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ON THE SUPPORT OF HARMONIC MEASURE
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l. Introduction. In a recent paper [2] Kaufman and Wu have shown that the

support of harmonic measure of the von Koch snowflake domain has dimension

strictly smaller than the Hausdorffdimension (log4llog3) of the boundary curve.

This result supports a very strong conjecture of Oksendal [4] to the effect that the

support of any harmonic measure in the plane has dimension =1.
We shall here prove that the Oksendal conjecture is true for any "fractal" curve

such as the snowflake. It is also true for any two-dimensional Cantor set with con-

stant ratio in the very strong sense that the djmension for these supports is strictly < 1

even when the Hausdorff dimension of the Cantor set is close to 2.

If one thinks of harmonic measure as hitting probability it may not be so sur-

prising that the results are consequences of results on stationary processes. More
precisely, they belong to the field of information theory and we shall here review what
is needed (see e.g. []).

After this manuscript was finished I was informed that A. Manning has a similar

result for invariant measures of a polynomial map. (See [3].)
Let x:{""}:- be a double infinite sequence of symbols xo taken from a finite

set, "alphabet". Let p be a probability measure on the set of x's. We assume p to
be stationary and ergodic with respect to the shift Z: Tx:{xna1\7-. Denote by C
a "chain" C:(xt, xz, .. ., x,), of length, n. The entropy H of p is defined as

fI : lim Hn 
- sup 

rr'
n-- fl n- n

where
Ho - - Z 

", 
p(C") log tt(C).

McMillan's basic theorem now describes how many Cnthat actually occur.

Theorem. Gioen e>0, there is no(e) so thatfor n>no(e), we canfind distinct

chains C,r, Cnz, ..., C, of lmgth n with rn<sn(Hte) so that

Zi='P(c,) > 1-e'

It is clear that this is a description of the support of p. Our scheme is therefore to
relate harmonic measure to a stationary p for which we can actually compute the

entropy. We also obtain a connection to the geometry of the situation. Since the sup-
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port of our harmonic measure in the sense of distributions is the entire set we have to
make a more careful definition.

Le,t w be compactly supported positive measure. We say that the support S(co)

of rrr has dimension a if for every B>u and every e =0 we can find discs Dn of radii
rn so that

)r(=e,
co(R\uI)") < e,

while this fails for every p<.u.

2. Let us begin by presenting a simple proof of Oksendal's theorem.

Oksendal's theorem. Let E be a compact set in the plane with connected

complement. Then S(a"\ has two-dimensional Lebesgue measute zeto.

Lemma. Suppose zc{zllzl=l} and assume m2E>n-ön, ö=0. Let Eo:
E n {zlll2=lzl=-ll. Then there is a uniaersdl constant C so that

a(z; Eo)> !-Cö on lrl:1.

Proof. Choose a radius 11, 7f8<rr-.1, so that

(1) mr{|lrreie€E} > 2n-ö120

and r, similarly rn ll2<rr<5/8. Let G(z; 0 be the Green's function for Ä: rr=
lzl-rr, and define in Ä

u(z):*l,u_Efflvu
EqE

By the maximum principle a(z; Es)*u(r)=t in Ä. Writing down the explicit form
of G and using (1), we see that

so that 
u(z) <- (Const.) ä on lzl : 314

a(z; Eo) > l-Cö on lzl: 314.

For the proof of the theorem we may of course assume that mrE>0. Let a
denote harmonic measure for the complement of d so that ot(z; D), DcE, is har-
monic outside E and :1 on D, :0 on E\D. We shall prove that if zo is a point
of density of E,then the Radon-Nikodym derivative of ar vanishes at zo.

We take zo:0. Let B":{allul=e} and define

EG\: co(B)
and

ö(e): 
'-m'(ElB) '
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On the support of harmonic measure for sets of Cantor type

By the lemma ot(z; EnB",r)=Cö(e) on lzl:3614 so that for lzl=e

ot(z; EnBa)=ffiaQ; EaB).

This yields

,(+)=2ö(e)E@) =!,n@)

if ö(e)=l/10. At a point of density this holds for e=eo and hence

E(es2-") < 5-"
so that

,'* Q(E) 
- 

nIlfll-;_ : U.

3. Let p be a fixed simple polygon with N sides and with the following relation

to a basic directed line segment So of length l.
1. The endpoints of P and ,So coincide.

2. The first and the last side of P fall on Ss.

3. The sides 2, ..., N-l of P bound with 
^So 

a simply-connected polygon with

negative orientation.
4. If the sides of P have lengths p(L), pQ), ..., p(N) then p(l), p(N)=ll2 and

pQ),...,p(N-1)=1.

^nr - g.

If S is a directed line segment we denote by P(S) the polygon similar to P with
base S instead of 

^So.

We start from any fixed simple polygon, say the unilateral triangle /o boundUrg

Oo and containing the origin. For each side 
^S 

of /o we construct t(^S). We obtain a

new polygon Arwrth 3N sides. These may intersect but because of our assumption 3,

./, bounds a simply-connected domain Qt)Q on a Riemann surface. We continue

the construction and obtain atthe n-th stage a polygon Åo with 3N' sides bounding

a domain O". We note that by assumption 4 the Ä, are alllocated in a fixed bounded

domain and the sides of lo tend to zeto exponentially. On tends to a domain O.

Theorem. The support of harmonic measure inside Q has dimension =l on 0Q.

115



116 LEr.rNanr CanrnsoN

The boundary sides of l,have anattral representation by a sequence (xo, xr, ...,
xo) where xs:1,2,3 and xi:1,2,...,N, i>1, indicates on which side the con-

struction was made at the i-th stage. We are going to disregard the special role of i: 0

in the notation. Each domain On has harmonic measure a" and (Dn-(D (weak-*)

which is harmonic measure for the limit domain g. The value of o for a boundary
sequence C:*o, xL, ..., xn is denoted a(z; C) and for z:O we write simply ar(C).

To obtain a stationary measure we now introduce the space X* of doubly in-
finite sequences X*:{""}:-.The measure p is defined in this space X* as follows:

Let C be a chain in some arbitrary position tn X*. We extend C to the left by a
sequence A of length lAl:n obtaining after translation a new chain of length:
:4alength (C) at position (xr,xr,...,xn+lcl-). We shall presently show that the

following limit exists and gives a definition of a probability measure p:

p(C) : lim Z 
"@(A, 

C).

The definition is clearly translation invariant. Before proceeding let us drop the
*-notation. All sequences will be doubly infinite but o is naturally only used for
sequences (xo, .lrr, ..., x).

The, existence and other basic properties of p now follow from the following

Lemma l.
a(A, C, B) @(C) I-@ a{ca1 -'

uniformly in A and B as lCl--.
Proof. Let us first disentangle the notation. For a chain D, a(D) denotes the

value at z:0 of the harmonic measure a(z; D). In the lemma, B denotes a sequence

of choices of sides and the lemma means that the relative harmonic measure

a(z; C, B)ffi (z:o)

is not influenced by earlier conditionings (by l).
To prove the lemma let us map the situation to the unit disc. The length-area

proof of the Carathiodory theorem applies and we conclude that the mapping is bi-
continuous. Let C have length n, C:(cr,...,c). Choose the mapping so that the
midpoint of the segment S:(cr, ...,c,t2) is mapped to (:0. C defines anarc I
on l( | 

: 1 and (C, B) an arc B c y. Then u((; y\ and u((; B) are the corresponding

harmonic measures

u((;y):*1,ffi".
It is clear from the geometric construction of X(S) that the preimage o of S in

l(l=l satisfies, since the mapping is continuous,

(1)
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On the support of harmonic measure for sets of Cantor type

uniformly in all choices of C and .8. This implies that

tin ug; f! :1^.1!l : q
":- ule) l) ':- lyl

uniformly for (€o. Hence

(q-e)a(z) C) = a(z; C, B) = 
(q*e\a(z; C)

',inside" the cross-section S and in particular for z:0. If we add to Cthe sequence,4

but otherwize do the same construction we obtain the same limit 4 and putting z:0
we get the lemma.

Let us now prove that the limit (l) exists. we wite A: a' , Ao and keep lo fixed

and long. Then

a(A, C) : a(A' , Ao, C) : W a(A' , Ao)(I * e)

where e(r4')*0, as llel*-' Hence

Z e,o\A', Ao, C) : a(Ao, C)(1 +e')

wfrich proves the existence of p. Actually we have the stronger result

(2) ,r^ Zvt=^,Z!A'c) : r

uniformly in c. 
;1; P(c)

Lemma 2. The measure p is a probability measure with the following properties:

(a\ p is inuafiant under T

P(TC): P(C),

(b) 1t is equiuålent to a, i.e.

Const. @(C) =- p(C) = Const. ar(C),

(c) p rs ergodic for T.

proof. We have already observed that the definition of p makes sense. We also

have )gc1=r p(C):l since this holds for o and ;r extends to a probability measure

on x1 necause of (2) p is equivalent to a fixed finite sum zea(A, c) and this is

clearly equivalent to o(C).
To prove (c) let us consider a cylinder set defined by C and C' at distance m

from each other. Let us consider D:ACBC', lBl:m, lAl:n. On cross-sections

Pn'B
a(z; ACBC") - g^-^, F(C")
Mme, -\-onsr'71ö5
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with a uniform constant. It now follows that

Zp1=^p(CBC') > Const. P(C)P(C')

uniformly in zr. This weak form of mixing implies ergodicity. This is certainly well-

known. For convenience, a sketch ofa proofis included.

Suppose E is an invariant set with O<.p(E)< 1 and let Fbe the complement

of E.Let A wrd B be cylinder approximations to E and Fand translate ,B by ly' so that
A, and ,B have disjoint positions. Then

p(AnB)= p(EnT-NI)+e= P(EnF)*e: e

but also
p,(AnB) > Const. p(A)p(B) > Const. (p(D-t)(p(D-4.

Hence p(E) or t(F):O.
Let us now compute the entropy of p. We fix some large m so that

1-e< Zw=-,2!A'c) 
=1*ep(c)

for all C. Then

Hn: - Zpt=" p(C)loe p(C)

= (1 + s) Z p1 = n (- Z vt= ̂  
a (A, c)) loe (Z vt = ^ 

a 1A, c)) + (1 + e) log (1 * e)

= 
(1+s) J1"1=,*-(- a(C\log(c.(C))+(t + r) log (1+e)

fnce /(x): -xlog x satisfies f(x1*x2* -..+x)=-2i=rf(x). Hence

H : !f'fr- =lim-+ Z..o-ntoga4

where co,:cl(C) denote the harmonic measure of the boundary intervals on at
the n-th stage of the construction. Formally

tnj=o,@o:EJo^ 
dn

where g is the Green's function of the limit domain with pole at 0. Let us stop the
construction at same stage k>n. Then the formula is valid and if we make estimates

rndependent of k, these estimates will hold for the limit domain.
Let us consider

,(r\ E(o) : * ! "#"tF, 
a, : I I.W4l"ffd)$-a.tosö

where ö is the length of the arc o.

The first integral .I is scale invariant and we may assume that our basic interval
is (0, 1) on the real axis. Let F(O:2 be the conformal mapping from 4>Q to the
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domain with .F(i):g an6 f(0)eo. Then

r : I I ,-r"r-log (lF'(.r) 11t + *l\ fit.
Here F-l(o):t is an interval of Iength /(=1, say) and

lr dx I(D:(Dn:;J"p-;,

r: G(c,t)-!1"ry: (c(o :FQe))

:o(a>,*[",W*wqongo'.
Since Fis bounded lG'(i)l=Const. Here ro is an interval of length I containing

(:0. We shall prove that integrals of this type are bounded.

Lemma 3. Let G(O be uniualent in q>0 and smootlt up to q:O and asswne

lc'(i)f=|. Let t(OeC' in 4>0. Then there is untuersal constant C so that

Il,'1, {0 tou lG' (01 d€ = clllrll c,.

Proof. We may of course assume t(0:0, l(l>2. Set

u (t, q) : |(*" rg e -]- - ur" tg 3l!l
and 

u((, q) : n{/ G) U((, r0.

By Green's formula

I :: V.@ tog lG' (Ol ft : f f , -otog 
lG' (Ql Å u (O d( itq,

To obtain the desired result we now only have to use the estimates in 191<.2:

lrog lc'($ll < Const. ,or+,

lÄul = Const' "'=1 " 'lg-rl'
FF 3 d(iln
JJ1r3rto9-7;,<a'

The proof of the lemma is complete.
The result of the computation is that, from (2),

E(o) : aloga-a log ö*o(ro)
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the n-th generation. We also observe that

Zo,E(o,): + I *los lG'lds _los lc'(o)l

conformal mapping to l( I = 1. Hence

Hn E - 2,.(1og ö,)con+O (I)

n =-tim j Z,;(loe ö,)@n.

and

(3)

for all 6:on in

where G is the

We now observe that

6,: [l!=, n@i\.

Since p and o: are equivalent measures we can use the individual ergodic theorem for
p to conclude that

"-n(K-e) =åo= e-n(K+e)

for all än except a set of small harmonic measure. It follows from (3) that K>H.
On the other hand by the McMillan theorem only e(rl+")n intervals are needed to cover
essentially all harmonic measure. We conclude that the (l+2e)-dimensional Haus-
dorff measure of the support is zero.

4. Let us now consider the case of the exterior of a two-dimensional Cantor set.

In this case the n-th stage consists of 4" squares of sides d, a=ll2 and we want to
prove the,following.

Theorem. For any two-dimms;ional Cantor set the support of harmonic meesute

has dimension =1.

The previous proof applies with two rather essential changes. Lemma I cannot
be proved using conformal mapping and the computation of the entropy is different
since log lVgl has singularities.

A substitute for Lemma I is given in the following

Lemma 5. Let D be a domain in the complex plane. A is a conformal annulus,
,4:B\C, B,C conformal disks, Ec.0D is such that EcCrcBrcCrcBrc....
...cCncBo where the annuli A.:B"\C" are similar to A and AncD. Let u
and a be non-negatiue harmonic ftmctions in D so thst u and a:0 on åD\E Thm there
is a constant Cs, independent ofu and u and another constant C, depending on u and a
but not on n so that

V#-'l=# in A.

and hence in the part of D exterior to 8,.
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Proof. In each annulus An pick a smooth curve yv so that all the yu are similar.
We define

,,: "r;rffi, mv:\:#, O, : #.
From the assumption it follows that M"\ and m"/. We shall study the sequence

Q". Consider y<n fixed. By multiplying u and a by constants we may assume that
M":l and Maxr" u(z):1. We may also assume that yn has length 1. By Harnack's
inequality u(z)=ct on yu. It also follows that lYzul,lY2ul=s, on 1lv. Let zrbe a
point on 7n where

we conclude that 
Q'u(zo\: a(zo)'

a > (Q,-l)cg+u

on an interval I on 7" of length =(Q"-l)'l'Cn Now let Gn be the Green's function
for Dv:r\(inside of y). For z€D,

t2l

u(z) : * 1,"#e; eu(g ds,

=- * L"# e; 0 u(a a,-* I, # r,, ec"(e"- t) dsg.

AG.. suo". 3G..l0nForz(yn*,,7;satisfie'ffi=G.Weconcludethaton7n*'

He,rce 
u(z) 

=u(z)(t-Cs(Q"-1)t/')'
M t + t s M 

"(l - c 6(Q" - 1)t/')
and so

ev+t : + = \*, =_ e"(t - c6(e,- t)stz).
ffiy+t fnv

This iteration is easily estimated and we find

o =e,-r=#-
and Lemma 5 is proved.

For the entropy we get the following formula

* I r^H^tFgl ds : Z(n)c((")+ const'

where (n are the critical points of g and (n) indicates that we should sum over those ("
which are inside the n-th approximation of the Cantor region. For the final inequality
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we get

H- 1--21(-tosa)-: Z@s(h).

The theorem therefore follows from the following.

Lemma 6. There is a constant c>0 so that

Zatg(() =- cn'

Proof. (The idea of the proof is due to Peter Jones.)

Let us consider the l-th stage in the construction of the Cantor set and a square

Q, of the corresponding generation. We shall prove that we associate to every Q!
one (n so that v:v(QD,

C((") = Const. rll(O)

and so that the same (n is only used four times.

We consider the configuration of 4 squares Q, rclated to Q!:

a.y

By Harnack's inequality sQ; 0 is comparable to harmonic measure for all four

Q!, k:0,1,2,3, on 7 around the Q!,:s. Hence

g(-; 0 : C(* *)= o(QtD, k :0,1,2,3.

It now follows that there is also a critical point inside y which has the same property

at a point where level lines of gxg((; -) meet.
We now sum and find

Za, c($(Q)) =- co

and summation over i gives the lemma.

E
t

E
E
E
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Adrled in proof. N. G. Makarov has proved that the dimension of support of harmonic meas-

' ure is 
= 

I for all simply-connected domains.
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