Annales Academiz Scientiarum Fennice Commentationes in honorem
Series A. I. Mathematica Olli Lehto
Volumen 10, 1985, 125—137 LX annos nato

SPACES OF MEASURES
ON COMPLETELY REGULAR SPACES

C. CONSTANTINESCU

Let X be a regular topological space. If (u,),.y 15 a sequence of Radon (i.e.,
inner regular by compact) measures on X such that (u,(T )uen converges for every
regular open set T of X (i.e., for which T=T ), then (u,(A)),cy converges for
every Borel set 4 of X. This result was proved by P. Ginssler ([4] Theorem 3.1)
for real measures and by S. S. Khurana ([7] Theorem 4) for group valued measures.
It will be shown in this paper (Theorem 3) that, if X is completely regular, this
result can be improved by assuming only that (u,(T)),¢y converges for those regular
open sets T of X for which there exists a continuous real function f on X such that

{f=0ycTc{f=0}

(or equivalently T={f>0}); we denote the set of these sets T' by I. If the vector
lattice of continuous real functions on X is order g-complete, then T is exactly the
set of closed open sets of X and so the above formulation contains the corresponding
result of Z. Semadeni ([8] Theorem (i)=(iv)). Let % be the vector space of conti-
nuous bounded real functions on X endowed with the strict topology and E be a
quasicomplete G-space ([2] Definition 5.9.11). We show (Theorem 12) that a conti-
nuous linear map u:%—E is boundedly weakly compact (or equivalently possesses
an integral representation) if and only if the sets of T are sent into E by the biadjoint
map of u. The special case of E equal to the vector space of continuous real functions
on a metrizable topological space endowed with the topology of compact conver-
gence is discussed in greater detail (Theorems 15 and 16).

We use the notations and the terminology of [1] and [2]. The expression locally
convex space will mean Hausdorff real locally convex space. For every locally con-
vex space E we denote its dual and bidual by E’ and E”, respectively, and identify
E with a subspace of E” via the evaluation map

E—~E", x—{x,+).
For every continuous linear map u of locally convex spaces, u” and »” will denote
the adjoint and the biadjoint of u, respectively. N, Q, R denote the sets of natural
numbers, rational numbers, and real numbers respectively.

Throughout this paper we denote by E a locally convex space, by Y a completely
regular space, by X a subspace of ¥, by € the vector space of continuous bounded
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real functions on X endowed with the strict topology, by R the set of compact
sets of X, by R the o-ring of Borel sets of X, and by .# the band .# (R, R; K) of
A (R, R) ([2] Proposition 5.6.3)Y. For every subset 4 of X we denote its closure and
its interior in X by 4 and by 4, respectively, and we set®

T ={nX ]V exact open set of Y}.

For every set T of T there exists an exact open set ¥ of X such that T=V;
hence T is an open regular set of X. But it may happen that ¥ is strictly contained
in the set

{I7|V exact open set of X},

and this will make our results more general. This is the reason for the introduction
of Y.

Y will be called o-Stonian if the vector lattice of continuous real functions on ¥
is order g-complete. This is equivalent to the assertion that the closure of every exact
open set of Y is open ([2] Lemma 5.9.15 a<c). If Y is o-Stonian, then every set of
T is a closed open set of X.

Proposition 1. The set T is a base of X closed with respect to finite intersections
such that | J,c1 T,€X for every countable family (T),., in ¥.

Let x€X and let U be a neighbourhood of x in X. There exists a neighbourhood
V of x in Y such that VN XcU. Further, there exists a continuous real function
f on Y equal to 0 at x and equal to 2 on Y\ V. We set

W= {f<1), T:=WnX.

Then x€TcU and T<Z. Hence T is a base of X.
Let T’, T”€ZX. There exist exact open sets ¥/, V" of Y such that

T'=VnX, T'=VnX,
Weset T'=T"NnT", V:i=V’AV”. Then V is an exact open set of ¥ and

VaX =V nX)n(V"nX) c T.

Let U be a nonempty open set of X contained in 7. Since TCV’ nX, the set
UnV’nX is nonempty. Since TCV”n X, the set (UnV' nX)n(F”"nX) is also

D Let F be a complete vector lattice; a band of F is a vector subspace G of F such that:

x€F, y€G, x| =|yl=>x€G, x€F,x= V y=x€G.
GOy=x

2) An open set ¥ of Y is called exact if there is a continuous real function f on Y, such that

V={x€Y|f(x)>0}.
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nonempty. Hence TCVnX and we get
T=VoXex.

This shows that T is closed with respect to finite intersections.

Let (T),.; be a countable family in T. For every €/ there exists an exact
open set ¥, of Y such that T,=V,nX. We set V:=J,,¥,. Then V is an exact
open set of ¥ and

VaX=UFnX)c UT,c UVnXCcVnJX,
el el el

o o

T, =VnXecZ. O

€1

Proposition 2. Let K be a compact set of X and F be a closed set of X
such that K~ F=0. Then there exist disjoint sets T', T"€ X such that KcT’, FCT".
If X is normal and equal to Y, then we may take K closed.

There exists a continuous real function f on Y such that f=0 on K and f=2
on F. The sets {f<1}, {f>1} are exact open sets of ¥ and so the sets
T ={f=1nX, T’=1/=1nX
possess the required properties. [J
Theorem 3. The identity map
MR, G;R)z ~ M (R, G;R)

is uniformly ®4-continuous for every Hausdorff topological additive group G. If X
is normal and equal to 'Y then we may replace S by the set of closed sets of X.

Let € be the set of closed sets of X. We want to use Theorem 4.5.13 of [2] in
order to show that the identity map

MR, G R)z — MR, G; R)e

in uniformly @,-continuous. In fact, the hypotheses a), d), and e) of that theorem
follow from Proposition 2 and the hypotheses b) and c) from Proposition 1. By
[2] Proposition 4.5.6 the identity map

MR, G;K)e ~ MR, G; R)
is uniformly @,-continuous and so by [2] Corollary 1.8.5 the identity map

is uniformly ®3-continuous. [J
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Remarks 1. The assertion and the proof still hold if we replace R by a o-ring
of subsets of X containing T and & by the set of compact sets (closed sets if X is
normal and equal to ¥) of X belonging to R. This remark also holds for Corollary 4.

2. If Y is o-Stonian, then the sets of T are closed open sets of X. Hence the
above formulation has the advantage of unifying the corresponding results with
open regular sets ([2] Corollary 4.5.15) and with closed open sets ([2] Corollary 4.5.17).

Corollary 4. If E is quasicomplete, then ffd,uEEfor every (&, WEM™X M(E)

and the identity map
M(E)x ~ M(E)ur
is uniformly ®z-continuous.

By [1] Theorem 4.2.11, ijd,uEE for every (&, W)eM™ X M(E). By Theorem 3

the identity map
M(E)y ~ M (E)

is uniformly @;-continuous and the assertion follows from [2] Theorem 5.6.6. O

Proposition 5. We have:
a) ¢c ) LY(w;

peM

W:€ >R, fr[fdu

belongs to €’ for every ucM;
c) the map

b) the map

(M, M) ~C, p— W
is an isomorphism of Banach spaces ;
d) the map
u: M ~R, u—u()

belongs to M™ for every uc®€”;

e) the map
G - M, u—u

is an isomorphism of vector spaces.

The assertions follow from [5] Theorem 4.6 and Theorem 2.4 (iii) and [1]
Proposition 3.4.2b). O

Remark. We identify .# with ¢” and .4™ with ¢” via the above isomorphisms.

Theorem 6. The identity map (6')e—(€")¢» is uniformly ®g-continuous. If
Y is o-Stonian, then the identity map (6")y—(€")y. is uniformly &,-continuous.

By Theorem 3 the identity map #,—.# is uniformly ®;-continuous and so,
by [2] Theorem 5.6.6, the identity map A y—~.# ,. is uniformly &,-continuous.
By the above identifications the identity map (%");—~(%")y» is uniformly &,-con-
tinuous.
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Assume now Y is o-Stonian. Then every set of T is a closed open set of X and
therefore the identity map (%’),—(%’)y is uniformly continuous. Hence the iden-
tity map (€")y—~(€")» is uniformly @s-continuous. [

Remark. If X if o-Stonian (or, equivalently, % is order a-complete ([2] Lemma
5.9.15 a<b)), then (by taking ¥=X) the identity map (%"),—~>(%")4. is uniformly
&,-continuous.

Theorem 7. Every ®;-set of (¢'), and every ®,-set of (¥')y Iis equicontin-
uous.

Let A be a @4-set of (¢”)y. Since (¢")g; =4 , we deduce by [2] Theorem 4.2.16 c,
that there exists an increasing sequence (K,),cy in R such that

1
KIONK,) < 57

for every uc A and n€EN. Weset K_;:=0,

S I EKNK, (EN),

0 if X\U K,,
neN

U = {fe¥| f3l = 1).
Then % is a O-neighbourhood in 4. Let u€ A" and fe#. We have

g: X—-R,, t—

and

n—1

2
|ffdu|§gvan\K"_llfldlﬂlznezN 7 =1

Hence 4" is equicontinuous.

Assume now A" isa @;-set of (¥');. By Theorem 3 and [2] Theorem
1.8.4a=h, & is a ®s-set of (¥’)y, and so, by the above considerations, /4" is
equicontinuous. [

Corollary 8. Every boundedly weakly compact continuous linear map u:%4—~E
with respect to the Mackey topology of € is continuous with respect to the strict

topology of €.
Le 4’ be an equicontinuous set of E’. Since u is boundedly weakly compact,
W (€”)CE and so u’(A") is a relatively compact set of (%¢’),.. By Theorem 7,

u’(A’) is equicontinuous; hence u is continuous with respect to the strict topology
of 4. O

Remark. The following example®) will show that not every circled convex
compact ®,-set of (¢’), is equicontinuous, even if X is locally compact and normal.

*) This example appears in [3] Theorem 5.
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In particular, the strict topology on ¢ may be strictly coarser than its Mackey topol-
ogy. Let w, be the first uncountable ordinal number, X be the set w;,; endowed
with the usual locally compact topology

Vecwl|tcV=an<¢ {{Con<{(=¢& V)

and for every ¢€w, let d, be the Dirac measure on X at . Then X is locally com-
pact and normal and the circled convex closed hull of

{0, —0esalé€wy}
is a compact @, -set of (¢”),, which is not equicontinuous.

Corollary 9. The set {x'ou|x'€A’, p€ AN} is an equicontinuous set of €’
for every equicontinuous set A" of E’ and for every ®,-set N of M (E).

We show first that the map
A},EX/[(E) - M, (x/’ [1) i xlo.u

is continuous. Let (xj, )€ A’ X #(E) and let A€R and &>0. There exist a
0O-neighbourhood U in E such that |x"(x)|<e/2 for every (x’,x)€A’XU and a
neighbourhood ¥V of x; in A such that

(1o (A)) — x4 (1o (A))] < %

for every x’€V. Further, there exists a neighbourhood #” of p, in .# (E) such that

p(A)—po (AU
for every uc#. We get

X (1 (A) — o ()| + %’ (1o (A)) — x5 (10 ()|

X" op(A) — xgope (A)| =

€ &
=7t7 ¢
for every (x, p)€V'X#. Hence the map

AgX M(E) — M, (X', ) — x'ou
is continuous.

In order to prove the assertion of the corollary we may assume E complete.
Then 4" is a relatively compact set of . (E) ([2] Theorem 4.2.16 a)) and by the
above considerations {x’op|x’€A’, u€ A"} is a relatively compact set of .#. By
Theorem 7 this set is equicontinuous. [J

Proposition 10. Let E be quasicomplete and %,(%, E) be the vector space
of boundedly weakly compact continuous linear maps of € into E. We denote by

[ the map
€~ E, [ [fdu
for every pc. M (E). Then
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a) {filue N} is an equicontinuous set of %) (%, E) for every ®y-set N of M(E):
b) the map
M(E) -~ %y (%, E), n—#K

is an isomorphism of vector spaces;
c) for every pcM(E) the maps
E' -~%, x'—xou
€ ~E, &~ [tdu
are the adjoint and the biadjoint of ji and the map
@ ~E [ [fn
is uniformly ®4-continuous;

d) every ®,-set of %y(¥, E); is equicontinuous; in particular, if Y is a-Stonian,
then every ®,-set of %,(¥, E), is equicontinuous.

Let uc.#(E). By Proposition 5 a), @£ (u) and by [1] Theorem 4.2.11,
[fducE for every f€%.

a) Let A’ be an equicontinuous set of E”. By Corollary 9, {(xoulx’ €A, peN}
is an equicontinuous set of ¢”. Since 4’ is arbitrary, {ii|p€ A} is an equicontinuous
set of linear maps of & into E. By [1] Theorem 4.2.11 this set is contained in %(%, E).

b) It is obvious that the map

M(E) - %(€, E), p—P

is injective and linear. By [1] Proposition 4.3.9 a) this map is surjective.
¢) Let x’€E’. Then

@)D =x @) =x ([ fdu) = [fd&ow = on)(f)
for every f€% and so ji’(x")=x"ou. Hence
E' ~%, x'—xou
is the adjoint map of i.
Let ¢€4”=./". Then
(7 (©) ) = e[ (x) = EWop) = [Edon) = (f £du) )
for every x’€E’ and so j"(&)= f ¢dy. Hence ([1] Theorem 4.2.11)

¢ ~E, &~ [&dp
is the biadjoint map of .
By [2] Corollary 5.8.26, ¢ endowed with the order relation induced by R*¥
is an M-space. By [2] Corollary 5.7.7 the map

@)~ E, [ [fdu

is uniformly @,-continuous.
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d) Let 4 be a ®;-set of L (%, E).. By b) we may consider A4 to be a P;-set
of  (E) and so, by Corollary 4 and [2] Theorem 1.8.4 a=h, it is a @;-set of . (E).
Let A’ be an equicontinuous set of E’. By Corollary 9 there exists a 0-neighbourhood
% in € such that

([ ) = | fraem] =1

for every f€% and every (x’,u)€A’XA. Hence 4" is an equicontinuous set of
Z,(%, E).

If Y is o-Stonian, then every set of T is a closed open set of X, so every ®P;-set
of %(%,E), isa ®z-set of % (%, E); and it is equicontinuous by the above
considerations. [

Remark. The assertion b) was proved by A. Grothendieck ([6] Proposition 14)
for X compact.

Proposition 11. Let A” be a subset of E” such that the identity map E,—~E,,
is sequentially continuous, F be a G-space and u: E—~F be a continuous linear map
such that u”(A”)CF. If E possesses the strong DP-property, we have:

a) the map Ep.—F defined by u is uniformly ®4-continuous;

b) if in addition E possesses the D-property and F is quasicomplete, then u is
boundedly weakly compact.

a) Let A be the set of P,-sets of Eg, and B’ be the set of P;-sets of Fj.
Let B’¢®’. Since u”(A”)CF, the map F;—E/, defined by u’ is continuous and
so u'(B’) is a ®;-set of E,,. The map E, —Ep, being sequentially continuous,
u' (B’) is a @;-set of Ey, ([2] Proposition 1.5.4. a«<c) and so it belongs to A’. Hence
u' (B)cW and the map Ey —~Fy defined by u is continuous. Since E possesses
the strong DP-property, the identity map Eg.—E,, is uniformly &,-continuous.
Since F is a G-space, the identity map Fg —F is uniformly &,-continuous. Putting
together the above results we deduce by [2] Corollary 1.8.5 that the map Ez —~F
defined by u is uniformly &,-continuous.

b) Let (x,),.y be a weak Cauchy sequence in E. By a), (u (%), n 18 a Cauchy
sequence and so a convergent sequence in F. Since E possesses the D-property,
u is boundedly weakly compact. O

Theorem 12. Let E be a G-space and u: €—~E be a continuous linear map
such that (with the usual identifications) u”(1%)€E for every TE€Z (this condition
is automatically fulfilled if Y is o-Stonian). We have:

a) the map €, —~E defined by u is uniformly ®,-continuous;
b) if E quasicomplete, then u is boundedly weakly compact and there exists
a unique p€M(E) such that [ EducE for every €M™,

u(f) = Jfdu
for every f€¥, f
' (x)=x"op
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for every x'€E’, and
W@ = [édu

for every E€¥”.

By Theorem 6 the identity map (%');—~(%")¢» is uniformly @;-continuous.
By [2] Corollary 5.8.26, ¥ endowed with the order relation induced by R* is an
M-space and so by [2] Corollary 5.7.9 and Theorem 5.8.9 ) it possesses the strong
DP-property and the D-property. Hence by Proposition 11 the map %, —~E de-
fined by u is uniformly @,-continuous and u is boundedly weakly compact if E is
quasicomplete. The other assertions follow from Proposition 10.

If Y is o-Stonian, then every set of T is a closed open set of X and so 17€%
and u” (1) =u(1¥)€E forevery T€XT. O

Corollary 13. If Y is o-Stonian and € is a G-space, then every compact
set of X is finite and € is semi-separable.

Let K be a compact set of X and & be the Banach space of continuous real
functions on K. By Theorem 12 a) the identity map %4, —~% is uniformly &,-contin-

uous and 'so the map
Ce ~F, [—fIK

is also uniformly &®,-continuous. Let (f,),.5 be a weak Cauchy sequence in %.
Then, by the above result, (f,|K),.y is a Cauchy sequence and so a convergent
sequence. By [2] Corollary 5.8.26 and Theorem 5.8.9 a) the map

¢ ~F, ffIK

is boundedly weakly compact; hence the balls of & are weakly compact. We
deduce K is finite.

Let g be a positive real function on X such that {g=e} is relatively compact
for every ¢=0. Then {g=0} is countable. We denote by # the set of real func-
tions # on {g=0} such that {h>0} is finite and

h({g = 0p) c @n[-1,1].

Then # is also countable and for every h€# there exists an h'€% such that
|[W|=1 and W'=h on {h>0}. Then

{ah’|a€Q, heA#}

is countable and for every f€% and every ¢>0 there exist a€Q and h€s# such
that
sup (ah’ () —f () g(x)| < e.

Hence % is semi-separable. [
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Remark. Let § be a filter on N finer than the section filter of N and x be a
point not belonging to N. We set X:=NuU {x} and endow X with the topology

{Vc X|x€V=Vn NEF}.

Then X is a nondiscrete paracompact space. If & is an ultrafilter, then X is g-Stonian
and its compact sets are finite. If there exist two different ultrafilters &', §” on N
such that F=F N F”, then the compact sets of X are finite but X is not ¢-Stonian.

Proposition 14. Let Z be a topological space such that the neighbourhood
filter of every point of Z belongs to &,(2), let (u),cz be afamily in M (E) such

that the map
Z ~E, zw~p(T)

is continuous for every TEZ, and let E€M™ be such that [ Edu,€E for every z€Z.

Then the map
Z—~E z~— / éd“z
is continuous.

We may assume E complete. By Corollary 4 the identity map # (E)y .M (E) 4=
is uniformly @,-continuous and so ([2] Proposition 1.8.3) &,-continuous. By the

hypothesis the map
Z—~ M(E)z, z—p,

is continuous, and so the map
Z > M(E)urs Z— Y,

is &,-continuous. Since the neighbourhood filter of every point of Z belongs to
&,(Z), this map is continuous ([2] Proposition 1.3.6). This is exactly the assertion
that the map

Z~E, zw [¢dp,
is continuous for every £€#4". O
Theorem 15. Let Z be a Hausdorff topological space such that the neigh-
bourhood filter of every point of Z possesses a countable base, F be the vector

space of continuous maps of Z into E endowed with the topology of compact con-
vergence and (u,),c, be a family in M (E) such that the map

Z ~ E, Z’_':uz(T)

is continuous for every TE€ZX. If E is quasicomplete, we have:
a) & is quasicomplete;
b) there exists a unique p€. M (F) such that [EducF, [Edu,cE and

(fedn) () = [edn,

for every LEMT and zEZ;
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c) the map
€¢~7, [ [fdu
is continuous and boundedly weakly compact,
M~ F, & [Edp

is its biadjoint map and the map

Co ~ F, fr [fau
is uniformly ®4-continuous.
a) For every z€Z let {, be the map

F ~E, f—f(2)

and let § be a Cauchy filter on & possessing a bounded set of &#. Then ¥,(&)
converges for every z€Z. We set

fi Z—~E, z—Ilimy,(F).

The restriction of f to every compact set of Z is continuous. Since the neighbourhood
filter of every point of Z possesses a countable base, f is continuous. It is easy to
see that § converges to fin &#. Hence & is quasicompact.

b) Bya) and [1] Proposition 4.2.11, [éducF and [Edu.€E for every E€.M™,
ueM(F), and z€Z. By [2] Proposition 1.5.31 the neighbourhood filter of every
point of Z belongs to @,(Z) and so, by Proposition 14, the map

Z~E, z— [¢dy,
is continuous for every &€.#". We set

wd): Z - E, zwp,(4)
for every A€R and
w: R~ F, A~ pd).

By [2] Theorem 4.6.3b) pc.# (R, #; K), and by [2] Proposition 5.6.3
MR, F;R8) = MF).
Let z€Z and x’€E’. We set
o: F >R, [—x(f(2))
The function ¢ is a continuous linear form and
pou(d) = x'(u(4)(2)) = x' (1. (4)) = x'op,(A)

tor every A€R and so @ou=x"opu,. Let £€.4™. We have
X((fedn)@) = o([edn)= [edpop) = [¢dop) =x'(f¢dp,)
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Since x’ is arbitrary, we deduce
(fedu)2) = [édp,.
The unicity of p is trivial.

c) follows from a) and Proposition 10. [

Theorem 16. Let E be semi-separable, Z be a locally metrizable topological
space, F be the vector space of continuous maps of Z into E endowed with the
topology of compact convergence and u: € —~% a continuous map such that (with
the usual identifications) u”(1¥)€F for every T€ZX. We have:

a) the map €,—~% defined by u is uniformly ®,-continuous;

b) If E is quasicomplete, then u is boundedly weakly compact and there exist
uniquely a puc M (F) and a family (4,),cz in M(E) such that

u(f) = [fdu, (M) = [fdp.,
W@ = [Edu, (W ©)e) = [Edp,
for every f€¥, €€’ and z€Z.
By [2] Proposition 5.9.30, & is a G-space and, by Theorem 15a), it is quasi-
complete if E is quasicomplete. By Theorem 12 the map %, —% defined by u is
uniformly @,-continuous, and if E is quasicomplete, then there exists a unique

HEM(F) such that
u(f) = [fdu

W@ = [edu
for every f€¥ and (€%”. Let z€Z and let v be the map

€~ E, f(u(f)(.

Then v is a continuous map such that v”(1¥)€E for every T€ZI. By the above
considerations there exists a unique u,€.# (E) such that

o(f) = [fdu,

and

for every f€%. We have
[fau. = v(f) = (N = ([ fdu) 2)

for every f€% and so
1 (4) = (1) ()
for every AE€R and
[édu, = (f¢du)(2) = (W ©) ()
for every £€¥”. O
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