Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 155–162

MÖBIUS AUTOMORPHISMS OF PLANE DOMAINS

TIMO ERKAMA

1. Introduction

Let D be a domain on the Riemann sphere $C \cup \{\infty\}$, and let Aut (D) be the group of biholomorphic automorphisms of D. We say that a subgroup G of Aut (D) is *discontinuous* if for each $z \in D$ the orbit $\{g(z); g \in G\}$ has no accumulation points in D. By a classical theorem Aut (D) is discontinuous if and only if the fundamental group of D is not abelian.

Let Möb (D) be the group of all biholomorphic automorphisms of D which are restrictions of Möbius transformations. If Aut (D) is a discontinuous group, then it is clear that the subgroup Möb (D) is also discontinuous. However, the converse is not true. In this paper we classify all domains D having a non-discontinuous group of Möbius automorphisms. Partial results in this direction appear in [1] and the special case Möb (D)=Aut (D) has also been studied by Minda [7]. The author is grateful to Professor Olli Lehto for stimulating his interest in this research.

Examples. (a) If D is the sphere $C \cup \{\infty\}$, the plane C or the punctured plane $C^* = C \setminus \{0\}$, then Möb (D) is not discontinuous. In fact, Möb (D) then contains all rotations $z \rightarrow xz$ with |x|=1. These rotations are in Möb (D) also if D is the unit disc $U = \{z; |z| < 1\}$, the punctured unit disc $U^* = U \setminus \{0\}$ or an annulus

$$\{z; r_1 < |z| < r_2\}.$$

(b) If D is a horizontal strip $\{z; y_1 < \text{Im } z < y_2\}$, then Möb (D) contains all translations $z \rightarrow z+b$, where b is real.

(c) Let $D = \{z \in C^*; \theta_1 < \arg z - \alpha \log |z| < \theta_2\}$, where α is a real constant and $0 < \theta_2 - \theta_1 \le 2\pi$. If $\alpha = 0$, then Möb (D) contains all homotheties $z \rightarrow az$ with a > 0. If $\alpha \ne 0$, then the boundary of D consists of one or two spirals, and D is invariant under the action of a one-dimensional group of loxodromic transformations $z \rightarrow e^{(1+\alpha i)t} z$, where t is a real parameter.

Suppose that h is a Möbius transformation which maps D onto a domain D'. Then the elements of Möb (D') are of the form $h \circ \varphi \circ h^{-1}$, where $\varphi \in \text{Möb}(D)$. It follows that Möb (D') is discontinuous if and only if Möb (D) is discontinuous. In particular, if h maps D onto one of the domains mentioned in the above examples,

Timo Erkama

then Möb (D) is not discontinuous. The following theorem shows that the converse is also true.

Theorem 1. Suppose that M"ob(D) is not discontinuous. Then there exists a Möbius transformation which maps D onto one of the domains described in examples (a), (b) and (c).

The proof of Theorem 1 is elementary if D has at most two boundary points, for then there exists a Möbius transformation which maps D onto $C \cup \{\infty\}$, C or C^* . Thus we may assume that D has more than two boundary points. Since Möb(D) is not discontinuous by hypothesis, the fundamental group of D is abelian. It follows that D is conformally equivalent to a disc, a punctured disc or an annulus.

Theorem 1 will be proved in Sections 2 and 3. In Section 2 we consider domains conformally equivalent to a disc; the proof in this case depends on a characterization of discontinuous groups acting in the upper half plane (Theorem 2). Section 3 is devoted to the doubly connected case. Finally, in Section 4 we characterize domains D such that Möb (D) acts transitively on D.

It is important to note that Aut (D) is a topological group. A subset S of Aut (D) is *closed* if it contains the limit of every sequence of S converging to an element of Aut (D) uniformly on compact subsets of D. A well-known property of Möbius transformations [6, p. 73] implies that Möb (D) is a closed subgroup of Aut (D).

2. Simply connected domains

Let Γ be the group of all sense-preserving Möbius transformations mapping the upper half plane $H = \{z; \text{ Im } z > 0\}$ onto itself. We shall identify Γ with the group Aut (H) of biholomorphic automorphisms of H. In particular, a subgroup of Γ is discontinuous if it is discontinuous as a subgroup of Aut (H).

If $g \in \Gamma$ is not the identity of Γ , then g is called *elliptic, parabolic* or *hyperbolic* according as g has 0, 1 or 2 fixed points on the boundary ∂H of H. It is clear that the classes of elliptic, parabolic and hyperbolic elements of Γ are invariant under inner automorphisms of Γ .

For $\zeta \in C \cup \{\infty\}$ we denote by Γ_{ζ} the isotropy group of ζ in Γ . Thus Γ_{ζ} consists of elements $g \in \Gamma$ such that $g(\zeta) = \zeta$. More generally, if A is a subset of $C \cup \{\infty\}$, we denote by Γ_A the set of elements $g \in \Gamma$ such that gA = A. A subgroup G of Γ is *elementary* if there exists a nonempty set A containing at most two points such that $G \subset \Gamma_A$.

The following elementary subgroups of Γ are of particular interest. An *elliptic* continuum is of the form Γ_{ζ} for some $\zeta \in H$; it contains all elliptic elements $g \in \Gamma$ such that $g(\zeta) = \zeta$. A subgroup of Γ is a parabolic continuum if it is conjugate to the subgroup of all translations $z \rightarrow z+b$ where b is real. A hyperbolic continuum is of the form $\Gamma_{\zeta} \cap \Gamma_{\zeta'}$, where ζ and ζ' are distinct points of ∂H . Equivalently, a

hyperbolic continuum is a subgroup of Γ which is conjugate to the group of homotheties $z \rightarrow az$ with a > 0. It is clear that all proper closed subgroups of an elliptic, parabolic or hyperbolic continuum are discontinuous.

We shall need the following result which is related to a theorem of Jørgensen [4, Theorem 2].

Theorem 2. A closed subgroup of Γ is discontinuous if and only if it does not contain any elliptic, parabolic or hyperbolic continua.

Proof. The necessity is obvious because a subgroup of Γ is never discontinuous if it contains a continuum. For the sufficiency, assume that G is a closed subgroup of Γ and that G is not discontinuous. We have to prove that G contains at least one elliptic, parabolic or hyperbolic continuum.

Suppose first that G is elementary. Then there exists a nonempty set A containing at most two points such that $G \subset \Gamma_A$.

If A contains two distinct points ζ and ζ' , then Γ_A contains $\Gamma_{\zeta} \cap \Gamma_{\zeta'}$ as a subgroup of finite index. Since G is not discontinuous and $G \subset \Gamma_A$, it follows that $\Gamma_{\zeta} \cap \Gamma_{\zeta'}$ is an elliptic or hyperbolic continuum and that $G \cap (\Gamma_{\zeta} \cap \Gamma_{\zeta'})$ is not discontinuous. Since all proper closed subgroups of $\Gamma_{\zeta} \cap \Gamma_{\zeta'}$ are discontinuous, we conclude that $G \supset \Gamma_{\zeta} \cap \Gamma_{\zeta'}$. Hence G contains an elliptic or hyperbolic continuum.

In the remaining case G is not contained in any subgroup $\Gamma_{\zeta} \cap \Gamma_{\zeta'}$ with $\zeta \neq \zeta'$. It follows that $A = \{\zeta\}$, where ζ is the only common fixed point for elements of G. Hence $\zeta \in \partial H$, so that G contains no elliptic elements.

If G contains no hyperbolic elements, then it is clear that G is the parabolic continuum contained in Γ_{ζ} . If G contains a hyperbolic element, then G contains also parabolic elements because otherwise G would be contained in a hyperbolic continuum [1, Lemma 3.2 (b)]. Let p and h be parabolic and hyperbolic elements of G, respectively, and suppose that ζ is the attractive fixed point of h. If k is a positive integer, then $p_k = h^{-k}ph^k$ is a parabolic element of G, and a computation shows that the sequence $\{p_k\}$ converges to the identity of G as $k \to \infty$. Hence G contains infinitesimal parabolic elements of Γ_{ζ} .

Finally, suppose that G is non-elementary. In [4] it is shown that a non-elementary subgroup of Γ is discontinuous if it does not contain elliptic elements of infinite order. Since G is not discontinuous, it follows that at least one elliptic element $g \in G$ is of infinite order. The smallest closed subgroup of Γ containing g is an elliptic continuum. Since G is closed, this elliptic continuum is contained in G. The proof of Theorem 2 is now complete.

We wish to apply Theorem 2 to the proof of Theorem 1 in the case of a simply connected domain D with more than two boundary points. In the remainder of this section F denotes a fixed conformal mapping from H onto D.

There is a bicontinuous isomorphism F_* from Aut (D) onto Aut (H) such that $F_*(\varphi) = F^{-1} \circ \varphi \circ F$ for each $\varphi \in \text{Aut}(D)$. Let G be the image of Möb (D)

under F_* . Since Möb (D) is a closed subgroup of Aut (D), G is a closed subgroup of Aut (H). Furthermore G is not discontinuous, because Möb (D) is not discontinuous by hypothesis.

By Theorem 2 we have an elliptic, parabolic and hyperbolic case according as G contains an elliptic, parabolic or hyperbolic continuum. We now show in each case that the assertion of Theorem 1 follows.

Elliptic case. In this case G contains an elliptic continuum; hence there exists $\zeta \in H$ such that $G \supset \Gamma_{\zeta}$.

Let h be a conformal map from the unit disc U onto H such that $h(0) = \zeta$. It suffices to prove that $f = F \circ h$ is the restriction of a Möbius transformation, because then the inverse of f is a Möbius transformation mapping D onto U.

Suppose $\varrho \in \operatorname{Aut}(U)$ and $\varrho(0)=0$. Then $h \circ \varrho \circ h^{-1}$ is in Γ_{ζ} . Since $\Gamma_{\zeta} \subset G$, there is $\varphi \in \operatorname{M\"ob}(D)$ such that $h \circ \varrho \circ h^{-1} = F^{-1} \circ \varphi \circ F$; hence

(1)
$$f \circ \varrho = \varphi \circ f.$$

As in [1, p. 22], we shall use properties of the Schwarzian derivative

$$Sf = \left(\frac{f''}{f'}\right)' - \frac{1}{2}\left(\frac{f''}{f'}\right)^2$$

of f. Above all, f is the restriction of a Möbius transformation if and only if $Sf \equiv 0$. Since ρ and ϕ are restrictions of Möbius transformations, it follows from (1) that

$$(Sf \circ \varrho)(\varrho')^2 = Sf.$$

On the other hand, ϱ is a rotation $z \rightarrow xz$ where $x \in C$ and |x| = 1, so that

(2)
$$Sf(xz)x^2 = Sf(z) \quad (z \in U, |x| = 1).$$

For a fixed $z \in U$, the left side of (2) is a holomorphic function of x in the domain $\{x \in C; xz \in U\}$ and assumes the constant value Sf(z) on the unit circle. Thus (2) holds by analytic continuation for every x with $xz \in U$, and the substitution x=0 yields Sf(z)=0. We conclude that f agrees in U with a Möbius transformation.

Parabolic case. In this case there exists $\zeta \in \partial H$ such that G contains all parabolic elements of Γ_{ζ} . For any $h \in \Gamma$ with $h(\infty) = \zeta$ the composite $f = F \circ h$ is defined in H and maps H conformally onto D. As in the elliptic case it suffices to show that $Sf \equiv 0$ in H.

Let $\tau \in \Gamma$ be a translation $z \to z+b$ where b is real. Then $h \circ \tau \circ h^{-1}$ is a parabolic element of Γ_{ζ} ; hence there exists $\varphi \in \text{M\"ob}(D)$ such that $h \circ \tau \circ h^{-1} = F^{-1} \circ \varphi \circ F$ or

$$f \circ \tau = \varphi \circ f.$$

Taking Schwarzian derivatives of both sides yields

$$Sf(z+b) = Sf(z) \quad (z \in H, b \in R).$$

158

Thus Sf assumes a constant value on straight lines parallel to the real axis. Since Sf is holomorphic, it follows that $Sf \equiv c$, where c is a complex constant.

For $c \neq 0$ the solutions of the differential equation $Sf \equiv c$ are of the form $f = g \circ f_0$, where g is a Möbius transformation and $f_0(z) = e^{az}$ for some $a \in C^*$. Such solutions fail to be one-to-one in the upper half plane. In the present situation, however, $f = F \circ h$ is one-to-one in H. Hence c = 0, and the proof of the parabolic case is complete.

Hyperbolic case. Since G contains a hyperbolic continuum, there exist distinct points $\zeta, \zeta' \in \partial H$ such that $G \supset \Gamma_{\zeta} \cap \Gamma_{\zeta'}$. Choose $h \in \Gamma$ so that $h(0) = \zeta$ and $h(\infty) = \zeta'$. Then $f = F \circ h$ maps H conformally onto D. We shall prove that D = fH can be mapped by means of a Möbius transformation onto a horizontal strip or onto a domain of the form

(3)
$$\{z \in C^*; \theta_1 < \arg z - \alpha \log |z| < \theta_2\},$$

where $0 < \theta_2 - \theta_1 \leq 2\pi$.

Let $\sigma \in \Gamma$ be a stretching $z \to az$ where a > 0. Then $h \circ \sigma \circ h^{-1}$ is in $\Gamma_{\zeta} \cap \Gamma_{\zeta'}$; hence there exists $\varphi \in \text{M\"ob}(D)$ such that $h \circ \sigma \circ h^{-1} = F^{-1} \circ \varphi \circ F$ or

$$f \circ \sigma = \varphi \circ f.$$

By taking Schwarzian derivatives again it follows that

(4)
$$Sf(az)a^2 = Sf(z) \quad (z \in H, a > 0).$$

For a fixed $t \in H$, the left side of (4) is a holomorphic function of a in the domain $\{a \in C; az \in H\}$ and assumes the constant value Sf(z) on the positive real axis. Thus (4) holds by analytic continuation for all values of a such that $az \in H$. The substitution w = az yields

$$Sf(w)w^2 = Sf(z)z^2.$$

Since this holds for each $w \in H$, we conclude that f satisfies in H the differential equation

$$(5) Sf(z)z^2 = c,$$

where c is a complex constant.

The solutions of (5) are of the form $f=g \circ f_0$, where g is a Möbius transformation and either $f_0(z) = \log z$ or $f_0(z) = z^*$ for some $\varkappa = \gamma + i\delta \in C^*$. If $f_0(z) = \log z$, then f_0H is a horizontal strip and g^{-1} maps D onto this strip. If $f_0(z) = z^{\gamma+i\delta}$, then $\gamma \neq 0$, because $f=F \circ h$ is one-to-one in H. In this case f_0H is a domain of the form (3), where $\alpha = \delta/\gamma$ and the interval $[\theta_1, \theta_2]$ has 0 and $\gamma \pi (1 + \alpha^2)$ as its endpoints. Hence g^{-1} maps D onto a domain of the form (3). Note that $\theta_2 - \theta_1 \leq 2\pi$, because otherwise (3) would agree with C^{*} which is not a simply connected domain.

The proof of the simply connected case of Theorem 1 is now complete.

3. Doubly connected domains

We have proved Theorem 1 so far for domains D which are simply connected or have only two boundary points. As pointed out in the Introduction, it remains to consider the case of a domain D which is conformally equivalent to a punctured disc or an annulus. In this section f denotes a conformal map from the domain

$$R = \{ z \in C; r_1 < |z| < r_2 \}$$

onto D. We may assume $0 \le r_1 < r_2 < \infty$.

Just as in the simply connected case there is a bicontinuous isomorphism f_* from Aut (D) onto Aut (R) such that $f_*(\varphi) = f^{-1} \circ \varphi \circ f$ for each $\varphi \in \text{Aut}(D)$. Since Möb (D) is a closed and non-discontinuous subgroup of Aut (D), f_* maps Möb (D) onto a closed and non-discontinuous subgroup G of Aut (R).

The identity component $\operatorname{Aut}_0(R)$ of $\operatorname{Aut}(R)$ is a subgroup of finite index in Aut (R) and consists of rotations $z \to xz$, where |x|=1. Since G is not discontinuous, it follows that $G \cap \operatorname{Aut}_0(R)$ is dense in $\operatorname{Aut}_0(R)$. Hence $G \supset \operatorname{Aut}_0(R)$, because G is closed.

Suppose $\varrho \in \operatorname{Aut}_0(R)$; since $\operatorname{Aut}_0(R) \subset G$, there exists $\varphi \in \operatorname{M\"ob}(D)$ such that $\varrho = f^{-1} \circ \varphi \circ f$. Hence $f \circ \varrho = \varphi \circ f$, and taking Schwarzian derivatives yields

(1)
$$Sf(xz)x^2 = Sf(z) \quad (z \in R, |x| = 1).$$

For a fixed $z \in R$, the map $x \to Sf(xz)x^2$ is holomorphic in the domain $\{x \in C; xz \in R\}$ and assumes the constant value Sf(z) on the unit cirle. Thus (1) holds by analytic continuation for all values of x such that $xz \in R$. As in the hyperbolic case of the previous section we conclude that f satisfies the differential equation

$$Sf(z)z^2 = c,$$

where *c* is a complex constant.

The solutions of (2) are again of the form $f=g \circ f_0$, where g is a Möbius transformation and either $f_0(z)=\log z$ or $f_0(z)=z^{\varkappa}$ for some $\varkappa \in C^*$. However, $f_0(z)=\log z$ does not yield an admissible solution because $\log z$ is not single-valued in R. Moreover, $f_0(z)=z^{\varkappa}$ is single-valued and one-to-one in R only if $\varkappa = \pm 1$. Hence $f=g \circ f_0$ is the restriction of a Möbius transformation, and the inverse of this Möbius transformation maps D onto a punctured disc or onto an annulus. The proof of Theorem 1 is now complete.

Remark. The group $M\"{o}b(D)$ can be identified with a closed subgroup of the Lie group Aut $(C \cup \{\infty\})$ of all biholomorphic automorphisms of the Riemann sphere. Hence $M\"{o}b(D)$ is a Lie group. Theorem 1 could have been proved also by using the classification of Lie subgroups of Aut $(C \cup \{\infty\})$ given in [3]. However, our method has the slight advantage that we may restrict ourselves to the study of closed subgroups of the real M\"{o}bius group Γ .

4. Möbius-homogeneous domains

We say that a domain D is *Möbius-homogeneous* if for each pair of points z and $w \in D$ there exists $\varphi \in M\ddot{o}b(D)$ such that $\varphi(z) = w$. In this case $M\ddot{o}b(D)$ is not discontinuous, because it acts transitively on D.

Möbius-homogeneous domains have been studied in arbitrary dimensions in [2] and [5]. We shall apply the results of Section 2 to the characterization of Möbius-homogeneous domains in the plane.

Theorem 3. A domain D on the Riemann sphere is Möbius-homogeneous if and only if D is a disc or a domain having at most two boundary points.

It is clear that the condition of Theorem 3 is sufficient, because every disc and every domain having at most two boundary points is Möbius-homogeneous. To prove the necessity, we need the following information about those subgroups of Γ which act transitively on H.

Theorem 4. Let G be a closed subgroup of Γ acting transitively on H. Then either $G = \Gamma$ or $G = \Gamma_{\zeta}$ for some $\zeta \in \partial H$.

Proof. Suppose first that G is elementary. Since G acts transitively on H, G is contained in Γ_{ζ} for some $\zeta \in \partial H$. By conjugation, we may assume $\zeta = \infty$.

The group Γ_{∞} consists of affine transformations $z \rightarrow az+b$, where *a* and *b* are real and a>0. Given such numbers *a*, *b*, by homogeneity there exists $g\in G$ such that g(i)=b+ai. Since $g\in\Gamma_{\infty}$, it follows that g(z)=az+b for each $z\in H$. Thus *G* contains all elements of Γ_{ζ} , so that $G=\Gamma_{\zeta}$.

In the remaining case G is non-elementary. By the result of Jørgensen mentioned in Section 2, G then contains elliptic elements of infinite order. As in the proof of Theorem 2 we conclude that G contains an elliptic continuum Γ_{ζ} , where $\zeta \in H$.

Elliptic continua do not act transitively on *H*. Hence Γ_{ζ} is a proper subgroup of *G*. On the other hand, Γ_{ζ} is a maximal subgroup of Γ [1, Lemma 3.3]. Therefore $G=\Gamma$, and the proof of Theorem 4 is complete.

We proceed with the proof of Theorem 3. Suppose that D is Möbius-homogeneous and has more than two boundary points. By Theorem 1, D is either simply or doubly connected. Moreover, if D were doubly connected, D could be mapped by means of a Möbius transformation onto a punctured disc or onto an annulus. However, these domains are not Möbius-homogeneous, a contradiction. Hence Dis simply connected.

Let F be a conformal map from H onto D. As in Section 2 let G be the group of all automorphisms of H of the form $F^{-1} \circ \varphi \circ F$, where $\varphi \in \text{M\"ob}(D)$. Then G is a closed subgroup of Γ acting transitively on H.

By Theorem 4 there exists $\zeta \in \partial H$ such that $G \supset \Gamma_{\zeta}$. In particular, *D* contains all parabolic elements of Γ_{ζ} . We can now repeat the argument of the parabolic case of Section 2 to conclude that *F* is the restriction of a Möbius transformation. Hence D = FH is a disc.

References

- [1] ERKAMA, T.: Group actions and extension problems for maps of balls. Ann. Acad. Sci. Fenn. Ser. A I Math. 556, 1973, 1-31.
- [2] GEHRING, F. W., and B. P. PALKA: Quasiconformally homogeneous domains. J. Analyse Math. 30, 1976, 172—199.
- [3] GREENBERG, L.: Discrete subgroups of the Lorentz group. Math. Scand. 10, 1962, 85-107.
- [4] JØRGENSEN, T.: A note on subgroups of SL(2, C). Quart. J. Math. Oxford (2) 28, 1977, 209–211.
- [5] KIMEL'FEL'D, B. N.: Homogeneous regions on the conformal sphere. Mat. Zametki 8, 1970, 321–328 (Russian).
- [6] LEHNER, J.: Discontinuous groups and automorphic functions. Mathematical Surveys, No. VIII. American Mathematical Society, Providence, 1964.
- [7] MINDA, C. D.: Conformal automorphisms of circular regions. Amer. Math. Monthly 86, 1979, 684-686.

University of Joensuu Department of Mathematics SF-80101 Joensuu Finland

Received 19 March 1984