Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 107–111 Commentationes in honorem Olli Lehto LX annos nato

SEQUENTIAL FOURIER – FEYNMAN TRANSFORMS

R. H. CAMERON and D. A. STORVICK

In a forthcoming Memoir of the American Mathematical Society [3], the authors give a simple sequential definition of the Feynman integral which is applicable to a rather large class of functionals. In Corollary 2 to Theorem 3.1 of [3] we showed that the elements of the Banach algebra \hat{S} defined in [3] (and below) are all sequentially Feynman integrable.

In the present paper we use the sequential Feynman integral to define a set of sequential Fourier-Feynman transforms. We also show that they form an abelian group of isometric transformations of \hat{S} onto \hat{S} .

Notation. Let $C \equiv C[a, b]$ be the space of continuous functions x(t) on [a, b] such that x(a)=0, and let $C^{\nu}[a, b]=\times_{i=1}^{\nu} C[a, b]$.

Let a subdivision σ of [a, b] be given:

 $\sigma: \ [a = \tau_0 < \tau_1 < \tau_2 < \ldots < \tau_k < \ldots < \tau_m = b].$

Let $\vec{X} \equiv \vec{X}(t)$ be a polygonal curve in C^{ν} based on a subdivision σ and the matrix of real numbers $\vec{\xi} \equiv \{\xi_{i,k}\}$, and defined by

$$\vec{X}(t) \equiv \vec{X}(t,\sigma,\vec{\xi}) = [X_1(t,\sigma,\vec{\xi}), ..., X_v(t,\sigma,\vec{\xi})]$$

where

$$X_{j}(t, \sigma, \vec{\xi}) = \frac{\xi_{j,k-1}(\tau_{k}-t) + \xi_{j,k}(t-\tau_{k-1})}{\tau_{k} - \tau_{k-1}}$$

when

 $\tau_{k-1} \leq t \leq \tau_k; \quad k = 1, 2, ..., m; \text{ and } \xi_{j,0} \equiv 0.$

(We note that as $\overline{\xi}$ ranges over all of *vm* dimensional real space, the polygonal functions $\vec{X}((\cdot), \sigma, \overline{\xi})$ range over all polygonal approximations to the functions $C^{\nu}[a, b]$ based on the subdivision σ . Specifically if \vec{x} is a particular element of $C^{\nu}[a, b]$ and we set $\xi_{j,k} = x_j(\tau_k)$, the function $\vec{X}((\cdot), \sigma, \overline{\xi})$ is the polygonal approximation of \vec{x} based on the subdivision σ .) Where there is a sequence of subdivisions $\sigma_1, \sigma_2, \ldots$, then σ , *m* and τ_k will be replaced by σ_n, m_n and $\tau_{k,n}$.

Definition. Let $q \neq 0$ be a given real number and let $F(\vec{x})$ be a functional defined on a subset of $C^{\nu}[a, b]$ containing all the polygonal elements of $C^{\nu}[a, b]$.

Let $\sigma_1, \sigma_2, \ldots$ be a sequence of subdivisions such that norm $\sigma_n \to 0$ and let $\{\lambda_n\}$ be a sequence of complex numbers with Re $\lambda_n > 0$ such that $\lambda_n \to -iq$. Then if the integral in the right hand side of (1.0) exists for all *n* and if the following limit exists and is independent of the choice of the sequences $\{\sigma_n\}$ and $\{\lambda_n\}$, we say that the sequential Feynman integral with parameter q exists and is given by

$$\int^{sf_{q}} F(\vec{x}) d\vec{x} \equiv \lim_{n \to \infty} \gamma_{\sigma_{n}, \lambda_{n}} \int_{R^{\nu m_{n}}} \exp\left\{-\frac{\lambda_{n}}{2} \int_{a}^{b} \left\|\frac{d\vec{X}}{dt}(t, \sigma_{n}, \vec{\xi})\right\|^{2} dt\right\} F(\vec{X}((\cdot), \sigma_{n}, \vec{\xi})) d\vec{\xi},$$

where

$$\gamma_{\sigma,\lambda} = \left(\frac{\lambda}{2\pi}\right)^{\nu m/2} \prod_{k=1}^{m} (\tau_k - \tau_{k-1})^{-\nu/2}.$$

Definition. Let D[a, b] be the class of elements $x \in C[a, b]$ such that x is absolutely continuous on [a, b] and $x' \in L_2[a, b]$. Let $D^v = \times_1^v D$.

Definition. Let $\mathcal{M} \equiv \mathcal{M}(L_2^{\nu}[a, b])$ be the class of complex measures of finite variation defined on $B(L_2^{\nu})$, the Borel measurable subsets of $L_2^{\nu}[a, b]$. We set $\|\mu\| =$ var μ . (In this paper, L_2 always means *real* L_2 .)

Definition. The functional F defined on a subset of C^{ν} that contains D^{ν} is said to be an element of $\hat{S} \equiv \hat{S}(L_2^{\nu})$ if there exists a measure $\mu \in \mathcal{M}$ such that for $\vec{x} \in D^{\nu}$

(1.1)
$$F(\vec{x}) \equiv \int_{L_2^{\nu}} \exp\left\{i\sum_{j=1}^{\nu}\int_a^b v_j(t)\left(\frac{dx_j(t)}{dt}\right)dt\right\}d\mu(\vec{\nu}).$$

We also define $||F|| \equiv ||\mu||$.

Lemma. If $F \in \hat{S}$ and $\tilde{y} \in D^{v}$, then the translate of F by \tilde{y} is in \hat{S} ; i.e. $F((\cdot)+\tilde{y}) \in \hat{S}$. Moreover if for $\tilde{x} \in D^{v}$, $F(\tilde{x})$ is given by equation (1.1) where $\mu \in \mathcal{M}$, it follows that

(1.2)
$$F(\vec{x}+\vec{y}) = \int_{L_2^{\nu}} \exp\left\{i\sum_{j=1}^{\nu}\int_a^b v_j(t)\frac{dx_j(t)}{dt}\right\} d\sigma(\vec{v})$$

where $\sigma \in \mathcal{M}$ and for each Borel subset E of L_2^{ν} , $\sigma(E)$ is given by

(1.3)
$$\sigma(E) = \int_E \exp\left\{i\sum_{j=1}^{\nu}\int_b^a v_j(t)\frac{dy_j(t)}{dt}dt\right\}d\mu(\vec{\nu}).$$

Proof of the Lemma. If σ is given by equation (1.3) it is clearly in \mathcal{M} and $\|\sigma\| \leq \|\mu\|$. For $\vec{x} \in D^{\nu}$, it follows from (1.1) that

$$\begin{split} F(\vec{x} + \vec{y}) &= \int_{L_2^{\nu}} \exp\left\{ i \sum_{j=1}^{\nu} \int_a^b v_j(t) \frac{dx_j(t)}{dt} \right\} \exp\left\{ i \sum_{j=1}^{\nu} \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} d\mu(\vec{v}) \\ &= \int_{L_2^{\nu}} \exp\left\{ i \sum_{j=1}^{\nu} v_j(t) \frac{dx_j(t)}{dt} dt \right\} d\sigma(\vec{v}), \end{split}$$

and hence $F((\cdot) + \vec{y}) \in \hat{S}$ and the Lemma is proved. (Cf. also Corollary 2 of Theorem 4.1 of [3].)

Definition. If $p \neq 0$ and if for each $y \in D^{\nu}[a, b]$ the sequential Feynman integral

(1.4)
$$(\Gamma_p F)(\vec{y}) \equiv \int^{sf_{1/p}} F(\vec{x} + \vec{y}) d\vec{x}$$

exists, then $\Gamma_p F$ is called the sequential Fourier-Feynman transform of F. If p=0 we define Γ_0 to be the identity transformation, $\Gamma_0 F \equiv F$.

Theorem 1. If $F \in \hat{S}$ and p is real, then the sequential Fourier – Feynman transform of F exists and $\Gamma_p F \in \hat{S}$. Moreover for $\vec{y} \in D^{\nu}$ and F given by equation (1.1),

(1.6)

$$(\Gamma_p F)(\vec{y}) = \int_{L_2^{\nu}} \exp\left\{ i \sum_{j=1}^{\nu} \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} \exp\left\{ \frac{p}{2i} \sum_{j=1}^{\nu} \int_a^b [v_j(t)]^2 dt \right\} d\mu(\vec{v}).$$

Proof of Theorem 1. By the Lemma, $F((\cdot)+\vec{y})\in \hat{S}$, and hence by Corollary 2 of Theorem 3.1 of [3] when $p \neq 0$, the right hand member of (1.4) exists. Also in terms of the measure σ given in equation (1.3), we have from (1.2) and Corollary 2 of Theorem 3.1 of [3] that

$$\int^{sf_{1/p}} F(\vec{x} + \vec{y}) d\vec{x} = \int^{sf_{1/p}} \left[\int_{L_2^{\nu}} \exp\left\{ i \sum_{j=1}^{\nu} \int_a^b v_j(t) \frac{dx_j(t)}{dt} dt \right\} d\sigma(\vec{v}) \right] d\vec{x}$$
$$= \int_{L_2^{\nu}} \exp\left\{ \frac{p}{2i} \sum_{j=1}^{\nu} \int_a^b [v_j(t)]^2 dt \right\} d\sigma(\vec{v}).$$

Equation (1.6) follows by substituting for σ using equation (1.3). Now let the measure τ be defined on the Borel subsets E of L_2^{ν} by

(1.7)
$$\tau(E) \equiv \int_{E} \exp\left\{\frac{p}{2i} \sum_{j=1}^{\nu} \int_{a}^{b} [v_{j}(t)]^{2} dt\right\} d\mu(\vec{\nu}).$$

Clearly $\tau \in \mathcal{M}$ and equation (1.6) can be written

(1.8)
$$(\Gamma_p F)(\vec{y}) = \int_{L_2^{\nu}} \exp\left\{ i \sum_{j=1}^{\nu} \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} d\tau(\vec{v}).$$

Hence $\Gamma_p F \in \hat{S}$ and the theorem is proved for the case $p \neq 0$. When p=0, $\Gamma_0 F$ is the identity transformation and the theorem follows from (1.1).

Corollary to Theorem 1. In addition to the hypotheses of Theorem 1, assume that Φ is a bounded measurable functional defined on L_2^{ν} , and let

(1.9)
$$H(\vec{x}) \equiv \int_{L_2^{\nu}} \exp\left\{i\sum_{j=1}^{\nu}\int_a^b v_j(t)\frac{dx_j(t)}{dt}\,dt\right\}\Phi(\vec{v})\,d\mu(\vec{v}).$$

Then the functional $H \in \hat{S}$ and

(1.10)
$$(\Gamma_{p}H)(\vec{y})$$

= $\int_{L_{2}^{v}} \exp\left\{i\sum_{j=1}^{v}\int_{a}^{b}v_{j}(t)\frac{dy_{j}(t)}{dt}dt\right\} \exp\left\{\frac{p}{2i}\sum_{j=1}^{v}\int_{a}^{b}[v_{j}(t)]^{2}dt\right\}\Phi(\vec{v})d\mu(\vec{v}).$

Proof. Let a measure σ be defined on each Borel set E of L_2^{ν} by

$$\sigma(E) \equiv \int_{E} \Phi(\vec{v}) \, d\mu(\vec{v})$$

Clearly $\sigma \in \mathcal{M}$ and for $\vec{x} \in D^{\nu}$

$$H(\vec{x}) = \int_{L_2^{\nu}} \exp\left\{ i \sum_{j=1}^{\nu} \int_a^b v_j(t) \frac{dx_j(t)}{dt} dt \right\} d\sigma(\vec{\nu})$$

so that $H \in \hat{S}$. Applying the theorem to H and replacing $d\sigma(\tilde{v})$ by $\Phi(\tilde{v}) d\mu(\tilde{v})$, we obtain (1.10) and the Corollary is proved.

Theorem 2. The set of sequential Fourier – Feynman transforms Γ_p for real p forms an abelian group of isometries of the Banach algebra \hat{S} , with multiplication rule

(1.11)
$$\Gamma_{q}\Gamma_{p} = \Gamma_{p+q}$$
 for p, q real

and identity

(1.12)
$$\Gamma_0 = I$$

and inverses

(1.13)
$$(\Gamma_p)^{-1} = \Gamma_{-p} \quad for \quad p \quad real.$$

Proof of Theorem 2. By equation (1.6),

$$(\Gamma_{p}F)(\vec{y}) = \int_{L_{2}^{v}} \exp\left\{i\sum_{j=1}^{v}\int_{a}^{b}v_{j}(t)\frac{dy_{j}(t)}{dt}dt\right\} \exp\left\{\frac{p}{2i}\sum_{j=1}^{v}\int_{a}^{b}[v_{j}(t)]^{2}dt\right\}d\mu(\vec{v})$$

and by equation (1.10)

$$(\Gamma_{q}\Gamma_{p}F)(\vec{y}) = \int_{L_{2}^{v}} \exp\left\{i\sum_{j=1}^{v}\int_{a}^{b}v_{j}(t)\frac{dy_{j}(t)}{dt}dt\right\} \exp\left\{\frac{p}{2i}\sum_{j=1}^{v}\int_{a}^{b}[v_{j}(t)]^{2}dt\right\}$$
$$\cdot \exp\left\{\frac{q}{2i}\sum_{j=1}^{v}\int_{a}^{b}[v_{j}(t)]^{2}dt\right\} d\mu(\vec{v}) = (\Gamma_{p+q}F)(\vec{y}).$$

Equation (1.12) is given by the definition of the sequential Fourier – Feynman transform and equation (1.13) follows from equation (1.11) by setting q = -p. Finally

we establish the isometric property of Γ_p . If $F \in \hat{S}$ and $G = \Gamma_p F$, then by equations (1.8), (1.7) and (1.1)

Also by (1.13)

and

$$\|G\| = \|\Gamma_p F\| = \|\tau\| \le \|\mu\| = \|F\|.$$
$$F = \Gamma_{-p} G$$

 $\|F\| \leq \|G\|,$

and the theorem is proved.

In conclusion, for the case v=1, p=-1, the definition of the sequential Fourier-Feynman transform given in this paper is similar in form to the definition of the analytic Fourier-Feynman transform T given by Brue [3]. Brue defines the transform, TF, of a functional F, in terms of the analytic Feynman integral of F; namely he lets

$$(TF)(y) \equiv \int_{C}^{anf_{-1}} F(x+y) \, dx$$

whenever the right hand side exists for all $y \in C$. He then proceeds to establish the existence of the transform T and its inverse T^* for several large classes of functionals. There is also a formal similarity to the definitions given in [2] and [4], but they involve more complicated forms of the analytic Feynman integral.

References

- [1] BRUE, M. D.: A functional transform for Feynman integrals similar to the Fourier transform. -Thesis, University of Minnesota, June 1972.
- [2] CAMERON, R. H., and D. A. STORVICK: An L₂ analytic Fourier Feynman transform. Michigan Math. J. 23, 1976, 1–30.
- [3] CAMERON, R. H., and D. A. STORVICK: A simple definition of the Feynman integral, with applications. - Mem. Amer. Math. Soc. 288, 1983, 1–46.
- [4] JOHNSON, G. W., and D. L. SKOUG: An L_p analytic Fourier Feynman transform. Michigan Math. J. 26, 1979, 103–127.

University of Minnesota School of Mathematics Minneapolis, Minnesota 55455 USA

Received 15 November 1983