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MOBIUS AUTOMORPHISMS OF PLANE DOMAINS

TIMO ERKAMA

1. Introduction

Let D be a domain on the Riemann sphere CuU {=}, and let Aut (D) be the
group of biholomorphic automorphisms of D. We say that a subgroup G of Aut (D)
is discontinuous if for each z€ D the orbit {g(z); g€ G} has no accumulation points
in D. By a classical theorem Aut (D) is discontinuous if and only if the fundamen-
tal group of D is not abelian.

Let M6b (D) be the group of all biholomorphic automorphisms of D which
are restrictions of Mobius transformations. If Aut (D) is a discontinuous group,
then it is clear that the subgroup Méb (D) is also discontinuous. However, the con-
verse is not true. In this paper we classify all domains D having a non-discontinuous
group of Mobius automorphisms. Partial results in this direction appear in [1] and
the special case M6b (D)= Aut (D) has also been studied by Minda [7]. The author
is grateful to Professor Olli Lehto for stimulating his interest in this research.

Examples. (a) If D is the sphere CuU {<}, the plane C or the punctured
plane C*=C\J{0}, then M&b (D) is not discontinuous. In fact, M6b (D) then con-
tains all rotations z--xz with |x|=1. These rotations are in Mob (D) also if D
is the unit disc U={z; |z|<1}, the punctured unit disc U*=U\{0} or an annulus

{z;rm<lz| < ra).

(b) If D is a horizontal strip {z; y;<Imz<y,}, then M6b (D) contains all
translations z—z+b, where b is real.

(c) Let D={zeC*; 6,<arg z—a log |z|<0,}, where a is a real constant and
0<0,—0,=2n. If «=0, then M&b (D) contains all homotheties z—~az with a=0.
If a0, then the boundary of D consists of one or two spirals, and D is invariant
under the action of a one-dimensional group of loxodromic transformations z--
eA+edt 7z where t is a real parameter.

Suppose that 4 is a Mdbius transformation which maps D onto a domain D’.
Then the elements of Mo6b (D”) are of the form hogoh™, where @EMGob (D).
It follows that M&b (D”) is discontinuous if and only if Méb (D) is discontinuous.
In particular, if # maps D onto one of the domains mentioned in the above examples,
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then M6b (D) is not discontinuous. The following theorem shows that the converse
is also true.

Theorem 1. Suppose that Mob (D) is not discontinuous. Then there exists
a Mébius transformation which maps D onto one of the domains described in examples

(a), (b) and (c).

The proof of Theorem 1 is elementary if D has at most two boundary points,
for then there exists a Mdbius transformation which maps D onto Cu {}, C or C*.
Thus we may assume that D has more than two boundary points. Since M&b (D)
is not discontinuous by hypothesis, the fundamental group of D is abelian. It follows
that D is conformally equivalent to a disc, a punctured disc or an annulus.

Theorem 1 will be proved in Sections 2 and 3. In Section 2 we consider domains
conformally equivalent to a disc; the proof in this case depends on a characteriza-
tion of discontinuous groups acting in the upper half plane (Theorem 2). Section 3
is devoted to the doubly connected case. Finally, in Section 4 we characterize domains
D such that M6b (D) acts transitively on D.

It is important to note that Aut (D) is a topological group. A subset S of Aut (D)
is closed if it contains the limit of every sequence of .S converging to an element of
Aut (D) uniformly on compact subsets of D. A well-known property of Mdobius
transformations [6, p. 73] implies that M&b (D) is a closed subgroup of Aut (D).

2. Simply connected domains

Let I' be the group of all sense-preserving Mobius transformations mapping
the upper half plane H={z; Im z=>0} onto itself. We shall identify I" with the group
Aut (H) of biholomorphic automorphisms of H. In particular, a subgroup of I' is
discontinuous if it is discontinuous as a subgroup of Aut (H).

If g€l is not the identity of I', then g is called elliptic, parabolic or hyperbolic
according as g has 0, 1 or 2 fixed points on the boundary 0H of H. It is clear that
the classes of elliptic, parabolic and hyperbolic elements of I' are invariant under
inner automorphisms of I'.

For {€Cu {=} we denote by I'; the isotropy group of { in I'. Thus I', consists
of elements g€I' such that g({)=(. More generally, if A is a subset of Cu {s},
we denote by I', the set of elements g€I' such that g4=A4. A subgroup G of I
is elementary if there exists a nonempty set 4 containing at most two points such
that GcT .

The following elementary subgroups of I' are of particular interest. An elliptic
continuum is of the form I', for some (€H; it contains all elliptic elements g€I’
such that g({)=¢. A subgroup of I' is a parabolic continuum if it is conjugate to
the subgroup of all translations z—z+b where b is real. A hyperbolic continuum
is of the form I''n I, where { and {’ are distinct points of JH. Equivalently, a
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hyperbolic continuum is a subgroup of I which is conjugate to the group of homeo-
theties z—az with a=0. It is clear that all proper closed subgroups of an elliptic,
parabolic or hyperbolic continuum are discontinuous.

We shall need the following result which is related to a theorem of Jorgensen
[4, Theorem 2].

Theorem 2. A closed subgroup of T is discontinuous if and only if it does not
contain any elliptic, parabolic or hyperbolic continua.

Proof. The necessity is obvious because a subgroup of I' is never discontinuous
if it contains a continuum. For the sufficiency, assume that G is a closed subgroup
of I' and that G is not discontinuous. We have to prove that G contains at least one
elliptic, parabolic or hyperbolic continuum.

Suppose first that G is elementary. Then there exists a nonempty set 4 contain-
ing at most two points such that GcTI',.

If A contains two distinct points { and {’, then I', contains I', NIy, asa sub-
group of finite index. Since G is not discontinuous and G I, it follows that I',n Iy
is an elliptic or hyperbolic continuum and that G (I';nT';) is not discontinuous.
Since all proper closed subgroups of I''nTI',. are discontinuous, we conclude that
GOI' nTI,. Hence G contains an elliptic or hyperbolic continuum.

In the remaining case G is not contained in any subgroup I' NI, with {#{'.
It follows that 4={{}, where { is the only common fixed point for elements of G.
Hence (€dH, so that G contains no elliptic elements.

If G contains no hyperbolic elements, then it is clear that G is the parabolic
continuum contained in I';. If G contains a hyperbolic element, then G contains
also parabolic elements because otherwise G would te contained in a hyperbolic
continuum [1, Lemma 3.2 (b)]. Let p and % te parabolic and hyperbolic elements
of G, respectively, and suppose that  is the attractive fixed point of 4. If k is a posi-
tive integer, then p,=h""ph* is a parabolic element of G, and a computation shows
that the sequence {p,} converges to the identity of G as k—e<-. Hence G contains
infinitesimal parabolic elements of I',. Since G is closed, we conclude that G contains
the parabolic continuum contained in I';.

Finally, suppose that G is non-elementary. In [4] it is shown that a non-elemen-
tary subgroup of I' is discontinuous if it does not contain elliptic elements of infinite
order. Since G is not discontinuous, it follows that at least one elliptic element
g€G is of infinite order. The smallest closed subgroup of I' containing g is an elliptic
continuum. Since G is closed, this elliptic continuum is contained in G. The proof
of Theorem 2 is now complete.

We wish to apply Theorem 2 to the proof of Theorem 1 in the case of a simply
connected domain D with more than two boundary points. In the remainder of
this section F denotes a fixed conformal mapping from H onto D.

There is a bicontinuous isomorphism F, from Aut (D) onto Aut (H) such
that F, (p)=F 'opoF for each @cAut(D). Let G be the image of Mob (D)
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under F,. Since M6b (D) is a closed subgroup of Aut (D), G is a closed subgroup of
Aut (H). Furthermore G is not discontinuous, because Mb (D) is not discontinuous
by hypothesis.

By Theorem 2 we have an elliptic, parabolic and hyperbolic case according as
G contains an elliptic, parabolic or hyperbolic continuum. We now show in each
case that the assertion of Theorem 1 follows.

Elliptic case. In this case G contains an elliptic continuum; hence there exists
{€H such that GOTI,.

Let i be a conformal map from the unit disc U onto H such that A(0)={. It
suffices to prove that f=Fo#h is the restriction of a Mobius transformation, because
then the inverse of fis a Mdbius transformation mapping D onto U.

Suppose g€Aut(U) and ¢(0)=0. Then hogoh™! is in I,. Since I,CG,
there is @€ M6b (D) such that hogoh™'=F logpoF; hence

€y foe=¢@of.

As in [1, p. 22], we shall use properties of the Schwarzian derivative

f//]’ 1 ( f//)z

o (L)L

/=7) 27

of f. Above all, f'is the restriction of a Mobius transformation if and only if Sf=0.
Since ¢ and ¢ are restrictions of Mdbius transformations, it follows from (1) that

(Sfe@)(@) = 5.

On the other hand, g is a rotation z—~xz where x€C and |x|=1, so that
2 Sf(xz)x? = Sf(z) (z€U, |x| = 1).

For a fixed z€ U, the left side of (2) is a holomorphic function of x in the domain
{x€C; xz€U} and assumes the constant value Sf(z) on the unit circle. Thus (2)
holds by analytic continuation for every x with xz€ U, and the substitution x=0
yields Sf(z)=0. We conclude that f agrees in U with a Mébius transformation.

Parabolic case. In this case there exists {€JH such that G contains all para-
bolic elements of I',. For any h€I' with h(e°)=( the composite f=Foh is defined
in H and maps H conformally onto D. As in the elliptic case it suffices to show that
Sf=0 in H.

Let t€I' be a translation z—~z+b where b is real. Then hotoh™! is a para-
bolic element of I';; hence there exists @€Mob (D) such that hotoh™t=F"lopoF
or

fot=gof.
Taking Schwarzian derivatives of both sides yields

Sf(z+b) = Sf(z) (z€H, bER).
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Thus Sf assumes a constant value on straight lines parallel to the real axis. Since
Sf'is holomorphic, it follows that Sf=c, where c is a complex constant.

For ¢»0 the solutions of the differential equation Sf=c are of the form
f=gof,, where g is a Mobius transformation and fo(z2)=e" for some a€C*.
Such solutions fail to be one-to-one in the upper half plane. In the present situation,
however, f=Foh is one-to-one in H. Hence ¢=0, and the proof of the parabolic
case is complete.

Hyperbolic case. Since G contains a hyperbolic continuum, there exist distinct
points {,{’€dH such that GoI',"I,.. Choose h€l so that h(0)=( and h(=)=
¢’. Then f=Foh maps H conformally onto D. We shall prove that D=fH can
be mapped by means of a Mébius transformation onto a horizontal strip or onto
a domain of the form

3 {z€C*; 0, < argz—alog |z| < 65},

where 0<0,—0,=2n.
Let ocI” be a stretching z—az where a>0. Then hoooh™ is in I';nIy;
hence there exists @€Mob (D) such that hogoh™'=F logoF or

foo = gof.
By taking Schwarzian derivatives again it follows that
4 Sf(az)a® = Sf(z) (z€H, a =0).

For a fixed t€ H, the left side of (4) is a holomorphic function of a in the domain
{a€C; azc H)} and assumes the constant value Sf(z) on the positive real axis. Thus
(4) holds by analytic continuation for all values of a such that az€H. The sub-
stitution w=az yields

Sf(w)w? = Sf(2) 2>

Since this holds for each weH, we conclude that f satisfies in H the differential
equation

©) Sf(2)z* = c,

where ¢ is a complex constant.

The solutions of (5) are of the form f=gof,, where g is a Md&bius transfor-
mation and either f,(z)=logz or fy(z)=z" for some x=y+idc C*. If fo(z)=logz,
then f,H is a horizontal strip and g~* maps D onto this strip. If fo(2)=z2"*? then
y50, because f=Foh is one-to-one in H. In this case f, H is a domain of the form
(3), where a=d/y and the interval [0,,0,] has 0 and yn(1+a?) as its endpoints.
Hence g~ maps D onto a domain of the form (3). Note that 6,—6,=2=n, because
otherwise (3) would agree with C* which is not a simply connected domain.

The proof of the simply connected case of Theorem 1 is now complete.
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3. Doubly connected domains

We have proved Theorem 1 so far for domains D which are simply connected
or have only two boundary points. As pointed out in the Introduction, it remains
to consider the case of a domain D which is conformally equivalent to a punctured
disc or an annulus. In this section f denotes a conformal map from the domain

R={zcC;r < |z| <1y}

onto D. We may assume 0=r;<r,<oo.

Just as in the simply connected case there is a bicontinuous isomorphism f,
from Aut (D) onto Aut (R) such that f,(¢)=f"top of for each ¢p€Aut (D). Since
Mob (D) is a closed and non-discontinuous subgroup of Aut (D), f, maps M&b (D)
onto a closed and non-discontinuous subgroup G of Aut (R).

The identity component Aut, (R) of Aut (R) is a subgroup of finite index in
Aut (R) and consists of rotations z—xz, where |x|=1. Since G is not discontinuous,
it follows that G n Aut, (R) is dense in Aut, (R). Hence G > Aut,(R), because G
is closed.

Suppose g€ Aut, (R); since Aut,(R)CG, there exists @€ Mob (D) such that
o=f"logpof. Hence fog=¢of, and taking Schwarzian derivatives yields

) Sf(x2)x* = §f(2) (z€R, |x[ = 1).

For a fixed z€R, the map x—Sf(xz)x®> is holomorphic in the domain
{x€C; xz€ R} and assumes the constant value Sf(z) on the unit cirle. Thus (1) holds
by analytic continuation for all values of x such that xz€R. As in the hyperbolic
case of the previous section we conclude that f satisfies the differential equation

@ Sf(2) 2 = c.

where ¢ is a complex constant.

The solutions of (2) are again of the form f=go f;, where g is a Mdbius trans-
formation and either f,(z)=logz or f,(z)=z* for some x€C*. However, f,(z)=
log z does not yield an admissible solution because log z is not single-valued in R.
Moreover, f,(z)=z* is single-valued and one-to-one in R only if »=+1. Hence
f=gofy is the restriction of a M&bius transformation, and the inverse of this Mébius
transformation maps D onto a punctured disc or onto an annulus. The proof of
Theorem 1 is now complete.

Remark. The group Mdb(D) can be identified with a closed subgroup of the
Lie group Aut(Cu {=}) of all biholomorphic automorphisms of the Riemann
sphere. Hence Mo6b (D) is a Lie group. Theorem 1 could have been proved also by
using the classification of Lie subgroups of Aut(Cu {=}) given in [3]. However,
our method has the slight advantage that we may restrict ourselves to the study of
closed subgroups of the real Mébius group I'.
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4. Mobius-homogeneous domains

We say that a domain D is M{bius-homogeneous if for each pair of points z
and weD there exists @EMdb (D) such that ¢(z)=w. In this case Mob (D) is
not discontinuous, because it acts transitively on D.

Mébius-homogeneous domains have been studied in arbiirary dimensions in
[2] and [5]. We shall apply the results of Section 2 to the characterization of Mobius-
homogeneous domains in the plane.

Theorem 3. A domain D on the Riemann sphere is Mobius-homogeneous if
and only if D is a disc or a domain having at most two boundary points.

It is clear that the condition of Theorem 3 is sufficient, because every disc and
every domain having at most two boundary points is Mdbius-homogeneous. To
prove the necessity, we need the following information about those subgroups of
I" which act transitively on H.

Theorem 4. Let G be a closed subgroup of I acting transitively on H. Then
either G=I or G=I, for some {[€0H.

Proof. Suppose first that G is elementary. Since G acts transitively on H,
G is contained in I'; for some (€0H. By conjugation, we may assume (= co.

The group I consists of affine transformations z--az+b, where a and b are
real and a=0. Given such numbers a, b, by homogeneity there exists g€G such
that g(i)=b+ai. Since g¢rl.., it follows that g(z)=az+b for each z¢H. Thus
G contains all elements of I';, so that G=I.

In the remaining case G is non-elementary. By the result of Jorgensen mentioned
in Section 2, G then contains elliptic elements of infinite order. As in the proof of
Theorem 2 we conclude that G contains an elliptic continuum I';, where (cH.

Elliptic continua do not act transitively on H. Hence I'; is a proper subgroup
of G. On the other hand, I'; is a maximal subgroup of I" [1, Lemma 3.3]. Therefore
G=TI, and the proof of Theorem 4 is complete.

We proceed with the proof of Theorem 3. Suppose that D is Mdbius-homo-
geneous and has more than two boundary points. By Theorem 1, D is either simply
or doubly connected. Moreover, if D were doubly connected, D could be mapped
by means of a Mébius transformation onto a punctured disc or onto an annulus.
However, these domains are not Md&bius-homogeneous, a coniradiction. Hence D
is simply connected.

Let F be a conformal map from H onto D. As in Section 2 let G be the group
of all automorphisms of H of the form F~log@oF, where ¢cMob (D). Then G
is a closed subgroup of I' acting transitively on H.

By Theorem 4 there exists {€0H such that GDI,. In particular, D contains
all parabolic elements of I',. We can now repeat the argument of the parabolic case
of Section 2 to conclude that Fis the restriction of a Mdbius transformation. Hence
D=FH is a disc.
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