Annales Academiz Scientiarum Fennica Commentationes in honorem
Series A. I. Mathematica Olli Lehto
Volumen 10, 1985, 163—171 LX annos nato

CONCIRCULAR TRANSFORMATIONS
OF RIEMANNIAN MANIFOLDS

JACQUELINE FERRAND

Introduction. In this paper we deal with connected Riemannian manifolds
(M, ), (M, §) of dimension » and of class C3 at least. We shall denote their sectional
curvature tensors by R, R, their Ricci tensors by r, 7, and their scalar curvatures
by S, S. The space of C2-vector fields on M will be denoted by I' (M).

With every strictly positive scalar function u of class C? on M, we associate
the conformal deformation g—u~—2g of (M,g). The curvature tensors - of
(M, g=u"2%g) are then given, in local coordinates, by:

_ n—2 Au rad?® u
0.1) =Ty =— ui,j+[—u‘_(n”‘1) £ 7 ] ijs
= rad? u
0.2) quijkl‘”Rijkl S pE: (gigji—8u&j1)

1
+—u‘(gik Uj 1+ gtk — Catj, e — ki, 1)

= du n gradzu]
-2 — —_ _—
0.3) u25—S=2(n 1)( T )

where the u; ; are the covariant derivatives of second order of u, and Au= gu; ;.
(These formulae follow from the usual ones by setting u=e~°.)

Definition. The scalar function u and the associated conformal deformation
g—u~2g are said to be concircular if there exists a scalar function ¢ such that

(0'4) ui,j = Qgij (i,j = 1, 2...’1).

Then, by setting ©=go/u—(1/(2u?)grad®u, the formulae (0.1), (0.2), (0.3)
reduce to:

(0_5) f,-j—rij =2(n_1)fgij9
(0.6) uZR_ijkl_Rijkl = 21(gu 8j1— 8 &)
0.7) u"2§—S=2n(n-1).

More generally, if (M, g) and (M, &) are two Riemannian manifolds of the same
dimension n, a morphism f: M—~M is said to be concircular if it is conformal and
if there exists a scalar function ¢ on M such that u=|f"|~! satisfy (0.4). In other
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words f: (M, g)—~(M, g) is concircular if, and only if, g—f*g is a concircular
deformation of (M, g).

A conformal morphism f such that | f’| is constant will be called a similarity;
a conformal deformation g+—u~2g such that u is constant will be said to be a /o-
mothety.

Concircular transformations have been introduced by K. Yano [13] as confor-
mal transformations preserving geodesic circles (curves whose normal parametriza-
tions satisfy d3x/ds®=k(dx/ds) with k=const.). Later, W. O. Vogel [12] proved
that every morphism preserving geodesic circles is necessarily conformal; and Y.
Tashiro [9] gave a classification of complete Riemannian manifolds admitting a con-
circular field u (i.e. satisfying (0.4) but not necessarily =0).

Let us notice that the characterization of the sphere given by M. Obata [8] sets
upon this classification. For other papers relative to concircular transformations,
see [5, 8, 10]. An equation close to (0.4) has been studied by J. Lafontaine [7].

In this paper, we first review the main results concerning concircular deforma-
tions (Section 1); then we shall set some apparently new results, and examine the
special case =0 (Sections 2, 3, 4). Most part of these results are extensible to
pseudo-Riemannian manifolds.

1. Preliminaries. At first let us notice that, if n=3, either relation (0.5), (0.6)
involves (0.4) with ¢=rtu+(1/(2u)) grad® u. It easily follows:

Property 1.1. Any conformal mapping between Einstein manifolds of dimension
n=3 is concircular.

Conversely if f:(M,g)—~(M,g) is concircular, and if (M,g) is an Einstein
space [resp. a space with constant sectional curvature], then so is (M, g).

Property 1.2. If u: M—R is concircular (satisfying (0.4)) then:
a) For any constant A, u+ A is concircular; and u=* is concircular on (M, u=2g).
b) There exists locally a function G such that

1.1) grad?u = Gw) and ¢ = %G'(u).
c) For any vector fields X, Y on M
(1.2) R(X,Y).grad u = (Lyo)Y—(Lyo)X.

Proof. The first assertion a) is obvious; for n=3 the second one can be ob-
tained by exchanging g and g.
To prove b), we notice that, with intrinsic notations, (0.4) is equivalent with

(1.3) vYXer(M): Vygradu = oX

which implies
Vx grad?u = 29 X. grad u = 29Vyu

or, in other terms, d(grad?u)=2¢ du.
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Finally (1.2) follows from (1.3) by covariant differentiation.

Property 1.3. In order that u: M—R be concircular, it is necessary and
sufficient that there exist local coordinates (x;), with x,=u, such that the metric
of M be

du?

G(u)

(1.4) ds* = +G () i, jz27ij(Xas -5 X,) dx; dx;

with 9=(1/2)G’(u), or equivalently:
(1.5) ds® = dv’+@*(v) 2 =2 Vij(X2s ..oy X) dx; dx;
with v=[[GwW)] ™2 du and ¢*()=G(u).

Obviously, the function G (u)=grad® u need not be defined at stationary points
of u; but on a complete manifold, there are at most two such points (cf. [10]).

For the applications of concircular properties to Einstein or other special spaces,
see [2], [5], [9], [10], [11], [12], [13].

2. Conformal properties. From the results reviewed in Section 1, we easily infer

Lemma 2.1. If u: M—~R is concircular (i.e. satisfies (0.4)), then

a) the u-hypersurfaces (defined by u=Const.) are totally umbilical, of constant
normal curvature ¢f|grad u.

b) the integral curves of grad u are geodesics whose tangent at any point is an
eigen direction of the Ricci tensor.

The proof is classical; the last assertion follows from (1.2). In [4] we proved
that the “‘conformal circles” of E. Cartan and K. Yano are the curves which, by
a suitable conformal deformation of M can be changed into geodesics whose tangent
is an eigen direction of the Ricci tensor. By looking for a converse of Lemma 2.1,
we obtain:

Theorem 2.2. Let (M, g) be a Riemannian manifold and u: M—~R a strictly
positive scalar function having only isolated stationary points. In order that there
exists a metric g, conformal to g, such that u be concircular on (M, g), it is nec-
essary and sufficient that

i) the u-hypersurfaces be totally umbilical,

ii) their orthogonal trajectories be conformal circles.

Proof. The necessity of these conditions follows from Lemma 2.1, since they
are invariant under a conformal deformation.

Conversely we know (cf. [3]) that the condition i) implies the existence of local
coordinates x;, with x;=u, such that the metric of M is

ds®=A*du*+ B® 3, ;=5 7:;(Xa, ..., X,) dx; dx;.

If the condition ii) is satisfied, the curves x;=Const. (i=2) are still conformal
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circles for the metric ds?/A42; and since they are geodesics for this new metric, d/0u
must be an eigen vector for the Ricci tensor. Now the (1, j)-components (j=1) of
the Ricci tensor for ds?/4% are given by

0* B
Ry === g e )
J

and therefore the condition ii) is equivalent with the existence of two positive func-
tions o, f such that

B
- = @B Cxzs s X)-
By setting 7;;=py;;, we have

ds?
A2

= du2+a2(u)2i,jé2?ij(x2’ LREE) n)dxidxj

and the Property (1.3) shows that u is concircular for the metric ds? /(xA4?).
Let us notice also that f o du is concircular for ds?/42. On the other hand
we have:

Lemma 2.3. If u is concircular on (M, g), andif 0 is a differentiable function
on u(M), the only metrics conformally equivalent with g which admit 6(u) as a
concircular field are given by §=C|0’|g, with C=Const.

Application: Conformally flat manifolds admitting a concircular deformation.
Starting with R" we have to look for functions u=0 such that the u-hyper-
surfaces be totally umbilical and their orthogonal trajectories be conformal circles:
in other words, u-hypersurfaces are hyperspheres (or hyperplanes) whose orthogonal
trajectories are circles (or straight lines); and they must belong to a bundle of spheres
or hyperplanes. By using a Mobius transformation, we are brought back to the three
typical bundles, respectively defined by

. .. vy X
i) Zx? = Const., 1ii) x, = Const., iii) 2 — Const.
X1

Therefore, if u is concircular on a conformally flat manifold (M, g) there exist local
coordinates x; and a function 0 of one variable such that

u=0Cx}), u=0(x) or u=0(xy/x,)
and, for a suitable choice of the function ¢ (xy, ..., Xx,):
ds? = e2° X dx2.

Now it can be directly checked that X dx} admits x; and X x? for concircular



Concircular transformations of Riemannian manifolds 167

fields, while (x3+x2)~7'X dx? admits arctg(x,/x;) as a concircular field. With
help of Lemma 2.3, we can state:

Theorem 2.4. The conformally flat metrics admitting a concircular field are
locally given, by suitable choice of coordinates, by

ds? = @ (Zx)Zdx?, ds®= @(x)Z dx?
or
ds? = (x2+x2) "1 (arc tg x,/x;) X dx?

where ¢ is an arbitrary function of one variable; and the associated concircular fields
are the primitives of .

This result completes Theorem 2 of [6]. Let us notice that, by setting u=
arctg (xy/x;) and v=(1/2) Log (x3+x2), the metrics of the third type can also

be written
ds? = @(u)(dud+dvi+e= Do 5 dx?).

The global existence of concircular fields depends on the topology of the manifold.

3. A special case: quasi-similarities. Definition 3.1. 4 conformal deformation
[resp. a conformal morphism f] will be called quasi-homothetic [resp. a quasi-
similarity ] if there exists a scalar function ¢ such that the associated function u [resp.
the function u=|f’|"1] satisfies

3.1) u; ;= 0g; and grad®u = 2ou.

(In other terms: u is concircular and the associated function t= o/u—(1/(2u?)) grad®u
is null.)

If n=3, the conditions 3.1 express that the Ricci and sectional curvatures of
M are transformed in the same way as under an homothety [resp. a similarity] of
ratio u~* (see formulae (0.5) and (0.6)). In particular, any conformal morphism of
Ricci-flat manifolds (i.e. with Ricci curvature zero) of dimension n=3 is automati-
cally a quasi-similarity. More precisely, we have:

Lemma 3.1. Let (M, g) be a flat [resp. Ricci-flat] manifold of dimension
n=3, and f:(M,g)—~(M, §) a conformal morphism. In order that (f(M), g) be flat
[resp. Ricci-flat] it is necessary and sufficient that f be a quasi-similarity.

Quasi-similarities have been studied by us in [5]. Let us recall some results.

Lemma 3.2. If u=M—R satisfies (3.1), then ¢ is a constant; and for any
vector fields X,Y on M, we have

(3.2 R(X,Y) grad u =0,
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Lemma 3.3. In order that u: M—~R be quasi-homothetic, it is necessary and

sufficient that there exists a constant ¢ and local coordinates (x;), with x,=u,
such that:

du?
(3.3 ds? = —2_97+u2i’j§2 Vi (Xa, vy X,) dx; dX; .

(This is a special case of Property 1.3.)

For brevity, we shall say that a quasi-homothety [resp. a quasi-similarity] is
proper if the associated function u is not constant.

Theorem 3.4. A complete Riemannian manifold does not admit any proper
quasi-homothety or quasi-similarity.

Proof. On any geodesic y satisfying dx/ds=grad u/|grad u|, we have du/ds=
(2ow)"* and d?uj/ds*=¢; hence, if 0#0:2u=9(s—s,)?; and if s could run from
—oo to 4+ <o, u would take the value zero.

The case of R" and of conformally flat manifolds. First of all, on R", the only
nonconstant solutions of (3.1) are the functions

(3.4) u=+0X(x;—a)?* (o, a; = Const.)

This easy remark provides a very short proof of the theorem of Liouville in class
C3: namely, if U is an open set of R" (n=3) and if f: U~R" is a conformal (not
necessarily injective) morphism, then, from Lemma 3.1, f is a quasi-similarity and
u=|f’|"1 satisfies (3.4) for some values of g, a, ..., a,. If 90=0, u=Const. and
fis a similarity. If 90, let be j the inversion x~—>a+(2/g)|x—a| 2(x—a). Then
we have |f'(0)|=|j’()|=|j(j()|™% hence [(fojY(®)|=1 and foj is an
isometry. In both cases fis a M&bius transformation.

On another side, we may complete Lemma 2.3 and Theorem 2.4 by stating

Lemma 3.5. If u is quasi-homothetic for (M, g), the only metrics, conformally
equivalent with g, which admit a nonconstant function 0(u) as quasi-homothetic,
are of the type g=Cu*~'g with C,i=Const., A0, the function 0 then being
0(u)=ku* (k=Const.).

Theorem 3.6. The conformally flat metrics admitting a quasi-homothetic de-
Sormation are locally given, with suitable coordinates, by:

ds® = [Z(xDP 12 dx?, ds?=e*1Xdx? or
ds* = eM(du2+dv2+e™ 3., dx?)
where 170 is a constant.

Among these metrics there is no one of constant curvature 0, as we could
infer from (3.2).
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4. Concircular deformations of submanifolds. The restriction to a submanifold
of a concircular transformation is still conformal, but not necessarily concircular.
In fact we have:

Theorem 4.1. Let u: M—R concircular. In order that the restriction of u
to a submanifold 'V be concircular it is necessary and sufficient that at any point of V

either grad u be tangent to V

or the normal component N of grad u be an umbilical direction for V.

Proof. We know that v=upy is concircular if, and only if, there exists a func-
tion ¢ on V such that

4.1 VXer(V): Vy(gradv) = oX,

where Vy is the induced connection on V. Now grad v=T=grad u—N is the tan-
gential component of grad u, and VT is the tangential component of V,7. By
using (1.3) we see that the condition (4.1) is realized if, and only if, VyN—(0—0)X
is normal to V; and, if N0, this means that N is an umbilical direction for V.

This last condition is realized, in particular, if grad u is normal to V at any
point; in that case v is constant and ¢=0.

If u is quasi-homothetic (which implies grad? u=2¢u and g¢==Const.) and if we
want v=u,, to be quasi-homothetic, we have to set the additional condition grad?v=
20v with o =Const. This is realized if and only if |T|?/|N|?*=0/(e—o)=Const., i.e. if
the angle of grad u with ¥V is constant. We can state:

Theorem 4.2. Let f: M—~M be a quasi-similarity and V a submanifold of
M. In order that the restriction of f to V be a quasi-similarity, it is necessary and
sufficient that the field grad (|[f’|™Y) be tangent to V, or that it make a constant
angle with V' and its normal component be an umbilical direction for V.

A special case: Hypersurfaces of an Einstein manifold. If V is an hypersurface
satisfying the second condition stated in Theorem 4.1, then V is totally umbilical
with scalar normal curvature A=(c—g)/|N|. Now it is elementary to check that,
in an Einstein space, the scalar normal curvature of a totally umbilical hypersurface
is constant. In that case, the angular condition of Theorem 4.2 implies |7|=Const.
(since (o—g)/|N|=Const.), hence grad®v=2¢v=Const., and v=Const., which
is realized if, and only if, N=0. We can state:

Theorem 4.3. Let M be an Einstein space, and u: M —~R a quasi-homothetic
deformation. In order that the restriction of u to an hypersurface V be quasi-homo-
thetic, it is necessary and sufficient that V be tangent or normal to the vector field
grad u.
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By using a previous remark, we have:

Theorem 4.4. Let (M, g), (M, g), be two Ricci-flat Riemannian manifolds of
dimension n=4, f: M—~M a conformal morphism, and V a flat [resp. Ricciflat]
hypersurface of M. In order that f(V) be flat [resp. Ricci-flat] it is necessary and
sufficient that the field grad (|f’|™) be tangent or normal to V.

In particular, the only flat hypersurfaces of R" whose image, under an inversion
with pole 0, is a flat hypersurface, are parts of cones with vertex O (this result being
also true for n=3).

However these results cannot be extended to submanifolds of co-dimension
=2, as is proved by the following counter-example which infirms an assertion of

[1]-

Example. Let ¥ be the sutmanifold of R?, image of the domain (¢;>0)
of R? under the imbedding f of components

1 1 .
St s t)) = Etk cos(Logty) fiip= ﬁtk sin(Log#) (1=k=p).

We have 37 df?=3"_ dt?, which proves that V is flat.
The image of V under the inversion j: x—|x|~2x admits the parametrization
g=jof, which satisfies

212:1 dg% = 2i=1 |f|4

So j(V) is flat, although ¥ is neither tangent nor orthogonal to the field grad |;’|~*.
In fact the tangential and normal components of grad [j’(x)|"'=2x at the point
x=f(t) are given by:

Ny = fitfiips Newp=fisp—fi A1=k=p)
Tk =f;c~—fl‘c+p’ Tk+p =ﬁg+ﬁ(+p (1§k§p)

We can check that N is an umbilical direction for ¥V, and that grad |j’|~* makes
an angle of n/4 with V. Thus conditions of Theorem 4.2 are exactly fulfilled.

a4
o =|—t1721f=1df§-
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