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ON THE SUPPORT OF HARMONIC MEASURE
FOR SETS OF CANTOR TYPE

LENNART CARLESON

1. Introduction. In a recent paper [2] Kaufman and Wu have shown that the
support of harmonic measure of the von Koch snowflake domain has dimension
strictly smaller than the Hausdorff dimension (log 4/log 3) of the boundary curve.
This result supports a very strong conjecture of DJksendal [4] to the effect that the
support of any harmonic measure in the plane has dimension =1.

We shall here prove that the Qksendal conjecture is true for any “fractal” curve
such as the snowflake. It is also true for any two-dimensional Cantor set with con-
stant ratio in the very strong sense that the dimension for these supports is strictly <1
even when the Hausdorff dimension of the Cantor set is close to 2.

If one thinks of harmonic measure as hitting probability it may not be so sur-
prising that the results are consequences of results on stationary processes. More
precisely, they belong to the field of information theory and we shall here review what
is needed (see e.g. [1]).

After this manuscript was finished I was informed that A. Manning has a similar
result for invariant measures of a polynomial map. (See [3].)

Let x={x,}~.. be a double infinite sequence of symbols x, taken from a finite
set, “alphabet”. Let u be a probability measure on the set of x’s. We assume u to
be stationary and ergodic with respect to the shift T: Tx={x, ,}.,. Denote by C
a “chain” C=(x,, X,, ..., X,), of length n. The entropy H of p is defined as

H = lim A _ sup A,
n—-oc N n n

Hn = —ZC,. .u(Cn) logﬂ(cn)

McMillan’s basic theorem now describes how many C, that actually occur.
Theorem. Given =0, there is ny(¢) so that for n=>ny(g), we can find distinct
chains C,y, Cya, ..., Com 0f length n with m<e"¥*? so that

where

jm=1 #(an) > 1--e.

It is clear that this is a description of the support of . Our scheme is therefore to
relate harmonic measure to a stationary u for which we can actually compute the
entropy. We also obtain a connection to the geometry of the situation. Since the sup-
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port of our harmonic measure in the sense of distributions is the entire set we have to
make a more careful definition.

Let w be compactly supported positive measure. We say that the support S(w)
of w has dimension « if for every f=>a and every ¢=0 we can find discs D, of radii

r, so that
21 =<e,
o(R®\ VD, <g,
while this fails for every f=<a.

2. Let us begin by presenting a simple proof of QOksendal’s theorem.

Oksendal’s theorem. Let E be a compact set in the plane with connected
complement. Then S(wg) has two-dimensional Lebesgue measure zero.

Lemma. Suppose EC {z||z|<1} and assume myEz=n—0n, 6=0. Let E,=
En{z|l)2=|z|=1}. Then there is a universal constant C so that

w(z; E)=1—-Cd on |z|=%.

Proof. Choose a radius r;, 7/8<r,<1, so that
€)) m{0|r, €€ E} = 27 —§/20

and r, similarly in 1/2<r,<5/8. Let G(z; {) be the Green’s function for R: ry<
|z|<r;, and define in R

_ 1 9G(z; O
u(z) = _2—75_-/311 “on, |d{I.

By the maximum principle w(z; E,)+u(z)=1 in R. Writing down the explicit form
of G and using (1), we see that

u(z) = (Const.)é6 on |z]| =3/4
so that
w(z; E)=1—C5 on |z| =3/4.

For the proof of the theorem we may of course assume that m, E=0. Let w
denote harmonic measure for the complement of E, so that w(z; D), DCE, is har-
monic outside E and =1 on D, =0 on EN\D. We shall prove that if z, is a point
of density of E, then the Radon —Nikodym derivative of w vanishes at z,.

We take z,=0. Let B,={v|jv]|]<¢} and define

¢ (e) = w(By)
and
my(EN B,)
B

o) =1
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By the lemma w(z; ENB,;;)=C5(¢) on |z|=3¢/4 so that for [z|>e¢

Cd(¢)

-l—jé(—s)a)(z; EmBE).

w(z; EnB,p) =
This yields
1
o(4)=2@00 <390

if d(g)<1/10. At a point of density this holds for eé<g, and hence

@52 ™) < 57"
so that

3. Let P be a fixed simple polygon with N sides and with the following relation
to a basic directed line segment S, of length 1.

1. The endpoints of P and S, coincide.

2. The first and the last side of P fall on S,.

3. The sides 2, ..., N—1 of P bound with S, a simply-connected polygon with
negative orientation.

4. If the sides of P have lengths p(1), p(2), ..., p(N) then p(1), p(N)<1/2 and

rQ2), ... p(N—1D<1.

If S is a directed line segment we denote by P(SS) the polygon similar to P with
base S instead of S,.

We start from any fixed simple polygon, say the unilateral triangle 4, bounding
Q, and containing the origin. For each side S of 4, we construct X (). We obtain a
new polygon 4, with 3N sides. These may intersect but because of our assumption 3,
4, bounds a simply-connected domain €, >Q on a Riemann surface. We continue
the construction and obtain at the n-th stage a polygon 4, with 3N" sides bounding
a domain Q,. We note that by assumption 4 the 4, are all located in a fixed bounded
domain and the sides of 4, tend to zero exponentially. @, tends to a domain Q.

Theorem. The support of harmonic measure inside Q has dimension =1 on 0Q.
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The boundary sides of 4, have a natural representation by a sequence (x,, X, ...,
x,) where x,=1,2,3 and x;=1,2,..., N, i=1, indicates on which side the con-
struction was made at the i-th stage. We are going to disregard the special role of i=0
in the notation. Each domain €, has harmonic measure " and w"—>w (weak-*)
which is harmonic measure for the limit domain Q. The value of w for a boundary
sequence C=x,, X, ..., X, is denoted w(z; C) and for z=0 we write simply w(C).

To obtain a stationary measure we now introduce the space X™* of doubly in-
finite sequences X*={x,}=_.. The measure p is defined in this space X* as follows:

Let C be a chain in some arbitrary position in X*. We extend C to the left by a
sequence A of length |4|=n obtaining after translation a new chain of length=
=n+Ilength (C) at position (Xy, X;, ..., X,+|c|-1)- We shall presently show that the
following limit exists and gives a definition of a probability measure u:

(1 p(C) = lim S04, C).

The definition is clearly translation invariant. Before proceeding let us drop the
*.notation. All sequences will be doubly infinite but w is naturally only used for
sequences (X,, X, ..., X,)-

The existence and other basic properties of u now follow from the following

Lemma 1.
w(4,C,B) w(C) _
w(4,C) w(C,B)

uniformly in A and B as |C|—o.

Proof. Let us first disentangle the notation. For a chain D, (D) denotes the
value at z=0 of the harmonic measure w(z; D). In the lemma, B denotes a sequence
of choices of sides and the lemma means that the relative harmonic measure

w(z; C, B)
w(z; C)
is not influenced by earlier conditionings (by A).

To prove the lemma let us map the situation to the unit disc. The length-area
proof of the Carathéodory theorem applies and we conclude that the mapping is bi-
continuous. Let C have length n, C=(c, ..., ¢,). Choose the mapping so that the
midpoint of the segment S=(cy, ..., ¢,2) is mapped to (=0. C defines an arc y
on |{|=1 and (C, B) an arc fcy. Then u({; y) and u({; p) are the corresponding
harmonic measures

(z=0)

_ -
u(l;9) = 2n[ IC i

It is clear from the geometric construction of X(S) that the preimage ¢ of S in
|¢|<1 satisfies, since the mapping is continuous,

lyl = (lengthy) = o(dist (g, 7)), n —e°,
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uniformly in all choices of C and B. This implies that

ul@GP _ . Bl

1 =

m —-=
n=e u(lsy) == [yl
uniformly for {€o. Hence
(g—e)w(z; C) = w(z; C, B) = (g+8w(z; C)

“inside” the cross-section S and in particular for z=0. If we add to C the sequence 4
but otherwize do the same construction we obtain the same limit g and putting z=0

we get the lemma.
Let us now prove that the limit (1) exists. We write 4=4’, 4, and keep 4, fixed

and long. Then

o4, C) = o', 4y, €)= 240 C)

w4, A4)(1+¢
where &(4’)—0, as |A4y|—<-=. Hence
D pw(4’, 4y, C) = w(4,, O)(1+¢)

which proves the existence of u. Actually we have the stronger result

1
o= u(C)

uniformly in C.

Lemma 2. The measure y is a probability measure with the following properties:
(a) pu is invariant under T

w(TC) = u(C),
(b) u is equivalent to w, i.e.

Const. w(C) = u(C) = Const. w(C),

() u is ergodic for T.

Proof. We have already observed that the definition of y makes sense. We also
have ¢, #(C)=1 since this holds for @ and u extends to a probability measure
on X*. Because of (2) u is equivalent to a fixed finite sum >, w(4, C) and this is
clearly equivalent to w(C).

To prove (c) let us consider a cylinder set defined by C and C” at distance m
from each other. Let us consider D=ACBC’, |B|=m, |A|=n. On cross-sections
B in B

w(z; ACBC”) _ u(C”)
o(z: ACBC) = OB @)
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with a uniform constant. It now follows that
> \5j=m #(CBC") = Const. u(C)u(C’)

uniformly in m. This weak form of mixing implies ergodicity. This is certainly well-
known. For convenience, a sketch of a proof is included.

Suppose E is an invariant set with O<u(E)<1 and let F be the complement
of E. Let 4 and B be cylinder approximations to £ and F and translate B by N so that
A and B have disjoint positions. Then

pANB) = p(EnT-V"F)+e=u(EnF)+e=¢
but also
1(4 " B) = Const. u(A)u(B) = Const. (u(E)—¢)(u(F)—e).
Hence u(E) or u(F)=0.
Let us now compute the entropy of u. We fix some large m so that

2|A|=m (A, C) -
1) -

1—¢

[IA

1+e¢
for all C. Then
H,= _2|C|=n p(C)log u(C)
= (1+8) 3¢z (= 2 141=m @ (4, ©))10g (1 4)=m @ (4, C))+(1+¢)log (1 +¢)
= (1+8) 3 cj=n+m(—0(C)logw(C))+(1 +¢) log (1+¢)
since f(x)=—xlogx satisfies f(x;+x.+...+x)=2_,f(x,). Hence
H= }Lr?o% = lim—%zwn w, logw,

where ®,=w(C) denote the harmonic measure of the boundary intervals g, at
the n-th stage of the construction. Formally

1 dg
w, :Tnfana_nds

where g is the Green’s furction of the limit domain with pole at 0. Let us stop the
construction at same stage k=n. Then the formula is valid and if we make estimates
independent of k, these estimates will hold for the limit domain.

Let us consider

1 og og , 1 (@g][ 3g]ds
(2) E(O’)——z—n a—agloga—nds-—g‘/’a 3}‘15 log-a—né T—w,,logé

where ¢ is the length of the arc o.
The first integral I is scale invariant and we may assume that our basic interval
is (0, 1) on the real axis. Let F({)=Z be the conformal mapping from #>0 to the
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domain with F(i)=0 and F(0)€¢o. Then

! , o dx
I= ?fF—l(a)—log(lF ®)|(A+x ))Fx—z
Here F~'(s)=t is an interval of length /(=1, say) and

a)—w—i L
T T apddlyx® w0

1 , log |[F'(x)| dx
1=6@-2[ 7w —

I log |G"(§)[ d¢
%o 1+l2‘:2

Since Fis bounded |G’(i)]=Const. Here 1, is an interval of length 1 containing
¢=0. We shall prove that integrals of this type are bounded.

=(G(®) = F(I))

=0(w)—l% + wlog w.

Lemma 3. Let G({) be univalent in =0 and smooth up to n=0 and assume
|G’(0)|=1. Let Y ({)€C? in n=0. Then there is universal constant C so that

SE¥©log|G(©)]dé = Clglc:.

Proof. We may of course assume ({)=0, |{|=2. Set
E—1 £+1)
n n

U n = % [arc tg —arctg

and

u(@m =ny ) UE, .

By Green’s formula
S @log|G @l de = [f _ log|G' ()] du(®) d dn.

To obtain the desired result we now only have to use the estimates in |{|<2:

log |G’()|| = Const. logg—,
|4u| = Const 1

3 dédn
log— 2 4m_ _
Jf g8y T =

The proof of the lemma is complete.
The result of the computation is that, from (2),

E(0) = wlog w—wlog 6+ 0 (w)
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for all o=0, in the n-th generation. We also observe that

1

_ og . ,
S0 E() = Efa—nl‘)g 6’| ds = log|G/(0)

where G is the conformal mapping to |{|<1. Hence

Hn = —2(0” (lOg 5n)wn+0(1)
and

3 H= w3, (log5,)o,.

We now observe that
5n = Hin=1 p(xi)~

Since u and w are equivalent measures we can use the individual ergodic theorem for
u to conclude that

e"K=) < 5 < g=n(K+2)

for all §, except a set of small harmonic measure. It follows from (3) that K=H.
On the other hand by the McMillan theorem only e +9" intervals are needed to cover
essentially all harmonic measure. We conclude that the (1+2¢)-dimensional Haus-
dorff measure of the support is zero.

4. Let us now consider the case of the exterior of a two-dimensional Cantor set.
In this case the n-th stage consists of 4" squares of sides ", a<1/2 and we want to
prove the following.

Theorem. For any two-dimensional Cantor set the support of harmonic measure
has dimension <]1.

The previous proof applies with two rather essential changes. Lemma 1 cannot

be proved using conformal mapping and the computation of the entropy is different
since log |Vg| has singularities.

A substitute for Lemma 1 is given in the following

Lemma 5. Let D be a domain in the complex plane. A is a conformal annulus,
A=B\C, B, C conformal disks, ECOD is such that ECC,CB,CC,CB,C...
...cC,cB, where the annuli A,=B\C, are similar to A and A,CD. Let u
and v be non-negative harmonic functions in D so that u and v=0 on 0D\ E. Then there
is a constant C,, independent of u and v and another constant C, depending on u and v
but not on n so that
u(z)
v(2)

and hence in the part of D exterior to B,.

Cy
— in A
n? "

C

=
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Proof. In each annulus 4, pick a smooth curve y, so that all the y, are similar.
We define
G _ M,
vz’ T om,

M, sup Eg m, =

From the assumption it follows that M\, and m, ~. We shall study the sequence
Q,. Consider v<n fixed. By multiplying u and v by constants we may assume that
M,=1 and Max, u(z)=1. We may also assume that y, has length 1. By Harnack’s
inequality u#(z)=c¢, on y,. It also follows that |V2u|, |V2v|=c, on y,. Let z, be a
point on y, where

0, u(zy) = v(zy)-
We conclude that

v=(Q,—Dez+u

on an interval I on 7, of length =(Q,—1)"2C,. Now let G, be the Green’s function
for D,=D\(inside of y,). For z¢D,

1 96,
u() = o [ 00 (a3 Du s
1 dG, 1 0G,
- (‘)_n(Z; 914(8) dsg—ﬂ- Ié)_n(Z; C)Ca(Qv—l)ng~
oG 0G, /0
For z€y,,4, B_nv satisfies %EL:(TG:/%S— =C;. We conclude that on y,,,
u(2) = v(2)(1—-Ce(Q,—1)*7).
Hence
Mv+1 = Mv(l _CG (Qv_ 1)3/2)
and so
M, M,
Qi1 = Tn:ﬁ_ = "‘nTH = Qv(l Ce(Q,— 1)3/2)

This iteration is easily estimated and we find

Go

0=0,-1=—2

and Lemma 5 is proved.
For the entropy we get the following formula

1 0g 3
_Z_ﬁ_fr,, on log [Vglds = 2 g({,) + Const.

where {, are the critical points of g and (n) indicates that we should sum over those ¢,
which are inside the n-th approximation of the Cantor region. For the final inequality
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we get

H, 1
L = (—loga)—— S £(C).

The theorem therefore follows from the following.
Lemma 6. There is a constant c¢=0 so that
2w 8l =cn.

Proof. (The idea of the proof is due to Peter Jones.)
Let us consider the i-th stage in the construction of the Cantor set and a square
0; of the corresponding generation. We shall prove that we associate to every Qf

one {, so that v=v(Q)),
g((,) = Const. 0(Q))

and so that the same ¢, is only used four times.

We consider the configuration of 4 squares Q, related to Q7:

0

Q? Q'1 i+1

By Harnack’s inequality g(z; ) is comparable to harmonic measure for all four
k k=0,1,2,3, on y around the Q%:. Hence

g(>; ) =g *)<w(@, k=0,1,23.

It now follows that there is also a critical point inside y which has the same property
at a point where level lines of g<g({; «) meet.
We now sum and find

ZQ, g(Cv (Qz)) = Co

and summation over i gives the lemma.
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Added in proof. N. G. Makarov has proved that the dimension of support of harmonic meas-
ure is =1 for all simply-connected domains.
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