,ru(k-d') dln - d' f 
",uQ 

do'.

Obviously, the restriction of u:Hf to O, extends to Q continuously by means of
/. This follows from Proposttion 2.1since zs(Q. An elementary discussion of the
surface measures o' fot c'*c shows that we may pass to the limit for c'*c. We
then obtain from (3.16)

(3.17) f rorHrkd),e: df ,urUriil,e+itf B,fQdo,

where.I(l) is defined in the same way as I'(t)by replacing c'by c in (3.16), where

(3.18) o:(o*L)'''

and where o denotes the surface measure of .8.

Next we study the behaviour of (3.17) for t<to tending to to. We observe that

ll, r,, 
H, du,l = ll f ll 

^e 

(I @)

since lärl=ll"fll on O, where ll/ll denotes the sup-norm on C(B). We then obtain

,-ltP o.[ no', d)'P : o

since 1(r) is an open euclidean ball in ReX{t} with radius F"(to-t). The second

term on the right-hand side of(3.17) has

a t"fuao : FoA

as a limit for /*/o-0. So we know that the limit of the left-hand side o{ (3.17)

exists, namely

(3.19) 
,Jip../rn, H$itle: Fo(!).
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By changing the space variable ( in the integral over 1(l) by means of

,:L((-xu)' 
114(to-t)

we obtain

(3.210) IrorHrk4ln : n-nrz f *r,rHr(ro+{@q, )e-ttntt" d4

where K(l) is the open ball in RP with the origin as center and with radius

rrtl : F:(to;'t) 
.

| +(tr- t)
Since

'JiP"tt) 
: * -'

we have

(3.2t) ,Jiyo"-r,' I *1t1e-ttntlz 
dn : l.

By applying a mean value argument 6) to the integral (3.20), we obtain for each

r satisfying 0<to-t<c the existence of a point qr(K(t), hence of a point

(t,, t) : (*o+M44,, t)(I(t)
such that

I nrrrk drP - n-PtzHt((,, D ! *r,rg-tt"tt"4r.

Consequently, it follows from (3.19)-(3.21) that

,JiPoHt{4" t) 
: Po(l)'

Hereby, the point ((r,t)et(t) depends on the given boundary function f€g(B)'
So we have proved the following result:

3.1 Proposition. For euery f€6(B) and eaery t€lto-c,tof there exists a

point (, - depending on f - in the p'dimmsional ball

ll(-xoll <. F"(ts-t)
such that

(3.22) ,JiprHrtl,, t): po(f).

3.2 Remark. Corollary 2.4 follows already from this Proposition. In fact,

zocannotbe regular since otherwise (3.22) would imply /(zo): po(f) for all fQ6(B),

0) We are referring to the following fact which can be proved easily: Irt p be a positive bounded

Radon measure on a connected, locally compact space Y with support equal to Y. Then for ever!

bounded function seGgl there exists a point ?€rsuch that

! sda: s?illlpll
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and hence Fo:t"0. However, Fo:lt"o," has a density with respect to the surfacö
measure o which implies po({zo}):0.

We continue with the proof of the Main Theorem and claim:

3.3 Lemma. Let A denote the set of all measures

). : ae"ol(l-o)t?f , 0 = o( < 1.

Thenfor eueryfunction f€6(B) there exists a measure )"(A such that ),(f):po(77.

Proof. According
(2,) in O converging to

(3.23)

to Proposition 3.1, for every "f€g(B) there exists a sequence
zo such that

lirn pY U) : FoU1
n->@ otr

holds for the corresponding sequence of harmonic measures. From this sequence

(of probability measures) we may extract a subsequen 
"" ful^*\ which converges

vaguely to a probability (Radon) measure )" on B depending on / (see l4l, p. 243).

So (3.23) implies 1(f): po(fl. We can now apply - and this is crucial - a result
of Boboc and Cornea [6] (for a simple proof see Luke5 and Malf [6], p.362). Accord-
ing to it, the measure ,t is of the form

),: ae,ol(l-a)ecc\kJ (0= a= 1).

But since all points in R"+1 are polar for the underlying harmonic structure (see

[], p. 79), we have
€c]2\{zo} - eGoo

(see [], pp. 83 and 99). This proves ),(A, and hence the Lemma.

The remaining part of the proof of the Main Theorem is now pure linear algebra.
It suffices to apply the next lemma to the case X:8, xo:Zo, u:ulf . In fact, it
follows from Lemmas 3.3 and 3.4 that po is in u4 which means

Po: ae"o*(l-")u?l for some a€[0, 1].

Since pe has a density with respect to o, we have

0 : po({ro}) : a*(1_a)elf ({zoD =_ u

which impli€s 0(:0 and hence po:e?f , the statement of the Main Theorem.

3.4 Lemma. Let X be acompact space, xs(X and v aposititse Radonmeas-
ure on X. Suppose that a Radon meqsure ps on X has the property that for euery

f<6(X) there exists a number u1(ll,ll such that po(f):),(f), where )":ayt,o*
(l-a)v. Then po is of theform po:ae*o+(l-u)v for some a(ll,ll.

Proof. Let us denote by 1" the set of all measures l:qe,o+(l -a)v with
a€[0, 1] and by H the set of all functions h€G(X) satisfying t(h):h1ro1. 1A"n
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obviously, for all 7€ An and h(.H,

1(h)-Y(h):h(xr).
Our condition therefore implies

(3.24) pr(h) - A(h) for all 7€,4n and h(H.

ds: ft-(g) -v(s).
g(xo)-v(g)'

in G (X) - defined by the linear form n - Exo+O - every

f-h+rg with some h(H and ?€R. For the measurc )"0

Consequently, in the case H:6(X), i.e. i:t,o, the measure ps equals 8*o and

thus is of the desired form. In the remaining case where H+g(X) we choose g€

6(X)\H. The corresponding measure )"s:ure*r*(I-u)vQA, satisfying,to(g):
po(g) is then uniquely determined: the coefficient a, equals

Since ^FI is a hyperplane

f€g (X) is of the form
we then have

tto\) - ,to(g) and pr(h) - Ao&),

the latter according to (3.24), and, consequently,

uof) : pr(h) + r ps(g) : )o(h) | d's(d : loU)'

Since ,Xo does not depend on the choice ofl this proves Fo:)'o. Hence, also in this

cäsoe ps has the desired form.

As a corollary, we now obtain also a proof of the Addendurn 2.2': For every

f<6(B), the proof of Lemma 3.3 shows the existence of a sequence (zo) n O con-

verging to zo such that the corresponding sequence (u?) of harmonic measures

converges to a measurc ).€A which satisfies )'(f):po177. Stnce psle"o, the
function f€g(B) may be chosen in such a way that po(f)*f(z). We have ,t:
ue,o*(I-o)tto for some a€[0, l] according to the Main Theorem. Consequently,

po(f):af(z)+Q-a)pr(f) which implies a:0 and thus l:po.

3.5 Remark. The set A of Lemma 3.3 coincides with the set of all cluster

points oJ' fu) fo, Z*zo, z(.d). This is an easy consequence of Luke5 and Malf
[16], Theorem 16. In fact, we know from Corollary 2.4that all boundary points of
O are regular, with zo as the only exception. From this the above result follows
from [16], Theorem 16, in the same way as Corollary 17 of [16] was derived from that
Theorem.
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