SEQUENTIAL FOURIER—FEYNMAN TRANSFORMS

R. H. CAMERON and D. A. STORVICK

In a forthcoming Memoir of the American Mathematical Society [3], the authors give a simple sequential definition of the Feynman integral which is applicable to a rather large class of functionals. In Corollary 2 to Theorem 3.1 of [3] we showed that the elements of the Banach algebra \tilde{S} defined in [3] (and below) are all sequentially Feynman integrable.

In the present paper we use the sequential Feynman integral to define a set of sequential Fourier—Feynman transforms. We also show that they form an abelian group of isometric transformations of \tilde{S} onto \tilde{S}.

Notation. Let $C=C[a, b]$ be the space of continuous functions $x(t)$ on $[a, b]$ such that $x(a)=0$, and let $C'=\times_{j=1}^{\nu} C[a, b]$.

Let a subdivision σ of $[a, b]$ be given:

$$\sigma: [a = \tau_0 < \tau_1 < \tau_2 < \ldots < \tau_k < \ldots < \tau_m = b].$$

Let $X=X(t)$ be a polygonal curve in C' based on a subdivision σ and the matrix of real numbers $\tilde{\xi} \equiv \{\xi_{j,k}\}$, and defined by

$$\tilde{X}(t) \equiv \tilde{X}(t, \sigma, \tilde{\xi}) = [X_1(t, \sigma, \tilde{\xi}), \ldots, X_\nu(t, \sigma, \tilde{\xi})]$$

where

$$X_j(t, \sigma, \tilde{\xi}) = \frac{\xi_{j,k-1}(\tau_k-t) + \xi_{j,k}(t-\tau_{k-1})}{\tau_k-\tau_{k-1}}$$

when

$$\tau_{k-1} \leq t \leq \tau_k; \quad k = 1, 2, \ldots, m; \quad \text{and} \quad \xi_{j,0} \equiv 0.$$

(We note that as $\tilde{\xi}$ ranges over all of vm dimensional real space, the polygonal functions $\tilde{X}((\cdot), \sigma, \tilde{\xi})$ range over all polygonal approximations to the functions $C'[a, b]$ based on the subdivision σ. Specifically if x is a particular element of $C'[a, b]$ and we set $\xi_{j,k} = x_j(\tau_k)$, the function $\tilde{X}((\cdot), \sigma, \tilde{\xi})$ is the polygonal approximation of \tilde{x} based on the subdivision σ.) Where there is a sequence of subdivisions $\sigma_1, \sigma_2, \ldots$, then σ, m and τ_k will be replaced by σ_n, m_n and $\tau_{k,n}$.

Definition. Let $q \neq 0$ be a given real number and let $F(x)$ be a functional defined on a subset of $C'[a, b]$ containing all the polygonal elements of $C'[a, b]$.
Let \(\sigma_1, \sigma_2, \ldots \) be a sequence of subdivisions such that norm \(\sigma_n \to 0 \) and let \(\{ \lambda_n \} \) be a sequence of complex numbers with \(\Re \lambda_n \geq 0 \) such that \(\lambda_n \to -i\eta \). Then if the integral in the right hand side of (1.0) exists for all \(n \) and if the following limit exists and is independent of the choice of the sequences \(\{ \sigma_n \} \) and \(\{ \lambda_n \} \), we say that the sequential Feynman integral with parameter \(q \) exists and is given by

(1.0) \[\int_{S_q} F(\bar{x}) \, d\bar{x} \equiv \lim_{n \to \infty} \gamma_{\sigma_n, \lambda_n} \int_{\mathcal{R}_{VM_n}} \exp \left\{ -\frac{\lambda_n}{2} \int_a^b \left\| \frac{d\bar{X}}{dt} (t, \sigma_n, \xi) \right\|^2 \right\} F(\bar{X}(\cdot), \sigma_n, \xi) \, d\xi, \]

where

\[\gamma_{\sigma, \lambda} = \left(\frac{\lambda}{2\pi} \right)^{v/2} \prod_{k=1}^m (\tau_k - \tau_{k-1})^{-v/2}. \]

Definition. Let \(D[a, b] \) be the class of elements \(x \in C[a, b] \) such that \(x \) is absolutely continuous on \([a, b] \) and \(x' \in L_a[a, b] \). Let \(D' = \times_1 D \).

Definition. Let \(\mathcal{M} \equiv \mathcal{M}(L_a[a, b]) \) be the class of complex measures of finite variation defined on \(B(L_2^v) \), the Borel measurable subsets of \(L_2[a, b] \). We set \(\| \mu \| = \text{var} \mu \). (In this paper, \(L_2 \) always means real \(L_2 \).)

Definition. The functional \(F \) defined on a subset of \(C^v \) that contains \(D' \) is said to be an element of \(\tilde{S} \equiv \tilde{S}(L_2^v) \) if there exists a measure \(\mu \in \mathcal{M} \) such that for \(\bar{x} \in D^v \)

(1.1) \[F(\bar{x}) \equiv \int_{L_2^v} \exp \left\{ i \sum_{j=1}^{v} \int_a^b v_j(t) \left(\frac{dx_j(t)}{dt} \right) dt \right\} d\mu(\bar{v}). \]

We also define \(\| F \| \equiv \| \mu \| \).

Lemma. If \(F \in \tilde{S} \) and \(\bar{y} \in D^v \), then the translate of \(F \) by \(\bar{y} \) is in \(\tilde{S} \); i.e. \(F((\cdot) + \bar{y}) \in \tilde{S} \). Moreover if for \(\bar{x} \in D^v \), \(F(\bar{x}) \) is given by equation (1.1) where \(\mu \in \mathcal{M} \), it follows that

(1.2) \[F(\bar{x} + \bar{y}) = \int_{L_2^v} \exp \left\{ i \sum_{j=1}^{v} \int_a^b v_j(t) \left(\frac{dx_j(t)}{dt} \right) dt \right\} d\sigma(\bar{v}) \]

where \(\sigma \in \mathcal{M} \) and for each Borel subset \(E \) of \(L_2^v \), \(\sigma(E) \) is given by

(1.3) \[\sigma(E) = \int_E \exp \left\{ i \sum_{j=1}^{v} \int_a^b v_j(t) \left(\frac{dy_j(t)}{dt} \right) dt \right\} d\mu(\bar{v}). \]

Proof of the Lemma. If \(\sigma \) is given by equation (1.3) it is clearly in \(\mathcal{M} \) and \(\| \sigma \| \equiv \| \mu \| \). For \(\bar{x} \in D^v \), it follows from (1.1) that

\[F(\bar{x} + \bar{y}) = \int_{L_2^v} \exp \left\{ i \sum_{j=1}^{v} \int_a^b v_j(t) \left(\frac{dx_j(t)}{dt} \right) dt \right\} \exp \left\{ i \sum_{j=1}^{v} \int_a^b v_j(t) \left(\frac{dy_j(t)}{dt} \right) dt \right\} d\mu(\bar{v}) = \int_{L_2^v} \exp \left\{ i \sum_{j=1}^{v} v_j(t) \left(\frac{dx_j(t)}{dt} \right) dt \right\} d\sigma(\bar{v}). \]
and hence $F((\cdot)+\bar{y})\in\mathcal{S}$ and the Lemma is proved. (Cf. also Corollary 2 of Theorem 4.1 of [3].)

Definition. If $p\neq 0$ and if for each $y\in D'[a,b]$ the sequential Feynman integral

$$(1.4) \quad (\Gamma_p F)(\bar{y}) = \int_{L^y_x} \exp\left\{ i \sum_{j=1}^y \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} \exp\left\{ \frac{p}{2i} \sum_{j=1}^y \int_a^b [v_j(t)]^2 dt \right\} d\mu(\bar{y}).$$

exists, then $\Gamma_p F$ is called the sequential Fourier—Feynman transform of F. If $p=0$ we define Γ_0 to be the identity transformation, $\Gamma_0 F = F$.

Theorem 1. If $F\in\mathcal{S}$ and p is real, then the sequential Fourier—Feynman transform of F exists and $\Gamma_p F\in\mathcal{S}$. Moreover for $\bar{y}\in D'$ and F given by equation (1.1),

$$(1.6) \quad (\Gamma_p F)(\bar{y}) = \int_{L^y_x} \exp\left\{ i \sum_{j=1}^y \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} \exp\left\{ \frac{p}{2i} \sum_{j=1}^y \int_a^b [v_j(t)]^2 dt \right\} d\mu(\bar{y}).$$

Proof of Theorem 1. By the Lemma, $F((\cdot)+\bar{y})\in\mathcal{S}$, and hence by Corollary 2 of Theorem 3.1 of [3] when $p\neq 0$, the right hand member of (1.4) exists. Also in terms of the measure σ given in equation (1.3), we have from (1.2) and Corollary 2 of Theorem 3.1 of [3] that

$$\int_{L^y_x} F(\vec{x} + \bar{y}) d\vec{x} = \int_{L^y_x} \left[\int_{L^y_x} \exp\left\{ i \sum_{j=1}^y \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} d\sigma(\bar{y}) \right] d\vec{x}$$

$$= \int_{L^y_x} \exp\left\{ \frac{p}{2i} \sum_{j=1}^y \int_a^b [v_j(t)]^2 dt \right\} d\sigma(\bar{y}).$$

Equation (1.6) follows by substituting for σ using equation (1.3). Now let the measure τ be defined on the Borel subsets E of L^y_x by

$$(1.7) \quad \tau(E) = \int_E \exp\left\{ \frac{p}{2i} \sum_{j=1}^y \int_a^b [v_j(t)]^2 dt \right\} d\mu(\bar{y}).$$

Clearly $\tau \in \mathcal{M}$ and equation (1.6) can be written

$$(1.8) \quad (\Gamma_p F)(\bar{y}) = \int_{L^y_x} \exp\left\{ i \sum_{j=1}^y \int_a^b v_j(t) \frac{dy_j(t)}{dt} dt \right\} d\tau(\bar{y}).$$

Hence $\Gamma_p F\in\mathcal{S}$ and the theorem is proved for the case $p\neq 0$. When $p=0$, $\Gamma_0 F$ is the identity transformation and the theorem follows from (1.1).
Corollary to Theorem 1. In addition to the hypotheses of Theorem 1, assume that \(\Phi \) is a bounded measurable functional defined on \(L_2^w \), and let

\[
H(\bar{x}) = \int_{L_2^w} \exp \left\{ i \sum_{j=1}^r \int_a^b v_j(t) \frac{dx_j(t)}{dt} \ dt \right\} \Phi(\bar{v}) \ d\mu(\bar{v}).
\]

Then the functional \(H \in \hat{S} \) and

\[
(\Gamma_p H)(\bar{y}) = \int_{L_2^w} \exp \left\{ i \sum_{j=1}^r \int_a^b v_j(t) \frac{dy_j(t)}{dt} \ dt \right\} \exp \left\{ \frac{p}{2i} \sum_{j=1}^r \int_a^b [v_j(t)]^2 \ dt \right\} \Phi(\bar{v}) \ d\mu(\bar{v}).
\]

Proof. Let a measure \(\sigma \) be defined on each Borel set \(E \) of \(L_2^w \) by

\[
\sigma(E) = \int_E \Phi(\bar{v}) \ d\mu(\bar{v}).
\]

Clearly \(\sigma \in \mathcal{M} \) and for \(\bar{x} \in D^r \)

\[
H(\bar{x}) = \int_{L_2^w} \exp \left\{ i \sum_{j=1}^r \int_a^b v_j(t) \frac{dx_j(t)}{dt} \ dt \right\} \ d\sigma(\bar{v})
\]

so that \(H \in \hat{S} \). Applying the theorem to \(H \) and replacing \(d\sigma(\bar{v}) \) by \(\Phi(\bar{v}) \ d\mu(\bar{v}) \), we obtain (1.10) and the Corollary is proved.

Theorem 2. The set of sequential Fourier—Feynman transforms \(\Gamma_p \) for real \(p \) forms an abelian group of isometries of the Banach algebra \(\hat{S} \), with multiplication rule

\[
\Gamma_q \Gamma_p = \Gamma_{p+q} \quad \text{for} \quad p, q \text{ real}
\]

and identity

\[
\Gamma_0 = I
\]

and inverses

\[
(\Gamma_p)^{-1} = \Gamma_{-p} \quad \text{for} \quad p \text{ real}.
\]

Proof of Theorem 2. By equation (1.6),

\[
(\Gamma_p F)(\bar{y}) = \int_{L_2^w} \exp \left\{ i \sum_{j=1}^r \int_a^b v_j(t) \frac{dy_j(t)}{dt} \ dt \right\} \exp \left\{ \frac{p}{2i} \sum_{j=1}^r \int_a^b [v_j(t)]^2 \ dt \right\} \ d\mu(\bar{v})
\]

and by equation (1.10)

\[
(\Gamma_q \Gamma_p F)(\bar{y}) = \int_{L_2^w} \exp \left\{ i \sum_{j=1}^r \int_a^b v_j(t) \frac{dy_j(t)}{dt} \ dt \right\} \exp \left\{ \frac{p}{2i} \sum_{j=1}^r \int_a^b [v_j(t)]^2 \ dt \right\} \cdot \exp \left\{ \frac{q}{2i} \sum_{j=1}^r \int_a^b [v_j(t)]^2 \ dt \right\} \ d\mu(\bar{v}) = (\Gamma_{p+q} F)(\bar{y}).
\]

Equation (1.12) is given by the definition of the sequential Fourier—Feynman transform and equation (1.13) follows from equation (1.11) by setting \(q = -p \). Finally
we establish the isometric property of Γ_p. If $F \in \mathcal{S}$ and $G = \Gamma_p F$, then by equations (1.8), (1.7) and (1.1)

$$\|G\| = \|\Gamma_p F\| = \|\tau\| \leqslant \mu = \|F\|.$$

Also by (1.13)

$$F = \Gamma_{-p} G$$

and

$$\|F\| \leqslant \|G\|,$$

and the theorem is proved.

In conclusion, for the case $v=1, \quad p = -1$, the definition of the sequential Fourier—Feynman transform given in this paper is similar in form to the definition of the analytic Fourier—Feynman transform T given by Brue [3]. Brue defines the transform, TF, of a functional F, in terms of the analytic Feynman integral of F; namely he lets

$$(TF)(y) \equiv \int_C^{anf-1} F(x+y) \, dx$$

whenever the right hand side exists for all $y \in C$. He then proceeds to establish the existence of the transform T and its inverse T^* for several large classes of functionals. There is also a formal similarity to the definitions given in [2] and [4], but they involve more complicated forms of the analytic Feynman integral.

References

University of Minnesota
School of Mathematics
Minneapolis, Minnesota 55455
USA

Received 15 November 1983