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1. Introduction

Let D be a domain on the Riemann sphere Cu{-}, and let Aut(D) be the
group of biholomorphic automorphisms of D. We say that a subgroup G of Aut (D)
is discontinuous if for each z€D the orbit {SQ); SeG}. has no accumulation points

in D. By a classical theorem Aut (D) is discontinuous if and only if the fundamen-

tal group of D is not abelian.
Let Möb (D) be the group of all biholomorphic automorphisms of D which

are restrictions of Möbius transformations. If Aut (D) is a discontinuous group,

then it is clear that the subgroup Möb (D) is also discontinuous. However, the con-

verse is not true. In this paper we classify all domains D havng a non-discontinuous
group of Möbius automorphisms. Partial results in this direction appear in [1] and

the special case Möb (D):Aut (D) has also been studied by Minda [7]' The author
is grateful to Professor Olli Lehto for stimulating his interest in this research.

Examples. (a) If D is the sphere Cu {-}, the plane C or the punctured
plane C*:C\{O}, then Möb (D) is not discontinuous. In fact, Möb (D) then con-

tains all rotations z-xz with lxl:t. These rotations are in Möb(D) also if D
is the unit disc U: {z;lzl=.1}, the punctured unit disc U*:U\{0} or an annulus

{z; r, = Itl = ,r}.

(b) If D is a horizontal strip {z; yr=lm z=yz]1, then Möb (D) contains all
translations z*z*b, where å is real.

(c) Let D:{z(.C*; 0r<atgz-uloglzl=0r}, where a is a real constant and

0=0r-0r=2n. If a:0, then Möb (D) contains all homotheties z-az with a>0.
lf a*0, then the boundary of D consists of one or two spirals, arnd D is invariant
under the action of a one-dimensional group of loxodromic transformations z*
e(t+dDt z, where I is a real parameter.

Suppose that h is a Möbius transformation which maps D onto a domain D'.
Then the elements of Möb (D'\ are of the form hoqoh-l, where p€Möb (D).

It follows that Möb (D) is discontinuous if and only if Möb (D) is discontinuous.

In particular, if å maps D onto one of the domains mentioned in the above examples,
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then Möb (D) is not discontinuous. The following theorem shows that the converse

is also true.

Theorem 1. Suppose that Möb(D) is not discontinuous. Then there exists

a Möbius transformation which maps D onto one of the domains described in examples
(a), (b) and (c\.

The proof of Theorem I is elementary if D has at most two boundary points,
for then there exists a Möbius transformation which maps D onto Cu {-}, C or C*.
Thus we may assume that D has more than two boundary points. Since Möb (D)
is not discontinuous by hypothesis, the fundamental group of D is abelian. It follows
that D is conformally equivalent to a disc, a punctured disc or an annulus.

Theorem I will be proved in Sections 2 and 3.In Section 2 we consider domains
conformally equivalent to a disc; the proof in this case depends_ on a characteriza-
tion of discontinuous groups acting in the upper half plane (Theorem 2). Section 3

is devoted to the doubly connected case. Finally, in Section 4 we characierize domains
D such that Möb (D) acts transitively on D.

It is important to note that Aut (D) is a topological group. A subset S of Aut (D)
is closed if it contains the limit of every sequence of S converging to an element of
Aut (D) uniformly on compact subsets of D. A well-known property of Möbius
transformations [6, p. 73] implies that Möb (D) is a closed subgroup of Aut (D).

2. Simply connected domains

Let .f be the group of all sense-preserving Möbius transformations mapping
the upper half plane H: {z; Im z>0} onto itself. We shall identify f with the group
Aut (11) of biholomorphic automorphisms of 1L In particular, a subgroup of f is

discontinuous if it is discontinuous as a subgroup of Aut (f1).
If Se .| is not the identity of f, then g is called elliptic, parabolic or hyperbolic

according as g has 0, I or 2 fixed points on the boundary 0H of ä. It is clear that
the classes of elliptic, parabolic and hyperbolic elements of l- are invariant under
inner automorphisms of f.

For (€ C u {-} we denote by f, the isotropy group of ( in f. Thus f5 consists
of elements g€f such that g(O:(. More generally, if I is a subset of Cu {-},
we denote by f o the set of elements g(f such that gA:A. A subgroup G of f
is elementary if there exists a nonempty set I containing at most two points such

that Gcf n.
The following elementary subgroups of l- are of particular interest. An elliptic

continuum is of the form f, for some (<H; it contains all elliptic elements g(f
such that S(O:( A subgroup of i- is a parabolic continuum if it is conjugate to
the subgroup of all translations z-z*b where ä is real. A hyperbolic continuum

is of the form .l-rn.f,,, where ( and C' are distinct points of 0H. Equivalently, a
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hyperbolic continuum is a subgroup of l- which is conjugate to the group of homo-
theties z*az with a=0. lt is clear that all proper closed subgroups of an elliptic,
parabolic or hyperbolic continuum are discontinuous.

We shall need the following result which is related to a theorem of Jorgensen

[4, Theorem 2].

Theorem 2. A closed subgroup of f is discontinuous if and only if it does not

contain any elliptic, parabolic or hyperbolic continua.

Proof. The necessily is obvious becauseasubgroup off is never discontinuous
if it contains a continuum. For the sufficiency, assume Ihat G is a closed subgroup

of f and that G is not discontinuous. We have to prove that G contains at least one

elliptic, parabolic or hyperbolic continuum.
Suppose first that G is elementary. Then there exists a nonempty set I contain-

ing at most two points such that Gcf n.
If A contains two distinct points ( and (', then Ie contains I ta f t. as a sub-

group of finite index. Since G is not discontinuous and G cf n, it follows that f tn f r
is an elliptic or hyperbolic continuum and that Gn(f ga|r') is not discontinuous.

Since all proper closed subgroups of f ,nf I' are discontinuous, we conclude that
G=f ,ni-r,. Hence G contains an elliptic or hyperbolic continuum.

In the remaining case G is not contained in any subgroup |tnlt' with (+e'.
It follows that A: {(}, where ( is the only common fixed point for elements of G.

Hence K.AH, so that G contains no elliptic elements.

If G contains no hyperbolic elements, then it is clear that G is the parabolic

continuum contained h Ir. If G contains a hyperbolic element, then G contains

also parabolic elements because otherwise G would be contained in a hyperbolic

continuum [1, Lemma 3.2 (b)1. Let p and h be parabolic and hyperbolic elements

of G, respectively, and suppose that ( is the attractive fixed point of h.lf k is a posi-

tive integer, then po:11-kphk is a parabolic element of G, and a computation shows

that the sequence {p1} converges to the identity of G as k*-. Hence G contains

infinitesimal parabolic elements of ,l-g. Since G is closed, we conclude that G contains

the parabolic conlinuum contained ur IE.
Finally, suppose that G is non-elementary. In [4] it is shown that a non-elemen-

tary subgroup of .f is disconlinuous if it does not contain elliptic elements of infinite
order. Since G is not discontinuous, it follows that at least one elliptic element

s( G is of infinite order. The smallest closed subgroup of f containing g is an elliptic
continuum. Since G is closed, this elliptic confinuum is contained in G. The proof
of Theorem 2 is now complete.

We wish to apply Theorem 2 to the proof of Theorem 1 in the case of a simply
connected domain D with more than two boundary points. In the remainder of
this section .F denotes a fixed conformal mapping from fI onto D.

There is a bicontinuous isomorphism { from Aut (D) onto Aut (f1) such

that F*(E):F-LoEoF for each rp€Aut(D). tet G be the image of Möb(D)
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under .F*. Since Möb (D) is a closed subgroup of Aut (D>, G is a closed subgroup of
Aut (I/). Furthermore G is not discontinuous, because Möb (D) is not discontinuous
by hypothesis.

By Theorem 2 we have an elliptic, parabolic and hyperbolic case according as

G contains an elliptic, parabolic or hyperbolic continuum. We now show in each

case that the assertion of Theorem I follows.

Ettiptic case.ln this case G contains an elliptic continuum; hence there exists
(€ä such that G)rr

Let h be a conformal map from the unit disc U onto ä such that h(O):(. It
suffices to prove that f:Psl, is the restriction of a Möbius transformation, because
then the inverse of /is a Möbius transformation mapping D onto U.

Suppose e€Aut(u) and a(0):0. Then åoqoå-l is h Ic. Since f,cG,
there is (p€Möb (D) such that hoqoh-r:F-roEoF; hence

(1) fos:Eof.
As in [, p. 221, we shall use properties of the Schwarzian derivative

sf:
of /. Above all,f is the restriction of a Möbius transformation if and only if S/=0.
Since q and E are restrictions of Möbius transformations, it follows from (1) that

(,Ifop)(e)': sl
On the other hand, g is a rotation z-xz where xQC and lxl : l, so that

(2) Sf (xz) x2 : Sf(z) (z€U,lxl : 17.

For a fixed z€U, the left side of (2) is a holomorphic function of x in the domain

{x€C; xz€U\ and assumes the constant value S/(z) on the unit circle. Thus (2)

holds by analytic continuation for every x with xz€U, and the substitution x:0
yields S/(z):0. We conclude thatf agrees in U with a Möbius transformation.

Parabolic case. ln this case there exists (€åä such that G contains all para-
bolicelements of f,.. Forany å€f with h(-):( the composite .f:Foh isdefined
in ä and maps ä conformally onto D. As in the elliptic case it suffices to show that
,!/=0 in ä.

Let r€f be a translation z*z*b where å is real. Then horoh-1 is a para-
bolic element of fg; hence there exists E€Möb(D) such that horoh-t:F-rogoF
or

for : E of.

Taking Schwarzian derivatives of both sides yields

(#)'-+(r)'

Sf('+ b) - Sf(z) (z(H, b€A).
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Thus S/ assumes a constant value on straight lines parallel to the real axis. Since

,{/is holomorphic, it follows that Sf-:c, where c is a complex constant.

For c+0 the solutions of the differential equation sf=c are of the form

.f:gofo, where g is a Möbius transformation and fok):d' for some a(C*.

Such solutions fail to be one-to-one in the upper half plane. In the present situation,

however, f:Foh is one-to'one n H. Hence c:0, and the proof of the parabolic

case is complete.

Hyperbolic case. Since G contains a hyperbolic continuum, there exist distinct

points (,('€0H suchthat G---tlEalE ' Choose h€f sothat h(0):( and å(-):
('. Then f:Foh maps }/conformally onto D. We shallprove that D:fH can

be mapped by means of a Möbius transformation onto a horizontal strip or onto

a domain of the form

(3) {z(C*; 0t = arg z-alog lzl = 021,

where 0=02 -01=2n.
Let o1f be a stretching z+az where a>0. Then hcooh-1 is in fEafy)

hence there exists g(Möb (D) such that hoooh-L: F-LoEoF ot

foo : cPof,

By taking Schwarzian derivatives agan it follows that

(4) Sf(az)a'- Sf(z) (z€H,a =0).

For a fixed t€H, theleft side of (4) is a holomorphic function of atn the domain

{a(C; az(H} and assumes the constant value Sf(z\ on the positive real axis. Thus

(4) holds by analytic continuation for all values of a such that az€H. The sub-

stitution w:az ields
S/(w)w'z : Sf(z)22'

Since this holds for each w€H, we conclude that f satisfies in ä the differential

equation

(s)

where c is a complex constant.

SJ'Q) z2 : c,

The solutions of (5) are of the form ^f:gofo, where g is a Möbius transfor-

mation and either fok):log z or fo(z):z' for some 2a:y fiö€C*. lf fs(z):lsg 2,

then ffl is a horizontal strip and g-r maps D onto this strip- If f (z'):z'+i', then

T*0, beeatse f:Foh is one-to-one in 1L In this casefrIf is a domain of the form

(3), where a:öly and the interval l0r,0rl has 0 and yn(I+ag\ as its endpoints.

Hence g-1 maps D onto a domain of the form (3). Note that 0r-0t=2n, because

otherwise (3) would agree with c* which is not a simply connected domain.

The proof of the simply connected case of Theorem 1 is now complete.
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3. Doubly connected domains

We have proved Theorem I so far for domains D which are simply connected
or have only two boundary points. As pointed out in the Introduction, it remains
to consider the case of a domain D which is conformally equivalent to a punctured
disc or an annulus. In this section / denotes a conformal map from the domain

P: {z€C; r, = lzl = 12\

onto D. We may assume 0<rr=rr=.-,
Just as in the simply connected case there is a bicontinuous isornorphism l,.

fromAut(D) onto Aut(A) suchthat f*(E):.f-'"Eof for each g€Aut(D). Since
Möb (D) is a closed and non-discontinuous subgroup of Aut (D), -f* maps Möb (D)
onto a closed and non-discontinuous subgroup G of Aut (Ä).

The identity component Auto (R) of Aut (R) is a subgroup of finite index in
Aut (R) and consists of rotations z+xz, where lxl: l. Since G is not discontinuous,
it follows that GnAuto(R) is dense in Aut6(R). Hence G:Auto(.rR), because G
is closed.

Suppose Q€Auto (Ä); since Auto (R)cG, there exists E€Möb (D) such that
Q:.f-roEof. Hence foQ:Eof, and taking Schwarzian derivatives yields

(1) Sf(xz)x2 : Sf(z) (z(R,lxl: 11.

For a fixed z€R, the map x-Sf(xz)xz is holomorphic in the domain

{x(C; xz(R} and assumes the constant value Sf(z) on the unit cirle. Thus (l) holds
by analytic continuation for all values of x such that xz€R. As in the hyperbolic
case of the previous section we conclude that f satisfies the differential equation

(2) Sf(z)zz : c,

where c is a complex constant.
The solutions of (2) are again of the form .f:go fo, where g is a Möbius trans-

formation and either foQ):logz or JoQ):z' for some x€C*. However, .fr("\:
log z does not yield an admissible solution because log z is not single-valued in R.
Moreover, fo(z):z' is single-valued and one-to-one in R only if x:tl. Hence

f:g ".fo 
is the restriction of a Möbius transformation, and the inverse of this Möbius

transformation maps D onto a punctured disc or onto an annulus. The proof of
Theorem I is now complete.

Remark. The group Möb(D) can be identified with a closed subgroup of the
Lie group Aut(Cu{-}) of all biholomorphic automorphisms of the Riemann
sphere. Hence Möb (D) is a Lie group. Theorem I could have been proved also by
using the classification of Lie subgroups of Aut(Cu{-}) given in [3]. However,
our method has the slight advantage that we may restrict ourselves to the study of
closed subgroups of the real Möbius group I.
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4. Möbius-homogeneous domains

We say that a domain D is Möbius-homogeneous if for each pair of points z
and w€.D there exists q(Möb (D) such that E(z):vt. In this case Möb (D) is
not discontinuous, because it acts transitively on D.

Möbius-homogeneous domains have been studied in arbitrary dimensions in

[2] and [5]. We shall apply the results of Section 2 to the characteization of Möbius-

homogeneous domains in the plane.

Theorem 3. A domain D on the Riemann sphere is Möbius-homogeneous if
and only if D is a disc or a domain hauing at most two boundary points'

It is clear that the condition of Theorem 3 is sufficient, because every disc and

every domain having at most two boundary points is Möbius-homogeneous' To
prove the necessity, we need the following information about those subgroups of
1- which act transitively on 11.

Theorem 4. Let G be a closed subgroup of f act@ transitiuely on H. Then

either G:f or G:f t for some K\n.
Proof. Suppose first that G is elementary. Since G acts transitively on H,

G is contained in i-, for some K|n. By conjugation, we may assume (:-.
The group f- consists of affine transformations z+az+å, where a and b ate

real and a>0. Given such numbers a,b, by homogeneity there exists g(G such

that g(i):$*ai. Since g(l-, it follows that g(z):qz*b for each z€ä. Thus

G contains all elements of l-,, so that G:f e.

In the remaining case G is non-elementary. By the result of Jorgensen mentioned

in Section 2, G then contains elliptic elements of infinite order. As in the proof of
Theorem 2 we conclude that G contains an elliptic continuum f ,, where (€H'

Elliptic continua do not act transitively on ä. Hence f, is a proper subgroup

of G..On the other hand, f, is a maximal subgroup of -f [], Lemma 3'3]. Therefore

G: f , and the proof of Theorem 4 is complete.

We proceed with the proof of Theorem 3. Suppose that D is Möbius-homo-

geneous and has more than two boundary points. By Theorem 1, D is either simply

or doubly connected. Moreover, if D were doubly connected, D could be mapped

by means of a Möbius transformation onto a punctured disc or onto an annulus.

However, these domains are not Möbius-homogeneous, a contradiction. Hence D
is simply connected.

Let F be a conformal map from 11 onto D. As in Section 2let G be the group

of all automorphisms of ä of the form F-roE od where E€Möb (D). Then G
is a closed subgroup off acting transitively on fL

By Theorem 4 there exists ((åä such that G=fr. In particular, D contains

all parabolic elements of ,l-6. We can now repeat the argument of the parabolic case

of Section 2 to conclude that F is the restriction of a Möbius transformation. Hence

D: FH is a disc.

r6t
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