
NONVANISHING UNIVALENT FUNCTIONS III

PETER DUREN and GLENN SCHOBER

In two previous papers [3, 4] we studied the class Sq of functions / analytic,

univalent, and nonvanishing in the unit disk D, with /(0): l' Among other things we

investigated coefficient problems and the qualitative properties of support points.

Here we continue this work with several new results. First we make the surprising

observation that the asymptotic form of Littlewood's coefficient conjecture actually

implies Littlewood's conjecture. Turning next to support points, we show that the

arc f omitted by a support point of ,So is always asymptotic to a line at infinity.
Essentially the same argument gives the corresponding result for the Montel class M,
of functions/analytic and univalent in D with 

"f(0) 
:0 and f(r\ : 1, where 0< r< 1.

Finally, we show for the Montel class that if .l- has a maximal hyperbolic angle of nl4
at its tip, then under suitable restrictions it must be a half-line.

1. The Littlewood conjecture

Littlewood's conjecture, apparently weaker than the Bieberbach conjecture, was

originally formulated for the class S of functions/analytic and univalent in D with

,f(0):0 and /'(0):1. Itassertsthatif afunction f(z\:z*c222*... in Somitsa
value crr, then lc,l=4laln. As observed in [3], an equivalent formulation is that

laol=4n for functions f(z):lIarz*a222*... in So. The conjectured extremal

functions are rotations of the Koebe function

ks(z) : (E)' : ta4 )i,nzn.

The asymptotic Littlewood coniecture is that
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ligs;rn ! 4 - 4, where An: 
;åg, 

lanl.

Although this second form of the conjecture is apparently

that the two are equivalent.

Theorem 1. The asymptotic Littlewood conjecture implies

jecture.
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The proof depends upon a slight variant of a lemma which Nehari [7] used to
show that the asymptotic Bieberbach conjecture implies Littlewood's conjecture.
(See also [], p. 67.)

Lemma. I.f f(So, then the two functions

F1 (z) : 2f (z') - t X2 {.f (zz)lf (zz) - 1l\1 12

also belong /o So.

Proof of Theorem.In view of the identity

f(2,) : i + i tr*{') * F-(z)],
the lemma tells us that

la,l = +lAr,* Az,l: * Ar,,

so that Ao=Arnl2. Iterating this inequality, we obtain

An= 2-kAzuo, k:1,2, ....

Thus if the asymptotic Littlewood conjecture is true, we can deduce that

11
;A" = ligsun 19 Azu,:4,

or An=l,n for n:1,2,..., which is the Littlewood conjecture.

Because Hamilton [4] has shown that Littlewood's conjecture implies the asymp-
totic Bieberbach conjecture, it is a corollary that the asymptotic Littlewood conjec-

ture is equivalent to the asymptotic Bieberbach conjecture.

2. Asymptotic halfJines

A support point of Sris a function which maximizes Re {Z} for some continuous
linear functional L not constant on So. We showed in [3] that each support point/
maps D onto the complement of a single analytic arc I which extends from 0 to -
monotonically with respect to the family of ellipses with foci at 0 and l, and which
satisfies the differential equation

(1) @(w) ffi=o, where @(w) -L(#)
We found also that f makes an angle of less than nl4witheach of the confocal hyper-
bolas it meets. This angle is called the hyperbolic angle of l.It is well defined at each

nonzero point on .l-, because there is a unique hyperbola with foci at 0 and I which
meets I at this point.

We left open the question ([3], p. 205) whether f(fff-t))+O, or equivalently
whether the quadratic differential has a simple pole at infinity. We now give an affir-
mative answer and deduce that f has an asymptotic half-line at infinity.
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" 
Theorem 2. Let FCS' be o support point which maximizes Re {Z} for some

continuaus linear functional L. Then L(f(f-l))+0. Furthermore, the arc I omitted

by f is asymptotic to the halfJine

(2) w -+ tt .ffi-r,(rtr- r))t, t = o,

at infinity.

Proof. To show that L(f(f-1))#0 we use the variation at infrnity introduced

by Schiffer [8] for the corresponding problem in S. We shall refer to the description

of the method as it appears in [], pp. 307-310. The quadratic differential (l) which

determines f has a simple pole, a regular point, or a zero of finite order at i"finlty.
It follows that f has an asymptotic direction at infinity: sgn w-ei6 as w+- along

f. Now truncate f to a subarc .l'n by removal of a section near the tip. Exactly as in

[1], form the function
u(@; Q, a) : a*ZZrcn(q, a)a",

which is analytic and univalent on the complement of a radial magrrification of fn.
As in [], the asymptotic property of l- allows an application of the Carath6odory
convergence theorem to show that

u(a; Q, a) * k,(kit(a)): a+Z7rc,(a)a",

uniformly on compact subsets of lol=1f4, as Q*-. Here k" is the rotated Koebc

function k,(z):711 -ei"z7-', and f :n-o. Thus c,(p,a\-c,(a), n:2,3,..'.
The function

v (w) : v (w ; Q, a) : qu (w I q ; Q, d) : w * )f=rb nw", bo : cn(Q, a) Qt-',

isanalyticandunivalentonC-f nandinparticularonthe rangeof f. Also Z(0):0,
and so V(l)*0. Thus the function U(w):V(w)lV(l) is analytic and univalent on

the range of / with U(0):g *6 U(l):l. It follows that Jf*:UofiSo, so

Re {z(/*)}=ne G,(/)}.
The function O in (l) has the expansion

@,(w) : z:=, L(f" (r -fl)r-'
near infinity. Because i|(w)70, not all of the coefficients can vanish. Suppose

t(ftt-l)):o for n:1,2,...,ffi-2 bfi L(f-t(t-f\)+0. In other words,

L(f) - L(f ') 3.. .- L(f^-t) + L(f*), m > 3.(3)

On the other hand

L (f.) - t1 + Z:=, b,I-' {L (f) + Z;=z b nL (f")},

L(f*)- L(f) - {1 + z;=rb,}-' z!^bnlL(f")- L(fl]
and so
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under the assumption (3). Now multiply by q-- t and let e * - to conclude from the
extremal property of f that

(4) Re {c.(a)[z(/')-z(/)]] = 0.

The rest of the proof proceeds exactly as in [1]. With suitable choices of a we can

conclude from (4) that L(f^)-L(f):0, contradicting our assumption. (It is here

that the condition m>3 is used.) Thus L(f(f-l))+O.
We can now show that f is asymptotic to the halfJine (2) at infinity. It is con-

venient to write
@(w) : Z]tdnw-", o": f(f"(t-f)).

We have shown that ur*0. Let l- be given a parametruation w:w(t), 0<t<7,
such that w(t)*- as /*0 and the differential equation (l) has the form

#aot(ff)':t
The transformation w:u-2 then carries -l' to an analytic curve

0: pJ+Bsf-l ..., -T < t < T,

through the origin which satisfies

4 ( do\z

4qo(ttu,)\fi):t,
or

(a1*(a1 *cz) P?t' + ...)(P?+6frLPst2 +...) : +.
Equating coefficients, we find

(5) o,ffi : *, @t+dz) pl+6qp,p, : o.

Observe now that

w: t)-2: ),t-z.t'p*o(tz), t *0,
where

l: fl|, p:-2fl'f".
This means that .l' is asymptotic to the half-line

w-p*)"s, s-0,
at infinity. The equations (5) give

).:4ar, rr: +(t.ä)
Thus the asymptotic half-line has the form (2), and the proof is complete.
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3. The Montel class

Very little is changed if instead of So we consider the Montel class M, of func-

tions / analytic and univalent n D with ./(0):0 and f(r):l. Both classes are

preserved under composition with univalent functions which fix both 0 and 1. The

variation developed in [3] for Su therefore applies also to M,. The same considera-

tions show that each support pointf of M,, maximizing Re {Z} for some continuous

linear functional L, must map D onto the complement of an analytic arc I which

again satisfies the differential equation (1). Furthermore, f is monotonic with re-

spect to ellipses with foci at 0 and 1, the only difference being that l- now extends

from a point w6l0 to infinity. An omitted-value transformation allows us to
deduce, exactly as in the case of So, that Re {<D(w)}=0 for all points w*wo on f ,

so that .f has hyperbolic angle less than nf4 except perhaps at its tip.
Furthermore, the variation at infinity used in the proof of Theorem 2 applies

equally to M,, because again it consists of composition with univalent functions

fixing 0 and l. We conclude that L(fQf-l))+O for support points f<M,, and that
the omitted arc f is asymptotic to the half-line (2) at infinity.

4. Maximum hyperbolic angle

For the arcs.f omitted by the support points of the Montel class, it is not known

whether the bound nl4 on the hyperbolic angle is best possible, or whether a hyper-

bolic angle of nl4 can be realized at the terminal point wo. fn analogy with the in-

vestigation [2] of the corresponding problem for the class S, we shall now show

under mild additional assumptions that this cannot happen unless -l- is a half-line.

We begin with the following theorem.

Theorem 3. Let f be a support point of M, maximizing Re {Z}, and suppose

that its ornitted arc I has a hyperbolic angle ofnl4 at its tip ws. Thm in addition

to (l) the arc I satisfies the differmtidl equation

(6) wo(wo- 1) 
o(w)-o(yo) /*' .= > o.(w-wo)' w(w-1)

Proof.In view of the differential equation (1), the hypothesis of maximal

hyperbolic angle is equivalent to supposing that Re {@(wo);:O. (See [3], p.20a.)

By the linearity of L, it then follows that Re {Z(/)}:Re {Z(g)}, where

(t _ wJ{,_6iyt,.
. ö-: 

r:-wo
Thus g is also a support point so its omitted arc F satisfies-

(7) v(a)4 ^ = o, Y(a) :" [3glr_, )
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We shall see that this equation for F can be transformed to the second differential
equation (6) for f. By the definition of g, the mapping

(8)

sends l- to .F. The identity
(1 -ar)g _ (r-w)f
s- @ f'-w

is easily verified. Note also that

(1 - wo) lv
!.r\t 

- w -wo

and

These relations give

@(wJ - L(H) : LV-s): a@)-y(c,,),

so that Y(a)- O(w)-iD(w). Also, a calculation based on (8) gives

daz _ wo(wo- 1) dwz

o(ro-l) - (w-wo)' w(w-1)'

Substituting these expressions into (7), we obtain (6), and the proof is complete.
If @(wo):Q, we can divide (t) bv (6) to obtain

ffi =0, w(f, w *wo.

This implies that f is a half-line.
For the case ofa point-evaluation functional

LA : 
"-t"f(O, 

(€D, ( * o, r,

we find in a similar ntanner that Re {O(wo;;:g implies

#+(w-w) > o' w(r' w =t wo'

where B:/(Q. Thus f is a halfJine. It must therefore coincide (near infinity) with
its asymptotic half-line (2), which takes the form

w: + @+1)- e-io B(B-l)t, r > o.
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The general case cannot be handled so easily. We shall assume that L is a func-

tional of rational type, meantng that L(f (f-t\lU-w\) is a rational function of w
for each f(M,. Our result is again analogous to that obtained in [2] for the class S.

Theorem 4. Let L be a continuous linear functional of rational type, not

constant on the Montel space Mr. Let f maximize Re p) ol:er M, and suppose

thatthearc f omittedby f hasahyperbolicangleof nl4 atitstip. Supposefurther

that iL(w):L(f(f-Dl(f-r)) has no simple zero at O or I and no double zero

elsewhere. Then f is a halfJine

Proof. We shall use the method introduced in l2l, with some of the details

omitted because the reasoning is quite similar. We may assume that Q(w)+O,
because (as noted above) the theorem is true if @(wo):g. Let zo and z, be the

points on the unit circle where f(zo):wo and f(tt):-. By Theorem 3, the arc

l- satisfies both (1) and (6). A standard argument (cf. [2]) allows us to conclude

that w:f(z) satisfies the two differential equations

(e)

an{d

(10)

(1 1)

where Q and Ä are rational functions. Apart from double zeros of Q at z, and of
R at zr, both functions are real, negative, and finite on the unit circle. (By Theorem 2,

@hasasimplezeroatinfinity.)Equation(10)shows that iD'(w)10, since R(z)*O.
Dividing (9) by (10), and recalling that iD is rational, we see that/is an algebraic

function satisfying

(w - wo)'A (w)

@(w) -a(wo)
: wo(wo- D#, w --f(z)-

But i|(wo)+0 and @'(wr)10, so (11) has the form

ffi f'-wo) +o((w-wo)') : o((z - zo))

near the point (zr,wo\(C'. Thus the equation (11) has a unique local solution

w:F(z) such that F(z)-yto. In particular, F is an analytic continuation of /
to a full neighborhood of zo.

The ditrerential equations (9) and (10) give a simultaneous global analytic
continuation of f to a possibly multiple-valued algebraic function F which satisfies

(ll). In order to prove that Fis rational, we have only to show that it is single-

valued. For this it suffices to show that F(zo):wo in every sheet of the continuation.
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By what we observed above, this will show that ur every analytic continuation along
a closed path beginning at zo and ending at the same point, F will return to its initial
function element.

If some continuation produces a value F(zo)#ws, then the algebraic function
F has one of the two local structures

(r2)

(13)

w - F(z) : wL*c(z-zo)o *..., c * 0, x, > 0, wL * wo)

w - F(z) - c(z- zo)-o +..., c * 0, ,a > 0.

In each case .F must be a local solution to both differential equations (9) and (10).

Suppose first that F has the local form (12) with wr:0. If @ has a zero of
order n>l at the origin, then (9) gives u:4f(ntl), while (10) implies a:2.
Thus n:l and @ has a simple zero at the origin, contrary to hypothesis. If @ is

analytic at the origin and @(0)*0, then (9) gives a:4 while (10) gives a=2. lf
@ has a pole of order m>l at 0, then (9) gives (l-m)a:4, which is impossible.

Next supposethat F has the local form (12) with wt:|. If @ has azero of
order n>l at l, then (9) gives a:41(n*l) while (10) gives a:2. Thus n:l
and @ has a simple zero at 1, contrary to hypothesis. If @ is analytic at I and O(l)+0,
then (9) gives c:4 while (10) gives a<2. If @ has a pole of order m>l at l,
then (9) gives (l -m)u:4, which is impossible.

Suppose now that lr has the local form (12) with w1*0,1, wo. If Q has a zero

of order n>l at rr, then (9) gives a:41@*2) while (10) gives oc: l. Thvs n:2,
contradicting our hypothesis that @ has no double zero except perhaps at 0 or 1.

If @ is analytic atw..and iD(wt)*0, then (9) gives c:2 while (10) gives c<1.
If @ has a pole of order m>l at wr, then (9) gives (2-m)a:4 while (10) gives

(2-m)a:2.
Finally, suppose that Fhas the local form (13). Then since @ has a simple zero

at infinitJ, (9) gives q:4 while (10) gives a:1. (Theorem 2 is used here.)

Having eliminated all cases to the contrarY, w€ have now shown that F(zr):vto
in every continuation. Thus F is single-valued and is therefore a rational function.
In other words, the support point/is a rational function which maps D univalently
onto the complement of an analytic arc f extending to infinity. But as Srebro [9]
has shown, this implies that f is a halfline. This completes the proof.
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