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Let G be a connected linear semi-simple Lie group, K a maximal compact sub

group.of G. As is well-known, the quotient space X:G/K is homeomorphic to

euclidean space and, endowed with a G-invariant metric, is a Riemannian symmetric

space with negative curvature without flat component and any such space can be

obtained in this way. We fix an irreducible finite dimensional representation (r, E\
of G. Our.object of interest in this paper is the Z2-cohomology space H14(X; E)
of X with respect to E. It can be defined first as the cohomology of the complex

,Airr(X; E) of Evalaed smooth differential forms 4 on Xsuch thatq and d4 are squarc

integrable, where d is exterior differentiation. To get a Hilbert space definition, we

may consider the completion ÄiD(X; E) of Airr(X; E) with respect to the square

norm (4, d+@q,dy), and the graph closure or strong closure d of d.It is known

that the inclusion Airr(X; E)*Äi,t(X; E) induces an isomorphism in cohomology

[6]. The group G operates on these complexes and hence on the cohomology. In the

Hilbert space definition, H14(X;.8) appears as the quotient of the closed subspace

of the cocycles in z4-1a(X; ,E') by the image of 7. Therefore, if d has a closed range'

then H1r1(X; E) has a natural Hilbert space structure and yields a unitary repre-

sentation of G. Our first objective is to prove that this is the case when G and K
have the same rank and to identify the representations thus obtained. We shall prove

ffi-(dim X)12 and assume that rk G:rk K. Then

is closed. We haue

Hi46;E):0, if i#m.

The G-space H66; E) is the direct sum of the discrete series representa-

G hauing the same infinitesimal character as (r, E).

The proof of (ii) shows in fact that H$(X; E) may be identified with the space

of square integrable harmonic z-forms. Interpreted in this way, (ii) is quite remi-

niscent of some charactenzations of the discrete series as spaces of harmonic square

integrable sections of certain K-bundles over X (see e.g. F0l).
We shall also obtain some information in the case of unequal ranks:

(1)

(ii)
tions of
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Theorem B. Assume that lo:ft G-rk K is not zero.

(i) If E is not equiualent to its contragredient complex conjugate E*, then

Hrrr(x; E):0.
(ii) If E-E*, then d does not haue closed range, and Htz.)(X,E) is infinite

dimensional at le ast for i €(m - (l ol2), m + (l ol 2)].

Our starting point is a regularization theorem of [] which yields a canonical
isomorphism

(1) Extin, n(E*, L'(G)*) - Hir>6; E),

where the left-hand side refers to Ext' in the category of (9, K)-modules (cf. [5:I])
and Lz(G) is viewed as a G-module via the right regular representation. We may
then investigate the left-hand side using the results of Harish-Chandra [8] on Z'z(G).

This reduces us to the computation of Extin,6l(E*, LF,.\, where the Lr,, are
the direct summands of Lz(G\ given by [8]. Those are defined in Section 1, and the
computations performed in Section 2. Theorems A and B are proved in Section 3.

This procedure is quite similar to the study of fl,r,(\X; E) in [2], where f is

a discrete subgroup of finite covolume of G. In fact, (1) above is also valid if X and G
are replaced by \X and \G (for any discrete f cG). Modulo a result of [3]
(whose role is played here by 1.4), we are again reduced to the discussion of Ext'-
groups with respect to some elementary subspaces of Z'z(.I-\G) which are given

by Langlands'results [11]. In short, [2] and the present paper correspond to the
two cases where extensive information on Z'z(f\O is available.

Some notation. The Lie algebra of a Lie group A, G, is

corresponding lower case German letter o, g, ... .

A reductive group is always meant to satisfy the conditions
particular, it belongs to Harish-Chandrts class [7].

The space of smooth vectors of a continuous representation (2, V) of a Lie
group Z is denoted V-. lf the center I of the universal enveloping algebra of L
acts by scalars on V-, we denote by yoot ynthe character of I thus obtained, the
so-called infinitesimal character of a.

The contragredient of a representation (2, Z) is denoted (n*, V*).
The set of equivalence classes of irreducible unitary (resp. square integrable)

representations of the reductive group ,L with compact center is denoted L (resp. Lo\.
If Z is compact and F a finite subset of I, then, for any continuous L-modtle Y,

welet V, denote the sum of the isotypic subspaces V"(r€F).

denoted by the

of [5: 0, 3.1]. In



(1)
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1. The decomposition of Z'z1G)

In this section, we recall some of the fundamental results of Harish-Chandra

[8] on the spectral decomposition of Lz(G), in a form adapted to our needs.

1.1. Let (P,A)be a p-pair (cf' [7] or [5: 0, 3.4]) and P:NpApMp or simply

P:NAM the associated Langlands decomposition of P. In particular, N is the

unipotent radical of P, A is a split component of the radical of P and the centralizer

Z(A) of A in G is the direct product of A and M. Fot ,1€o], we denote by C^ the

one-dimensional representation of ,4, where a(A acts by multiplication by

a^:exp),Qogq). Given (ar, V)ef{o and ).(aI, weview asusual V.&C^ as a

representation of P on which N acts trivially. Let

rr, r,it" : IndF (V.8C nr+ ip) (rrl€ ft o; F€o[1

where g" is defined by
a2Qe: detAdal" (a<A).

It is unitary if p€o*, our only case ofinterest in this paper.

We shall assume that A and M are stable under the Cartan involution of G

associated to K. In particular, KnM is a maximal compact subgroup of M and P.

We recall that the K-module structure of lr,.,r, is "independent of p", i'e., thete

exists a canonical K-equivariant isomorphism of Hilbert space of lr,.,ir on a
fixed K-module Lr1.;, namely [l.l:Indfn *(v,)' where v' is viewed as a (KnM)-
module. In particular, the K-types of lr,.,,o are independent of p.

1.2. Recall that a parabolic subgroup P is cuspidal if M has the same rank as

its maximal compact subgroups, fundamental tf M contains a Cartan subgroup of
K. The group G is its own fundamental parabolic subgroup if and only if G and K
have the same rank. According to [8], there exists a finite set S of non-conjugate

cuspidal parabolic subgroups of G, containing exactly one fundamental parabolic

subgroup, with the following properties:

L'(G) - ö pEsLpt

Lp :6, €tue,oLr,r,

Lp,, : I:.1i,.,;, å rr,,,i, d[t..

Here dp, is a certain measure (the Plancherel measure), which is the product of an

analytic function by the Lebesgue measure, Ö stands for a Hilbert direct sum and

6 for the usual Hilbert space completion of the algebraic tensor product of two

Hilbert spaces.

The action of G by left (resp. right) translations is given by the natural action

in (3) on the first (resp. second) factor of the integrand. If P:G, then (l) can be

(1)

with

(2)

(3)
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(1)

written more simply as

(4) Lr,, - Vä6V.d,,

where o runs through Ga and d.is the formal degree of ar.

The spaces Lp,-\lr,ll be called elementary subspaces of L'(G).

1.3. Casimir operators. We fix an admissible trace form on g [3:2.3], gay the
Killing form if g is semi-simple, and for a reductive subalgebra m of g, denote by C*
the Casimir operator associated to the same trace form. If C* acts by a scalar multiple
of the identity on the space -Fl- of smooth vectors of a continuous representation
(n, H) of a reductive subgroup' M of G with Lie algebra m, we denote by c(a) or
c(H*) the eigenvalue of C-. We recall that Cn acts by a scalar multiple of the iden-
tity on IE.,i,, and that there exists a constant er, depending only on G and P,
such that

c(Ip,at,ip): €p*c^(Vr)-Qt, p) (r€ f[o; p€o*).

1.4. Lemma. Let J be a finite subset of R. Then we cqn write Lz(G) as a
direct sum of two G-stable subspaces Q, R such that Q is the sum offinitely many
elementary subspaces and Rt:Q.

By 1.2(l), it suffices to prove the existence of such a decomposition for a space

Lp (P€S). Let "Ip be the set of (KnM)-types occurring in the restrictionto KnM
of the elements r(1. It is finite. Let U61 be as in 1.1. By Frobenius reciprocity,
U@),r*O implies V,,t,+O. It is known that there are only a finite number of
a(trVo containing a given (KnM)-type: this follows from the description of the
(KaM)-types in a discrete series representation given by Blattner's formula [9],
whichinparticularshowstheexistenceofa single minimal (KnM)-type with multi-
plicity one. As a consequence the set of 2",, with a non-trivial "I-component is finite.
We let then Q be their direct sum and Ä the orthogonal complement of Q in Lr.

2. Relative Lie algebra cohomology with respect to an elementary subspace

2.1. We consider in this section the cohomology space Extin,"(E*, Li,,),
where 2",, is viewed as a G-module via right translations (1.2). It is therefore the
cohomology of the complex

(1) c'(g, K; LF,.@ E): Homr(21' glt, LF,,&E) : Homr(rl' +fi@E*, LF,).

If .r is the (finite) set of K-types occurring in A'(glt\6E*, we have therefore

Q) c' (g, K; L7,.88)c Homa(21' gf&E*, LF,,,): Hoilrr Qf slt, LF,.,I&E).

The action of G by left translations is an automorphism of this complex and goes

over to the cohomology. This complex is contained in the graded Hilbert space
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Hom*(A*gl'f.,Lp,,&E) (where, as usual, ,E is endowed with an "admissible"
scalar product, i.e., one which is invariant under K and with respect to which the
orthogonal complement of f in g is represented by self-adjoint operators). If ä is
the closure of d, then the inclusion C'(9, K; Lf,-& E)-dom ä is an isomorphism
in cohomology ll:2.71.

2.2. We first consider the case of a discrete series representation, i.e., where
P:G and, L.,.:Vå&V., with ro€da. Since V,,1 is finite dimensional and
consists of smooth vectors we have then

(VägV.)f : VägV,,t,

(note that 6 has been replaced by O), whence

C' (g, K; LF,-88) : Vå@C' (g, K;VF qE).

Since the second factor on the right-hand side is. finite dimensional, we see that
d:å andthat

Extin, 4(E*, LF,.) : Zå SExtis, K)(E*, V;),

this isomorphism being G-equivariant, G operating through the given representation
on the flrst factor ofthe right-hand side, and trivially on the second factor. But the
value of the second factor is well-known [5: II, 5.3] (see 2.9), therefore we get

2.3. Proposition. Let P:G and a€Go. Then d has closed range. We
hqae Exti",*r(E*, LF,,\:O if i*m:(dimx)12 or X-*X,*. If X.:X,*, then

(1) Extffi, $(E*, L7,) - Vä.

2.4. Assume now that P+G, hence that Lr,. is a direct integral of induced
representations. We have

(1) LF,-,t: 1[._trÄ,, ,,6 6,,,,r,11dp)-

Bat l",r,ir,, is finite dimensional, so that we may again replace 6 ty I and write

(2) LF,@,r : (l:.Iö,,,;p8 rr,,,rp,t dF,,)-.

2.5. We shall have to use some results of [5: III] on cohomology with respect
to lr,,,tu. We recall them here, together with some of the relevant notation. We
fix a Cartan subalgebra [r of m, let [1:69s, fix an ordering on the set @(g",!,)
of roots of g" with respect to [1" compatible with O(P, A) and let WP be the usual
canonical set of representatives of right classes of the Weyl grotp W(g", I)") of g"
with respect to [1" modulo the Weyl grotp W(m.@o,, b.) of m"@c, with respect
to !". Furthermore let )"-p be the highest weight of r, where 2€bå is dominant
and2q is the sum of the positiveroots. Since p is real, [5: III,3.3] shows that for
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Ext,n,r<1(E*, IE-,rr) not to be zero, first there must exist s€ l/P such that

(1) s(,1)1"*: 0, y-"1x1$": X.)

this condition is independent of p and satisfied by at most one s€ ZP. Furthermore,
we must also have

(2) F:0.
By assumption, P is cuspidal, hence for the first equality of (1) to hold, it is .

necessary that P be fundamental [5: III, 5.1].

2.6. Lemma. Assume that Extrn,g(E*,Ifr,,0):0. Then

(1) Extis,K)(E*,2fl.) : 0.

Recall that the K-types of lf,-,ru are independent of p. lf lp,-,ir,"r:O for
some p, then it is so for all p's and C'(g; K; Lr,,@E):0, which obviously yields
(l). Assume now that lp,,,i*,r*0, hence that

(2) C'(g, K; Iff.,iu}E) * o (t€a*).

In view of the assumption of 2.6 and of the results recalled tn 2.5, we have

(3) Extig,rl(E*, IE-,i) :0 (p€c*).

By [5: II, 3.U, we deduce from (2)'and (3):

(4) c(Ir..,i)-c(E)#0 (p€a*).

It follows from 1.3(l) that, given a constant d>0, there exists a compact set Dcc*
such that lc(Ir,-,1)-c(E)l=-a outside D. Since c(Ip,-,t) is a continuous function
of ,1, we see that there exists c>0 such that

(5) lc(Ip,,.i)-c(r)l = c for all p€s*.

The constant c(Ir,.,ir) is also the eigenvalue of the Casimir operator on
(Iä,.,rr6h,-,ir)', it being understood that G acts only on the second factor. The
Casimir operator Cn.operates therefore on Li,. by the rule

Cnffu) : c(Ir,.,t).fbD, UQL7,.ip€a*).

From (5), we see then that (Cn-c1n1.1) has a bounded inverse on Lf,.. Therefore
2.5 follows from 5.2 in [3].

2.7. Proposition. Assume that P is notfundamental. Thm

Extin,e(E*, LF,):0.

Infact,asrecalledin 2.S,theassumptionof2.6issatisfiedifPisnotfundamental.
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2.8. Proposition. Assume P to be fundamental. Then either

Extin,*;(E*, ZF,,):0
or d does not haue closed range.

If 2.5(1) is not fulfllled, then Extln,ar(E*,L7,):O by 2.6. Assume then

2.5(l) to hold. tet
(1) Li,.: t.h,,,,rap-.

As recalled in 1.1, there is a canonical K-isomorphism

d,ifp,a,itt1U - Indffn M(Vr) (P€.o*).(2)

From this we

(3)

get a canonical injective (KX G)-homomorphism

UwSL'p,t * Lp,,

where U14 is the space of K-finite vectors tn U, and a K-equivariant homomorphism

(4) p: Ext'1n,s(E*, UG1&Llp-.) : U1a;8Extä,*t(E*, Li7) *Extis,n(E*, LF,).

We claim that p is injective. For any rek, the space (J" is finite dimensional. Let
us denote by 

"Lr,o 
the isotypic component of type t for the left action of K, i.e.,

on the factors li,-,ir. It is clear from the definitions that a induces a (KXG)-iso-
morphism of U"gL'r,- onto ,Lr,.. We have an isomorphism"

Extin, 111 (.8*, U 6\8 Li:) : @ 
" 

6 3 Exti s, n(E*, a"@ Li, ).
Let 4€C'(g, K; U@9L!;.OE) be a cocycle. We may write

4: 2"et4",

where 4" is a cocycle in C'(g, K; (J"&L!f.@E). Let F be the set of ros for which
q,*0. lt is finite. Let g"QCi (K) be the function which defines the projector of any

continuous K-module onto its t-isotypic component and let er:Z,erE". Assume

now that u(n):dp for some p(C'(g, K; Lf..&E). Then we have

dp*4:4: d(upx 1t),

since the operation of K on the left commutes with differentiation. The element

a"xp is contained in C'(g; K;rLi,.}E), which can be identified to the image

under a of C'(g, K;UF8L;:.AE). Therefore 4 is already cohomologous to
zero in the latter space, which proves our contention.

For any finite dimensional subspace W of Ulry we have

Extin, x)(E*,W&Lb:) - W SExtig,K) (E*, Lt:.).

the same proof as that of 3 .4 in l2l, one shows:

Extin, K)(E*, L!r:r)

: (Exti*,Kn tn(Fdt6",vff)gn'(o, I:.c,udp,)) t-(dim N)l2l

101

(s)

By

(6)
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where ,t€c] is dominant such that Xt:X,. [The only difference is that dp.teplaces
the Lebesgue measure, but this does not affect the argument.J Since we assume the

left-hand side to be non-zero, the first factor of the right-hand side is not zero. We

claim that, as in [2: 3.2f,wehave

(7)

(8)

Ho(o;l:.C,rdp,,) :0,

dim H'(o; I:.C,udp,) : oo (i: !,..., dim c), A is not closed.

I3',rdp. ctudp

Ext[*, L)(F,V) : 0 if Xv * Xe)

dimExti*, 
".t(F,V) 

: ö,,n (q - (dim MIL)12, i(Z) if Xv : Xr.

The group P is fundamental, therefore dtrt- is the product of the Lebesgue measure

dp by a polynomial, say tR, which is strictly positive on the regular elements [8: $ 24,

Theorem ll. From this (7) follows as in loc. cit. As regards (8), it is enough to prove

it if the direct integral is taken over some measurable set D of strictly positive measure.

Take for instance for D the positive Weyl chamber. Let Rtlz be the positive square

root of Ä on D. Then g-RrlzE defines an equivariant isomorphism

(e)

which reduces us to 12: 3.21. Since the map F of (a) is injective, 2.8 follows.

Remarks. (1) The first factor on the right-hand side of (6) is non-zero only

in the middle dimension mo:(dimMl(K*nIt[))12 15 II, 5.3]. Let moreover /o:
dimA (i.e., /o:1ft G-rkK). Since 2m:2mo*lof dimff, weget:

dimExtig,o(n.,u:):{it,ift--'r'if};,T..",13}1,

assuming that Extin, r )(E*, L;-,) +0.
(2) I do not know wh ether B is also surjective. In particular, is Extin, rg (E*, IJf-)

zero outside the interval (m-(lol2),m+(U2)11
(3) We already pointed out that the proof of 3.4 in [2] is also valid if the Lr,,

there is replaced by our Llr,..ln the same way, 3.5 and 3.6 in [2] and their proofs

also hold under that change. In particular, the implication (iv)=r(ii) of 3.6 shows that

Extan,p(E*, L!1].J:O if E is not equivalent to E*, for any ,<ft,.
'"irr *r" E -E* , lve want now to show the existence of some a( ft 0 for which

Extln,'(Z*, f;)+0. For this we need to bring a complement to 5.5, 5.7 of
[5: II, $ 5].

2.9. Remark on [5: II, $ 5]. In 5.3, loc. cit. it is proved that rf M is a connected

linear semi-simple group, Z a maximal compact subgroup of M, F an irreducible

dimensional representation of M, and V a discrete series representation of M, then

-f*

(1)

(2)
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It is then shown (5.5, 5.7) that if M is reductive, with compact center, and F, V are
as before, then

(3)

We want now to point
given F, there exists V

(4)

dim Ext[*, L)(F, V) = ör,n (i(Z).

out that if fuf -M, as above, with P cuspidal in G, then,
in the discrete series of M such that

Extf*, r1(F, V) - C.

Let first M be any connected reductive gfoup with compact center. It is then the
almost direct product of a semi-simple group M' by a torus 7. The representation
F is the tensor product of an irreducible representation F' of M' by a one-dimen-
sional representation C1 of T. Fix a discrete series representation V' of M' with
infinitesimal character equal to 1",. Then, by known results on the Z-weights of
V',the characters of 7n M' givenby V' and F'are the same. Therefore V'@C^
is also a representation of M,hence an element V of the discrete series of M. Using
the Kiinneth rule, one sees immediately that

(5) Exti*, D(F, V) : Exti*,, L1M)(F', V'),

and we are reduced to (2) above, taking into account the fact that

MIL: M'l(M'nL).

Let now M:Mr, with P cuspidal in G. We claim that M is the direct product
of Mo by a finite elementary abelian 2-group, say Z. By our standing assumption
G is linear. Let G. be its complexification. It is an algebraic R-group. The group P
is of finite index in the group of real points of the parabolic R-subgroup g of G"

with Lie algebra p", and A is the identity component, in ordinary topology, of the
group of real points .4(R) of the maximal R-split torus .il of the radical of I with
Lie algebra c,. The groap d(R) is the direct product of A by an elementary abelian
2-group Zn, the group of elements of order =2 of .4(R\. By a result of Matsumoto
(see [4: $ 14]), R meets every connected component of 9(R\. Since .l/. I is connected,
and Zo centralizes l, this implies immediately our assertion, with Z:ZonM.

The representation F is the tensor product of an irreducible representation ,F0

of Mo by a one-dimensional representation Co of Z.By the previous argument we
may find a discrete series representation Vo of Mo such that

(6) Exti-,1o1(.F0, Vo) * 0

where Lo:MonZ. We then take V:V0&C". Since Z is central, it acts trivially
on A'mll, from which it follows that

(7) C'(m, L; F$V) : C'(m, Lo; Fo6 Vo),
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whence

(8)

and our assertion.

Exti*, L)(F, V) : Exti*, 
"\(Fo, 

Vo),

2.10. Remark. We take this opportunity to correct an oversight in [2]: In
the proof of 3.7, we apply [5: II, 5.3] to Exti-,664(F*, Z) althoueh M is not
necessarily connected semi-simple. But M:Mp with P fundamental and G is
semi-simple, linear, so that the above holds. Also F* there stands for f$1u..

3. Proof of Theorems A and B

3.L. By [1 : 3.5], there is a canonical inclusion

C'(g, K; L'(G)"" SE) * A'(z)(K; E),

which induces an isomorphism in cohomology. Let us denote by d (resp. dr) the
differential on the left (resp. right)-hand side. The left-hand side is contained in the
graded Hilbert space

(2) C'(g, K; L'(c)st) _ Hom* (rt' glt, L'(6) sE).

Letdbe the closure of r/. Then (l) extends to an isomorphism of the graded Hilbert
space C'(g, K; L!(Q@E) onto the space of Z2-forms on Xwith measurable coeffi.-
cients, which maps domd onto dom d* and d onto d*ll:3.61. We are therefore
reduced to the discussion of Extin,*r(E*, Lr(G)-) and of the range of ä.

3.2. As in 2.l,let,Ibe the set of K-types occurring in A'klDAn. By 1.4,
we can write Z,(G):Q@R, where Q is a sum of finitely many elementary sub-
spaces, ,R the orthogonal complement to Q and Ä.r:0. In view of 2.1(2), which
is valid for any continuous G-module, we have then

(1)

(1) Extin, K)(E*, LF,.) - Extis,K) (E*,,R"") - 0 (Lr,. c Ä),

since the complexes which give rise to these cohomology spaces are akeady zero.
We have therefore

(2) Extin, K)(E*, L'(G))- - Or€s,ar €tue,uExt1n,$(E*, Lf,r),

where the sum on the right-hand has at most finitely many non-zero terms. We can
now use the results ofSection 2.

3.3. Let first G and Kbe of equal rank. Then G is its own fundamental parabolic
subgroup and has a discrete series. Theorem A now follows fuom 3.2Q) and 2.3,2.7.

3.4. Let now /o:1ft G-rk K be 10. By 2.7 we may, on the right-hand side,
restrjct the summation to the unique fundamental parabolic subgroup of G con-
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tained in S. Since Lp,- is unitary, it is standard that Extin,6(E*,2ä.):0 if
E*E*, which proves Theorem B in that case. So assume E-E*. In view of the
injectivity of f in 2.8 and of the remark to 2.8, it suffices, to conclude the proof of
Theorem B, to show the existence of a(f[r.o such that Extin,rr(E*,Llr,,)+O.
We use the notation of 2.5. Since P is fundamental, there exists s€ WP sach that
2.5(1) is satisfied [2:3.61. Then Extin,6{E*,Ii|.1is given by 2.8(6), and it is there-
fore enough to show theexistence of a(fttr,o suchthat Exti-,rnrn(tråft", VF)+O.
But this follows from 2.9.
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