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In a forthcoming Memoir of the American Mathematical Society [3], the au-

thors give a simple sequential definition of the Feynman integralwhich is applicable
to a rather large class of functionals. In Corollary 2to Theorem 3.1 of [3] we showed
that the elements of the Banach algebra S defined in [3] (and below) are all sequen-

tially Feynman integrable.
In the present paper we use the sequential Feynman integral to define a set of

sequential Fourier-Feynman transforms. We also show that they form an abelian
group of isometric transformations of ,S onto 

^S.

Notation. Let C:Cla,bl be the space of continuous functions x(t) onla,bl
such that x(a):0, and let Cnfa,bl:Xj:rCla,bl.

Let a subdivision o of [a, bl be given:

o: la : to< rr='cr=..,<'Ek <...< T*: bl.

Let X=X(r) be a polygonal curve ur Cn based on a subdivision a and the

matrix of real numbers E={€i,*}, and defined by
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where

when
k - lr 2, ...e tn; and € j,o = 0.

(We note that as [ ,*g., over all of vm dirnensional real space, the polygonal

functions t(. ), o, | ,ung" over all polygonal approximations to the functions
C'la, blbased on the subdivision o. Specificallyif i is a particular element of C'fa,bl
and we set (;,1:x;(ro), the function i('), o, S it the polygonal approximation
of i based on the subdivision o.) Where there is a sequence of subdivisions or, oz, ... s

then o, m and 11 will be replaced by o* mn and rr,n.

Definition. Let q*0 be a given real number and let f(i) be a functional
defined on a subset of Cnla,å] containing all the polygonal elements of C"la,bl.

X (D - X (t, o,Z) - lxr(t, o,Z), ..., xn(t, o,E)l

x i Q, o,E) - 
(i'r'-Jrr'- t) * ( i't'G - h-t)

Tp-Tt -t

ek-t: L: Lkt
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Let o1,o2,... be a sequence of subdivisions such that norm o,*0 and let Q"r)
be a sequence of complex numbers with Re,tn=O such that )'n* -i4. Then if the

integral in the right hand side of (1.0) exists for all n and if the following limit exists

and is independent of the choice of the sequences {o,} and {,1"}, we say that the

sequential Feynman integral with parameter q exists and is giuen by

(1.0)

1"," r(x)di, = tim To^,t^f nn..*r{-+ tll#r,"",?,ll al r@q.),o,,E))&,

where

! o, t : (+)*'' II{=, ko- r o- L)-vt 
z.

Definition. Let Dla,ål be the class of elements x(Cla,ål such that x is

absolutely continuous on la,bf and x'lLrla,bi. Let D":X|D.
Definition. Let .&="A/(Lila,bl) be the class of complex measures of finite

variation defined on B(Li), the Borel measurable subsets of Lila, å1. We set llpll:
var p. (In this paper, L2 always means real Lz.\

Definition. The functional Fdefined on a subset of C'that contains D'is
said to be an element of S=S(fj) if there exists a measure p(.tr such that for
x<D"

r(r) = I,rexp {, r; :, I : u i Q) (g#) o,} d r, 0)

F(x+i) : Irrexp {,r;=,tai4)ffidofl)

We also define Irll=llpll.

Lemma. ry fcS and i€Dn ,then the translate of F by ! is in S; i.e.

-f((.)+y)eS. Moreouerif for *,€D', F(*,) isgiumbyequation(l'l) where p(''/{,
it follows that

(1.1)

(1.3)

(r.2)

where o€/il and for each Borel subset E of L;, o(E) is giuen by

o (E) : [ 
"exp {,r; 

=, fi u i e) 4y atl a1,s1.

Proof of the Lemma.If o is given by equation (1.3) it is clearly in.// and, lloll=
llpll. For i€Dn, it follows from (1.1) that

F(x+il:f ,""*p{,2;=,t,,@WoJ"*n{i2;=,fi ",@9*a,lap1v1

: I,;exp {, 
t; =r a i (D ry at} ao(t),
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and hence f(.;+y)e S and the Lemma is proved. (Cf. also Corollary 2 of Theorem

a.l of [3].)

Definition.If plT and if for each y€Dula,bl the sequential Feynman

integral

(r.4)

exists, then f oF is called the sequential Fourier-Feynman transform of F. If p:!
we define fo to be the identity transformation, loF=F.

Theorem t' t7 feS and p is real, then the sequential Fourier-Feynman
transformof F exists and f oF(S. Moreouerfor i(D" and F giuenby equation

(1.1),

(1.o

(t oF)(r) = r"'rn F(*,+ y) dx

(f or) (i) u i Q) ry atl 
"*v {+ Z; =, fitu i (t)t' o4 o u(t).

Proof of Theorem l. By the Lemma, f(.1+y)e S, and hence by Corollary 2

of Theorem 3.1 of [3] when p*0, the right hand member of (1.4) exists. Also in

terms of the measure o given in equation (1.3), we have from (1.2) and Corollary 2
of Theorem 3.1 of [3]that

lsrue 
p(** i) a* : I"r',,ll 

"r"*p{i2;=,!' 
,,A)ff a}a"O>lax

: f ,."*p lfiz;='ttui1)t'a]a,o>'

Equation (1.6) follows by substitutingfor o using equation (1.3). Now let the measure

z be defined on the Borel subsets E ofZ| by

(1.7) x(E) = I 
"exp {+ 2;:,1:1ui!))' oi ou(i).

Clearly r€/il and equation (1.6) can be written

(1.8) (ro4(i) - [,uexp {,r;=,tui4)ryo4or(t).

- [ 
';exn {'';:' I:

Hence frfe S and the theorem is proved for the case p*0. When p:9,
l-n,F is the identity transformation and the theorem follows from (1.1).
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Corollary to Theorem l. In addition to the hypotheses of Theorem I, assume

thqt aD is a bounded measurable functional defined on Lf,, and let

(1.e) ä(*) = [ "r"*r{,,2;=,f",t4)S 
a]og1apg1.

Then the functional HCS and

(1.10) (r,H)(n

: ! 
", "*n {, z; =, t * a) Qf- a I "*n {$ z; =, t tu i Q)i' a } o s a p 1t1.

Proof. Let a measure o be defined on each Borel set E of Liby

o(E): t 
"og1ap1t1.Clearly oQ'// and for *€Dv

H(i): !,r"*n{tZ;=,t,,@9# a} a"O>

so that I/(S. Applying the theorem to H and replacing do@ by A@)dp(6),
we obtain (1.10) and the Corollary is proved.

Theorem 2. The set of sequential Fourier-Feynman transforms ln for real
p forms an abelian group of isometies of the Banach algebra S, with multiplication
rule

(1.11) folo:fp+q .for p,q real

and idmtity

(t.t2) to: I
and inuerses

(1.13) (Ir)-t: f -, .fo, p real.

Proof of Theorem2. By equation (1.6),

(ro 4 (i) : f 
", "*n {t 

Z; =, t,, r,) 9# a} 
"*v {fi Z; =, ttu i e)1, o 

4 
o u ro>

and by equation (1.10)

g qr o n (y) : f ,, "*n {, Z; =, t, t {0 9P a t} 
"*o {fi Z; =, t tu, (t)t, d tl

. *r {fi 2; =,.fltu, t1t, a} a p1r1 : (r, * q F) (!).

Equation (1.12) is given by the definition of the sequential Fourier-Feynman trans-
form and equation (1.13) follows from equation (1.11) by setting q:-p. Finally
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we establish the isometric property of i-o. If Fe ,S ana G:l pF, then by equations

(1.8), (1.7) and (1.1)

llcll : llroFll: llzll = llpll : ilril.
Also by (1.13)

and 
F: f-PG

ilril = ilGll,

and the theorem is proved.

In conclusion, for the case v:1, p: -1, the definition of the sequential

Fourier-Feynman transform given in this paper is similar in form to the definition
of the analytic Fourier-Feynman transform Zgiven by Brue [3]. Brue defines the

transform, TF, of a functional F, in terms of the analytic Feynman integral of F;
namely he lets

eF)(y) = f ;"1-, rtxi y) itx

whenever the right hand side exists for all y€C. He then proceeds to establish the

existence of the transform Zand its inverse 7* for several large classes of functionals.
There is also a formal similarify to the definitions given in [2] and [4], but they in-
volve more complicated forms of the analytic Feynman integral.
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