Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 163–171 Commentationes in honorem Olli Lehto LX annos nato

CONCIRCULAR TRANSFORMATIONS OF RIEMANNIAN MANIFOLDS

JACQUELINE FERRAND

Introduction. In this paper we deal with connected Riemannian manifolds $(M, g), (\overline{M}, \overline{g})$ of dimension *n* and of class C^3 at least. We shall denote their sectional curvature tensors by R, \overline{R} , their Ricci tensors by r, \overline{r} , and their scalar curvatures by S, \overline{S} . The space of C^2 -vector fields on M will be denoted by $\Gamma(M)$.

With every strictly positive scalar function u of class C^2 on M, we associate the conformal deformation $g \mapsto u^{-2}g$ of (M, g). The curvature tensors of $(M, \bar{g} = u^{-2}g)$ are then given, in local coordinates, by:

(0.1)
$$\bar{r}_{ij} - r_{ij} = \frac{n-2}{u} u_{i,j} + \left(\frac{\Delta u}{u} - (n-1)\frac{\operatorname{grad}^2 u}{u^2}\right) g_{ij},$$

(0.2)
$$u^2 \overline{R}_{ijkl} - R_{ijkl} = -\frac{\operatorname{grad}^2 u}{u^2} (g_{ik} g_{jl} - g_{il} g_{jk})$$

(0.3)
$$+ \frac{1}{u} (g_{ik} u_{j,l} + g_{jl} u_{i,k} - g_{il} u_{j,k} - g_{jk} u_{i,l}), u^{-2} \bar{S} - S = 2(n-1) \left(\frac{\Delta u}{u} - \frac{n}{2} \frac{\operatorname{grad}^2 u}{u^2} \right),$$

where the $u_{i,j}$ are the covariant derivatives of second order of u, and $\Delta u = g^{ij}u_{i,j}$. (These formulae follow from the usual ones by setting $u = e^{-\sigma}$.)

Definition. The scalar function u and the associated conformal deformation $g \mapsto u^{-2}g$ are said to be concircular if there exists a scalar function ϱ such that

(0.4)
$$u_{i,j} = \varrho g_{ij} \quad (i, j = 1, 2...n).$$

Then, by setting $\tau = \varrho/u - (1/(2u^2)) \operatorname{grad}^2 u$, the formulae (0.1), (0.2), (0.3) reduce to:

(0.5)
$$\bar{r}_{ij} - r_{ij} = 2(n-1)\tau g_{ij},$$

(0.6)
$$u^2 \overline{R}_{ijkl} - R_{ijkl} = 2\tau (g_{ik} g_{jl} - g_{il} g_{jk}),$$

(0.7)
$$u^{-2}\bar{S}-S=2n(n-1)\tau.$$

More generally, if (M, g) and $(\overline{M}, \overline{g})$ are two Riemannian manifolds of the same dimension *n*, a morphism $f: M \to \overline{M}$ is said to be *concircular* if it is conformal and if there exists a scalar function ρ on M such that $u = |f'|^{-1}$ satisfy (0.4). In other

words $f: (M, g) \rightarrow (\overline{M}, \overline{g})$ is concircular if, and only if, $g \mapsto f^* \overline{g}$ is a concircular deformation of (M, g).

A conformal morphism f such that |f'| is constant will be called a *similarity*; a conformal deformation $g \mapsto u^{-2}g$ such that u is constant will be said to be a *homothety*.

Concircular transformations have been introduced by K. Yano [13] as conformal transformations preserving geodesic circles (curves whose normal parametrizations satisfy $d^3x/ds^3 = k(dx/ds)$ with k = const.). Later, W. O. Vogel [12] proved that every morphism preserving geodesic circles is necessarily conformal; and Y. Tashiro [9] gave a classification of complete Riemannian manifolds admitting a concircular field u (i.e. satisfying (0.4) but not necessarily >0).

Let us notice that the characterization of the sphere given by M. Obata [8] sets upon this classification. For other papers relative to concircular transformations, see [5, 8, 10]. An equation close to (0.4) has been studied by J. Lafontaine [7].

In this paper, we first review the main results concerning concircular deformations (Section 1); then we shall set some apparently new results, and examine the special case $\tau=0$ (Sections 2, 3, 4). Most part of these results are extensible to pseudo-Riemannian manifolds.

1. Preliminaries. At first let us notice that, if $n \ge 3$, either relation (0.5), (0.6) involves (0.4) with $\rho = \tau u + (1/(2u)) \operatorname{grad}^2 u$. It easily follows:

Property 1.1. Any conformal mapping between Einstein manifolds of dimension $n \ge 3$ is concircular.

Conversely if $f: (M, g) \rightarrow (\overline{M}, \overline{g})$ is concircular, and if (M, g) is an Einstein space [resp. a space with constant sectional curvature], then so is $(\overline{M}, \overline{g})$.

Property 1.2. If $u: M \rightarrow \mathbf{R}$ is concircular (satisfying (0.4)) then:

a) For any constant λ , $u + \lambda$ is concircular; and u^{-1} is concircular on $(M, u^{-2}g)$.

b) There exists locally a function G such that

(1.1)
$$\operatorname{grad}^2 u = G(u) \quad and \quad \varrho = \frac{1}{2} G'(u).$$

c) For any vector fields X, Y on M

(1.2)
$$R(X, Y) \text{ grad } u = (L_X \varrho) Y - (L_Y \varrho) X.$$

Proof. The first assertion a) is obvious; for $n \ge 3$ the second one can be obtained by exchanging g and \overline{g} .

To prove b), we notice that, with intrinsic notations, (0.4) is equivalent with

(1.3)
$$\forall X \in \Gamma(M): \quad \nabla_X \text{ grad } u = \varrho X$$

which implies

$$\nabla_X \operatorname{grad}^2 u = 2\varrho X$$
. grad $u = 2\varrho \nabla_X u$

or, in other terms, $d(\operatorname{grad}^2 u) = 2\varrho \, du$.

Finally (1.2) follows from (1.3) by covariant differentiation.

Property 1.3. In order that $u: M \rightarrow \mathbf{R}$ be concircular, it is necessary and sufficient that there exist local coordinates (x_i) , with $x_1=u$, such that the metric of M be

(1.4)
$$ds^{2} = \frac{du^{2}}{G(u)} + G(u) \sum_{i, j \ge 2} \gamma_{ij}(x_{2}, ..., x_{n}) dx_{i} dx_{j}$$

with $\varrho = (1/2)G'(u)$, or equivalently:

(1.5)
$$ds^{2} = dv^{2} + \varphi^{2}(v) \sum_{i, j \ge 2} \gamma_{ij}(x_{2}, ..., x_{n}) dx_{i} dx_{j}$$

with $v = \int [G(u)]^{-1/2} du$ and $\varphi^2(v) = G(u)$.

Obviously, the function $G(u) = \operatorname{grad}^2 u$ need not be defined at stationary points of u; but on a complete manifold, there are at most two such points (cf. [10]).

For the applications of concircular properties to Einstein or other special spaces, see [2], [5], [9], [10], [11], [12], [13].

2. Conformal properties. From the results reviewed in Section 1, we easily infer

Lemma 2.1. If $u: M \rightarrow \mathbf{R}$ is concircular (i.e. satisfies (0.4)), then

a) the u-hypersurfaces (defined by u=Const.) are totally umbilical, of constant normal curvature $\varrho/|\text{grad } u|$.

b) the integral curves of grad u are geodesics whose tangent at any point is an eigen direction of the Ricci tensor.

The proof is classical; the last assertion follows from (1.2). In [4] we proved that the "conformal circles" of E. Cartan and K. Yano are the curves which, by a suitable conformal deformation of M can be changed into geodesics whose tangent is an eigen direction of the Ricci tensor. By looking for a converse of Lemma 2.1, we obtain:

Theorem 2.2. Let (M, g) be a Riemannian manifold and $u: M \rightarrow \mathbf{R}$ a strictly positive scalar function having only isolated stationary points. In order that there exists a metric \bar{g} , conformal to g, such that u be concircular on (M, \bar{g}) , it is necessary and sufficient that

i) the u-hypersurfaces be totally umbilical,

ii) their orthogonal trajectories be conformal circles.

Proof. The necessity of these conditions follows from Lemma 2.1, since they are invariant under a conformal deformation.

Conversely we know (cf. [3]) that the condition i) implies the existence of local coordinates x_i , with $x_1=u$, such that the metric of M is

$$ds^2 = A^2 du^2 + B^2 \sum_{i, j \ge 2} \gamma_{ij}(x_2, ..., x_n) dx_i dx_j.$$

If the condition ii) is satisfied, the curves $x_i = \text{Const.}$ $(i \ge 2)$ are still conformal

circles for the metric ds^2/A^2 ; and since they are geodesics for this new metric, $\partial/\partial u$ must be an eigen vector for the Ricci tensor. Now the (1, j)-components $(j \neq 1)$ of the Ricci tensor for ds^2/A^2 are given by

$$R_{1j} = -(n-2)\frac{\partial^2}{\partial u \partial x_j} \operatorname{Log}\left(\frac{B}{A}\right)$$

and therefore the condition ii) is equivalent with the existence of two positive functions α , β such that

$$\frac{B}{A} = \alpha(u)\beta(x_2, ..., x_n).$$

By setting $\bar{\gamma}_{ij} = \beta \gamma_{ij}$, we have

$$\frac{ds^2}{A^2} = du^2 + \alpha^2(u) \sum_{i, j \ge 2} \bar{\gamma}_{ij}(x_2, \dots, x_n) dx_i dx_j$$

and the Property (1.3) shows that u is concircular for the metric $ds^2/(\alpha A^2)$.

Let us notice also that $\int \alpha \, du$ is concircular for ds^2/A^2 . On the other hand we have:

Lemma 2.3. If u is concircular on (M, g), and if θ is a differentiable function on u(M), the only metrics conformally equivalent with g which admit $\theta(u)$ as a concircular field are given by $\bar{g} = C |\theta'|g$, with C = Const.

Application: Conformally flat manifolds admitting a concircular deformation. Starting with \mathbb{R}^n we have to look for functions u>0 such that the *u*-hypersurfaces be totally umbilical and their orthogonal trajectories be conformal circles: in other words, *u*-hypersurfaces are hyperspheres (or hyperplanes) whose orthogonal trajectories are circles (or straight lines); and they must belong to a bundle of spheres or hyperplanes. By using a Möbius transformation, we are brought back to the three typical bundles, respectively defined by

i)
$$\Sigma x_i^2 = \text{Const.}$$
, ii) $x_1 = \text{Const.}$, iii) $\frac{x_2}{x_1} = \text{Const.}$

Therefore, if u is concircular on a conformally flat manifold (M, g) there exist local coordinates x_i and a function θ of one variable such that

$$u = \theta(\Sigma x_i^2), \quad u = \theta(x_1) \quad \text{or} \quad u = \theta(x_2/x_1)$$

and, for a suitable choice of the function $\sigma(x_1, ..., x_n)$:

$$ds^2 = e^{2\sigma} \Sigma \, dx_i^2$$

Now it can be directly checked that Σdx_i^2 admits x_1 and Σx_i^2 for concircular

fields, while $(x_1^2 + x_2^2)^{-1} \Sigma dx_i^2$ admits arctg (x_2/x_1) as a concircular field. With help of Lemma 2.3, we can state:

Theorem 2.4. The conformally flat metrics admitting a concircular field are locally given, by suitable choice of coordinates, by

or

$$ds^2 = \varphi(\Sigma x_i^2) \Sigma dx_i^2, \quad ds^2 = \varphi(x_1) \Sigma dx_i^2$$

 $ds^2 = (x_1^2 + x_2^2)^{-1} \varphi (\operatorname{arc} \operatorname{tg} x_2/x_1) \Sigma dx_i^2$

where φ is an arbitrary function of one variable; and the associated concircular fields are the primitives of φ .

This result completes Theorem 2 of [6]. Let us notice that, by setting $u = \arctan \left(\frac{x_2}{x_1} \right)$ and $v = (1/2) \log \left(\frac{x_1^2 + x_2^2}{x_1^2} \right)$, the metrics of the third type can also be written

$$ds^{2} = \varphi(u)(du^{2} + dv^{2} + e^{-2v} \sum_{i \ge 3} dx_{i}^{2}).$$

The global existence of concircular fields depends on the topology of the manifold.

3. A special case: quasi-similarities. Definition 3.1. A conformal deformation [resp. a conformal morphism f] will be called quasi-homothetic [resp. a quasi-similarity] if there exists a scalar function ϱ such that the associated function u [resp. the function $u = |f'|^{-1}$] satisfies

(3.1)
$$u_{i,i} = \varrho g_{ii}$$
 and $\operatorname{grad}^2 u = 2\varrho u$.

(In other terms: *u* is concircular and the associated function $\tau = \varrho/u - (1/(2u^2)) \operatorname{grad}^2 u$ is null.)

If $n \ge 3$, the conditions 3.1 express that the Ricci and sectional curvatures of M are transformed in the same way as under an homothety [resp. a similarity] of ratio u^{-1} (see formulae (0.5) and (0.6)). In particular, any conformal morphism of Ricci-flat manifolds (i.e. with Ricci curvature zero) of dimension $n \ge 3$ is automatically a quasi-similarity. More precisely, we have:

Lemma 3.1. Let (M, g) be a flat [resp. Ricci-flat] manifold of dimension $n \ge 3$, and $f: (M, g) \rightarrow (\overline{M}, \overline{g})$ a conformal morphism. In order that $(f(M), \overline{g})$ be flat [resp. Ricci-flat] it is necessary and sufficient that f be a quasi-similarity.

Quasi-similarities have been studied by us in [5]. Let us recall some results.

Lemma 3.2. If $u=M \rightarrow R$ satisfies (3.1), then ϱ is a constant; and for any vector fields X, Y on M, we have

$$R(X, Y) \text{ grad } u = 0,$$

Lemma 3.3. In order that $u: M \rightarrow \mathbf{R}$ be quasi-homothetic, it is necessary and sufficient that there exists a constant ϱ and local coordinates (x_i) , with $x_1=u$, such that:

(3.3)
$$ds^{2} = \frac{du^{2}}{2\varrho u} + u \sum_{i, j \ge 2} \gamma_{ij}(x_{2}, ..., x_{n}) dx_{i} dx_{j}.$$

(This is a special case of Property 1.3.)

For brevity, we shall say that a quasi-homothety [resp. a quasi-similarity] is proper if the associated function u is not constant.

Theorem 3.4. A complete Riemannian manifold does not admit any proper quasi-homothety or quasi-similarity.

Proof. On any geodesic γ satisfying dx/ds = grad u/|grad u|, we have $du/ds = (2\varrho u)^{1/2}$ and $d^2u/ds^2 = \varrho$; hence, if $\varrho \neq 0: 2u = \varrho(s-s_0)^2$; and if s could run from $-\infty$ to $+\infty$, u would take the value zero.

The case of \mathbb{R}^n and of conformally flat manifolds. First of all, on \mathbb{R}^n , the only nonconstant solutions of (3.1) are the functions

(3.4)
$$u = \frac{1}{2} \varrho \Sigma (x_i - a_i)^2 \quad (\varrho, a_i = \text{Const.})$$

This easy remark provides a very short proof of the theorem of Liouville in class C^3 : namely, if U is an open set of \mathbb{R}^n $(n \ge 3)$ and if $f: U \to \mathbb{R}^n$ is a conformal (not necessarily injective) morphism, then, from Lemma 3.1, f is a quasi-similarity and $u=|f'|^{-1}$ satisfies (3.4) for some values of ϱ , a_1, \ldots, a_n . If $\varrho=0$, u=Const. and f is a similarity. If $\varrho \ne 0$, let be j the inversion $x \mapsto a+(2/\varrho)|x-a|^{-2}(x-a)$. Then we have $|f'(x)|=|j'(x)|=|j'(j(x))|^{-1}$, hence $|(f \circ j)'(x)|=1$ and $f \circ j$ is an isometry. In both cases f is a Möbius transformation.

On another side, we may complete Lemma 2.3 and Theorem 2.4 by stating

Lemma 3.5. If u is quasi-homothetic for (M, g), the only metrics, conformally equivalent with g, which admit a nonconstant function $\theta(u)$ as quasi-homothetic, are of the type $\bar{g} = Cu^{\lambda-1}g$ with $C, \lambda = \text{Const.}, \lambda \neq 0$, the function θ then being $\theta(u) = ku^{\lambda}$ (k=Const.).

Theorem 3.6. The conformally flat metrics admitting a quasi-homothetic deformation are locally given, with suitable coordinates, by:

$$ds^{2} = [\Sigma(x_{i}^{2})]^{\lambda-1} \Sigma dx_{i}^{2}, \quad ds^{2} = e^{\lambda x_{1}} \Sigma dx_{i}^{2} \quad or$$
$$ds^{2} = e^{\lambda u} (du^{2} + dv^{2} + e^{-2v} \sum_{i \ge 3} dx_{i}^{2})$$

where $\lambda \neq 0$ is a constant.

Among these metrics there is no one of constant curvature $\neq 0$, as we could infer from (3.2).

4. Concircular deformations of submanifolds. The restriction to a submanifold of a concircular transformation is still conformal, but not necessarily concircular. In fact we have:

Theorem 4.1. Let $u: M \rightarrow \mathbf{R}$ concircular. In order that the restriction of u to a submanifold V be concircular it is necessary and sufficient that at any point of V either grad u be tangent to V

or the normal component N of grad u be an umbilical direction for V.

Proof. We know that $v = u_{|V|}$ is concircular if, and only if, there exists a function σ on V such that

(4.1)
$$\forall X \in \Gamma(V): \quad \overline{\nabla}_X (\text{grad } v) = \sigma X,$$

where $\overline{\nabla}_X$ is the induced connection on V. Now grad v=T=grad u-N is the tangential component of grad u, and $\overline{\nabla}_X T$ is the tangential component of $\nabla_X T$. By using (1.3) we see that the condition (4.1) is realized if, and only if, $\nabla_X N - (\varrho - \sigma)X$ is normal to V; and, if $N \neq 0$, this means that N is an umbilical direction for V.

This last condition is realized, in particular, if grad u is normal to V at any point; in that case v is constant and $\sigma=0$.

If u is quasi-homothetic (which implies $\operatorname{grad}^2 u = 2\varrho u$ and $\varrho = \operatorname{Const.}$) and if we want $v = u_{|V|}$ to be quasi-homothetic, we have to set the additional condition $\operatorname{grad}^2 v = 2\sigma v$ with $\sigma = \operatorname{Const.}$ This is realized if and only if $|T|^2/|N|^2 = \sigma/(e-\sigma) = \operatorname{Const.}$, i.e. if the angle of grad u with V is constant. We can state:

Theorem 4.2. Let $f: M \to \overline{M}$ be a quasi-similarity and V a submanifold of M. In order that the restriction of f to V be a quasi-similarity, it is necessary and sufficient that the field grad $(|f'|^{-1})$ be tangent to V, or that it make a constant angle with V and its normal component be an umbilical direction for V.

A special case: Hypersurfaces of an Einstein manifold. If V is an hypersurface satisfying the second condition stated in Theorem 4.1, then V is totally umbilical with scalar normal curvature $\lambda = (\sigma - \varrho)/|N|$. Now it is elementary to check that, in an Einstein space, the scalar normal curvature of a totally umbilical hypersurface is constant. In that case, the angular condition of Theorem 4.2 implies |T| = Const. (since $(\sigma - \varrho)/|N| = \text{Const.}$), hence $\text{grad}^2 v = 2\sigma v = \text{Const.}$, and v = Const., which is realized if, and only if, N = 0. We can state:

Theorem 4.3. Let M be an Einstein space, and $u: M \rightarrow \mathbf{R}$ a quasi-homothetic deformation. In order that the restriction of u to an hypersurface V be quasi-homothetic, it is necessary and sufficient that V be tangent or normal to the vector field grad u.

By using a previous remark, we have:

Theorem 4.4. Let (M, g), $(\overline{M}, \overline{g})$, be two Ricci-flat Riemannian manifolds of dimension $n \ge 4$, $f: M \to \overline{M}$ a conformal morphism, and V a flat [resp. Ricci-flat] hypersurface of M. In order that f(V) be flat [resp. Ricci-flat] it is necessary and sufficient that the field grad $(|f'|^{-1})$ be tangent or normal to V.

In particular, the only flat hypersurfaces of \mathbb{R}^n whose image, under an inversion with pole 0, is a flat hypersurface, are parts of cones with vertex 0 (this result being also true for n=3).

However these results cannot be extended to submanifolds of co-dimension ≥ 2 , as is proved by the following counter-example which infirms an assertion of [1].

Example. Let V be the submanifold of \mathbf{R}^{2p} , image of the domain $(t_i>0)$ of \mathbf{R}^p under the imbedding f of components

$$f_k(t_1, ..., t_p) = \frac{1}{\sqrt{2}} t_k \cos(\text{Log } t_k) \quad f_{k+p} = \frac{1}{\sqrt{2}} t_k \sin(\text{Log } t_k) \quad (1 \le k \le p).$$

We have $\sum_{i=1}^{2p} df_i^2 = \sum_{k=1}^p dt_k^2$, which proves that V is flat.

The image of V under the inversion $j: x \mapsto |x|^{-2}x$ admits the parametrization $g=j \circ f$, which satisfies

$$\sum_{i=1}^{2p} dg_i^2 = \sum_{i=1}^{2p} \frac{df_i^2}{|f|^4} = \frac{4}{|t|^4} \sum_{k=1}^p dt_k^2.$$

So j(V) is flat, although V is neither tangent nor orthogonal to the field grad $|j'|^{-1}$. In fact the tangential and normal components of grad $|j'(x)|^{-1}=2x$ at the point x=f(t) are given by:

$$N_{k} = f_{k} + f_{k+p}, \quad N_{k+p} = f_{k+p} - f_{k} \quad (1 \le k \le p)$$
$$T_{k} = f_{k} - f_{k+p}, \quad T_{k+p} = f_{k} + f_{k+p} \quad (1 \le k \le p).$$

We can check that N is an umbilical direction for V, and that grad $|j'|^{-1}$ makes an angle of $\pi/4$ with V. Thus conditions of Theorem 4.2 are exactly fulfilled.

References

- [1] BLAIR, D. E.: On conformal images of flat submanifolds. Geom. Dedicata 12, 1982, 205-208.
- [2] BRINKMANN, H. W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 1925, 119—145.
- [3] EISENHART, L. P.: Riemannian geometry. Princeton University Press, Princeton, 1949.
- [4] FERRAND, J.: Les géodésiques des structures conformes. C. R. Acad. Sci. Paris Sér. I Math. 294, 1982, 629—632.

- [5] FERRAND, J.: Sur une classe de morphismes conformes. C. R. Acad. Sci. Paris Sér. I Math. 296, 1983, 681-684.
- [6] ISHIHARA, S., and Y. TASHIRO: On Riemannian manifolds admitting a concircular transformation. - Math. J. Okayama Univ. 9, 1959, 19–47.
- [7] LAFONTAINE, J.: Sur la géométrie d'une généralisation de l'équation différentielle d'Obata. J. Math. Pures Appl. (9) 62, 1983, 63-72.
- [8] OBATA, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. -J. Math. Soc. Japan 14, 1962, 333—340.
- [9] TACHIBANA, S.: On concircular geometry and Riemannian spaces with constant scalar curvature.
 Tôhoku Math. J. 3, 1951, 149–158.
- [10] TASHIRO, Y.: Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117, 1965, 251-275.
- [11] VENZI, P.: The metric $ds^2 = F(u)du^2 + G(u)d\sigma^2$ and an application to concircular mappings. -Utilitas Math. 22, 1982, 221–233.
- [12] VOGEL, W. O.: Kreistreue Transformationen in Riemannschen Räumen. Arch. Math. (Basel) 21, 1970, 641—645.
- [13] YANO, K.: Concircular geometry I, II, III, IV, V. Proc. Imp. Acad. Tokyo 16, 1940, 195-200, 354-360, 505-511, and ibid. 18, 1942, 446-451.

University of Paris VI Department of Mathematics F-75230 Paris Cedex 05 France

Received 2 April 1984