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Introduction. In this paper we deal with connected Riemannian manifolds
(M,g),(M,il of dimension n and of class Cs at least. We shall denote their sectional

curvature tensors by Ä, R, their Ricci tensors by r, F, and their scalar curvatures

by S, S. The space of Cz-vector fields on M will be denoted by f (M).
With every strictly positive scalar function u of class C2 on M, we associate

the conformal deformation g*u-zg of (M, g). The curvature tensors ' of
(M,E:u-'g\ are then given, in local coordinates, by:

where the ui,i ?te the covariant derivatives of second order of u, and lu:giiui,i.
(These formulae follow from the usual ones by setting u:e-".\

Definition. The scalarfunction u and lhe associated conformal deformation
g*u-2g are said to be concircular if there exists a scalar function p such that

Fii - rii + ui, j.(+- @- r) ry) r,,,

u' Rrjor- Rrior: - ry (gir,g i i- g ug i*)

1
+ u(groui,t* 

gitui,k- guui,k- girrui,t),

n-'s - .! - 2(n- 1) (+ - + ry),

ui,j : Qgii (i, j : I, 2...n).

by setting r - Qlu-(l lQ"\) gradz u, the formulae (0.1), (0.2), (0.3)

rii - rii 2(n - I)r gri,

u'Rrjor- Rrjo, - 2r (grogir- gu gix),

u-LS - ,S - 2n (n --1)r.

More generally,if (M,e) and (M,A are two Riemannian manifolds of the same

dimension n, a morphism f: M*M is said to be concircular if it is conformal and
if there exists a scalar function I on M wchthat u:l/'l-l satisfy (0.4). In other
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words 1f: (M,g)-(M,f) is concircular if, and only if, g-f*g is a concircular
deformation of (M, g).

A conformal morphisml'such that l/'l is constant will be called a similarity;
a conformal deformation g-u-29 such that z is constant will be said to be a ho-

mothety.
Concircular transformations have been introduced by K. Yano [13] as confor-

mal transformations preserving geodesic circles (curves whose normal parametriza-
. tions satisfy dsxldss:k(dxlds) with k:const.). Later, W. O. Vogel U2l proved

that every morphism preserving geodesic circles is necessarily conformal; and Y.
Tashiro [9] gave a classification of complete Riemannian manifolds admitting a con-
circular freld u (i.e. satisfyinC (0.4) but not necessarily >0).

Let us notice that the characterization of the sphere given by M. Obata [8]sets
upon this classification. For other papers relative to concircular transformations,
see [5, 8, l0]. An equation close to (0.4) has been studied by J. Lafontaine [7].

In this paper, we first review the main results concerning concircular deforma-
tions (Section 1); then we shall set some apparently new results, and examine the
special case ?:0 (Sections 2,3, 4). Most part of these results are extensible to
pseudo-Riemannian manifolds.

1. Preliminaries. At first let us notice that, if n>3, either relation (0.5), (0.6)

involves (0.4) with p:ru+(UQu)) gradz rz. It easily follows:

Property 1.1. Any conformal mapping between Einstein manifolds of dimension

n>3 is concircular.
Conaersely if .f:(M,d*(M,E) is concircular, and if (M,d is an Einstein

space [resp. a spqce with constant sectional curoatureJ, thm so is (M, E).

Property 1.2. If u: M*R is concircular (satisfying (0.4)) then:
a) For dny constant )., u* )" is concircular i and u-r is concircular on (M, u-zg).
b) There exists locally afunction G such that

(1.1) gradzu: G(u) and A: +G'@).

c) For any uector fields X, Y on M

(1.2) R(X,I). grad 11: (L*q)Y-(LydX.

Proof. The first assertion a) is obvious; for n>3 the second one can be ob-
tained by exchanging g and !.

To prove b), we notice that, with intrinsic notations, (0.4) is equivalent with

(1.3) YX€|(M): Vlgrad u: QX

which implies 
y11gradz u : 2QX. grad u : 2Qyxu

or, in other terms, d(gradz u):2Q du.
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Finally (1.2) follows from (1.3) by covariant differentiation.

Property 1.3. In order that u:M-R be concircular, it is necessary and
sfficient that there exist local coordinates (x), with xt:tt, sttch that the metric
ofMbe

(1.4) ar, : ffi+G(u) 2,,i=rTij(xz, ..., xn) dxidxi

with p:(l l2)G' (u), or equiualently:

(1.5) dsz : doz*cp,(u) Zt,i=r"lu(xz, ..., x,) dxidx,

with a: I lG(u)1-rrz du and q,(u):G(u\.

Obviously, the function G(u):gradz u need not be defined at stationary points
of z; but on a complete manifold, there are at most two such points (cf. [0]).

For the applications ofconcircular properties to Einstein or other special spaces,

see [2], [5], [9], [10], IU, U2], [3].
2. Conformal properties. From the results reviewed in Section 1, we easily infer

Lemma 2.1. If u: M*R is concircular (i.e. satisfies (0.4)), then

a) the u-hypersurfaces (defined by u:Const.) are totally umbilical, of constant

normal curuature qllgrad ul.
b) the integral cunses of gradu are geodesics whose tangent qt any point is an

eigen direction of the Ricci tensor.

The proof is classical; the last assertion follows from (1.2). In [4] we proved
that the "conformal circles" of E. Cartan and K. Yano are the curves which, by
a suitable conformal deformation of M can be changed into geodesics whose tangent
is an eigen direction of the Ricci tensor. By looking for a converse of Lemma 2.1,

we obtain:

Theorem 2.2. Let (M,d beaRiemannianmanifoldand u:M-R astrictly
positive scalar function haaing only isolated stationary points. In order that there

exists a metric !, conformal to g, such that u be concircular on (M, E), it is nec-
essary and sfficient that

i\ the u-hypersurfaces be totally umbilical,
ii) their orthogonal trajectories be conformal circles.

Proof, The necessity of these conditions follows from Lemma 2.1, since they
are invariant under a conformal deformation.

Conversely we know (cf. [3]) that the condition i) implies the existence of local
coordinates x;, with xr:u, such that the metric of M is

dsz : Az duz * Bz )i, 1=zlii(xz, ..., xn\ dxi dxr.

If the condition ii) is satisfied, the curves x,:Qens1. (i=-2\ are still conformal
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circles for the metric fu'lA'; and since they are geodesics for this new metnc,0f0u
must be an eigen vector for the Ricci tensor. Now the (1,7)-components U*I) of
the Ricci tensor for dszf A2 are given by

R i:-(n-rl&ttt(+)
and therefore the condition ii) is equivalent with the existence of two positive func-
tions a, B such that

B
7 - a(u) fr (xr, ..., xn).

By setting !ii: fyri, we have

# - duz + q'(u) Z r, j=zTii(xr, ..., xn) dxrdxi

and the Property (1.3) shows that u is concircular for the metric dsz/(uAz).
Let us notice also that ! a du is concircular for dszlAz. On the other hand

we have:

Lemma 23. ff u is concircular on (M,g), andif e is adffirentiablefunction
on u(M), the only metrics conformally equiaalent with g which admit 0(u\ as a
concircular field are giuen by E:Cl|'lg, with C:Const.

Application: Conformally flat manilolds admitting a concircalar dctormation.
Starting with R" we have to look for functions z>0 such that the z-hyper-
surfaces be totally umbilical and their orthogonal trajectories be conformal circles:
in other words, a-hypersurfaces are hyperspheres (or hyperplanes) whose orthogonal
trajectories are circles (or straight lines); and they must belong to a bundle ofspheres
or hyperplanes. By using a Möbius transformation, we are brought back to the three
typical bundles, respectively defined by

i) Ex!: Const., ii) x, : Const., iii) a : Const.
X1

Therefore, if z is concircular on a conformally flat manifold (M,g) there exist local
coordinates x; and a function 0 of one variable such that

u:0(2x7), u:0(xt) or u:0(xzlx)

and, for a suitable choice of the function o(xr, ..., xn)l

ilsz : e2"E dx?.

Now it can be directly checked that E dx! admits x, and E x! for concircular
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fields, while (x?+x|\-LZ dx! admits arctg(xJxr) as a concircular field. With
help of Lemma 2.3,we can state:

Theorem 2.4. The conformally flat meftics admitting a concircular field are

locally ghsen, by suitable choice of coordinates, by

dsz : EQx?)Z dx!, dsz - q(xt)E dx!

dsz - (x?+ x?)-' rp (arc tg x2f xJ t dx?

where E is an arbitrary function of one aariable; and the associated concircular fields
are the primitiues of E.

This result completes Theorem 2 of 16]. Let us notice that, by setting z:
arctg(xJxr) un6 u:(ll2)fog(xl+xl), the metrics of the third type can' also

be written
4sz : E @\ Qluz + doz + e-'o Z r=, dx?).

The global existence of concircular fields depends on the topology of the manifold.

3. A special case: quasi-similarities. Definition 3.1. A conformal deformation

[resp. a conformal morphism f] will be called quasi-homothetic [resp. a quasi-

similarityl if thereexists a scalarfunction p such tlwt the associatedfunction u [resp.
the function u:lf'l-' J satisfies

(3.1) ui,J: Qgij and gradz u:2Qu.

(In other terms: z is concircular and the associatedfunction 7:plu-(llQu2\)gtadzu
is null.)

If n-3, the conditions 3.1 express that the Ricci and sectional curvatures of
M are transformed in the same way as under an homothety [resp. a similarity] of
ratio'u-L (see formulae (0.5) and (0.6)). In particular, any conformal morphism of
Ricci-flat manifolds (i.e. with Ricci curvature zero) of dimension n >3 is automati-

cally a quasi-similarity. More precisely, we have:

Lemma 3.1. Let (M, d be a flat [resp. Ncci-flatJ manifold of dimmsion

n>3, and f: (M, g\*(M, !) a conformal morphism. In order that (f(IO, E) be flat
[resp. Ricci-flat] it is necessary and nfficient thst f be a quasi-similarity.

Quasi-similarities have been studied by us in [5]. Let us recall some results.

Lemma 3.2. If u:M*R satisfies (3.1), then p is a constdnt; andfor any

aector fi.elds X, Y on M, we haue

(3.2) R(X, Y) grad u : 0,
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Lemma
sfficient that
such that:

(3.3)

3.3. In order that u: M*ft be quasi-homothetic, it ,s necessary and
there exists a constant a and local coordinates (",), with xL:Lt,

dsz : #*u Zr,i=ztii(x2,, ..., xn) dxidxi.

(This is a special case of Property 1.3.)

For brevity, we shall say that a quasi-homothety [resp. a quasi-similarity] is
proper ifthe associated function a is not constant.

Theorem 3.4. A complete Riemannian manifold does not admit any proper
quasi-homöthety or quasi-similarity.

Proof. On any geodesic y satisfying dxlds:gradullgradul, we have dufds:
(2qu)uz and dzuldsz:g; hence, if ql0:2u:Q(s-si2; and if s could run from

- - to * *, u would take the value zero.

The case of N and of conformally flat manifulds. First of all, on Rn, the only
nohconstant solutions of (3.1) are the functions

(3.4) tt - * pZ(x,-a)' (Q, a, - Const.)

This easy remark provides a very short proof of the theorem of Liouville in class
C3: namely, if Uis an open set of Rn (n>3) and if f: U-R" is a conformal (hot
necessarily injective) morphism, then, from Lemma 3.1,/is a quasi-similarity and
,:lf'l-' satisfies (3.4) for some values of p, ar,...,on. If q:Q, u:Const. and

/is a similarity. If Q+0, let be j the inversion x-a*(2ldlx-al-2(x-a). Then
we have lf'6)l:lj'(x)l:U'U@))l-', hence l(foj)'(x)l:l and foj is an
isometry. In both caseslf is a Möbius transformation.

On another side, we may complete Lemma 2.3 and Theorem 2.4 by stating

Lemma 3.5. If u is quasi-homothetic for (M, g), the only metrics, conformally
equioalent with g, which admit a nonconstant function 0(u) as quasi-homothetic,
are of the type E:Cu^-rg with C,l.:Const., 1+0, the function 0 then being
0@):ku^ (k:Const.).

Theorem 3.6. The conformally flat metrics admitting a quasi-homothetic de-

formation are locally giaen, with suitable coordinates, by:

6tz : [2(x!)]L-rE dx!, dsz : e^'tD dx\ or

dsz : e^" (duz 1 illtz 4 s-zr Z r=" dx?)

where Al0 is a constant.

Among these metrics there is no one of constant curvature 10, as we could
infer from (3.2).
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4. Concircular deformations of submanifolds. The restriction to a submanifold
of a concircular transformation is still conformal, but not necessarily concircular.
In fact we have:

Theorem 4.1. Let u: M*R concircular. In order that the restriction of u
to a submanifold V be concircular it is necessary and sufficient that at any point of V

either grad u be tangent to V
or the normal component N of grad u be an umbilical direction for V.

Proof. We know that u:uv is concircular if, and only if, there exists a func-
tion o on Zsuch that

(4.1) VX(f (n: V" (grad u) : 6X,

where V" is the induced connection on Z. Now grad.a:T-gradu-N is the tan-
gential component of grad u, and VrZ is the tangential component of V*2. By
using (1.3) we see that the condition (a.1) is realaed rf, and only if, VaN-(q-o)X
is normal to V; and, if N*0, this means that N is an umbilical direction for V.

This last condition is realized, in particular, if grad a is normal to V at any
point; in that case u is constant and o:0.

If z is quasi-homothetic (which implies gradz u:2qu and q:g6nst.) and if we
want a:u V to be quasi-homothetic, we have to set the additional condition grad2 u :
2orswith o:Const. This is rcalized if and only if lTl,llNlz:ol@-o):Qonst., i.e. if
the angle of grad z with Z is constant. We can state:

Theorem 4.2. Let f: M*M be a quasi-similarity and V a submanifold of
M. In order that the restriction of .f to V be a quasi-similarity, it is necessary and
sfficient that the field grad(lf'l-t) be tangent to V, or that it mqke a constant

angle with V and its normal component be an umbilical direction for V.

A special case: Ilypersurfaces of an Einstein manifold.If Z is an hypersrirface
satisfying the second condition stated in Theorem 4.1, then Z is totally umbilical
with scalar normal curvature ):(o-q)llNl. Now it is elementary to check that,
in an Einstein space, the scalar normal curvature of a totally umbilical hypersurface
is constant. In that case, the angular condition of Theorem 4.2 implies l7l :Const.
(since (o-q)/ll[l:Const.), hence gradz u:2ou:Const., and u:Const., which
is realized if, and only if, N:0. We can state:

Theorem 4.3. Let M be an Etnstein
deformqtion. In order that the restriction of
thetic, it is necessary ond sfficient that V
grad u.

space, and u: M*R a quasi-homothetic

u to an hypersurface V be quasi-homo-

be tangent or normol to the uector field
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By using a previous remark, we have:

Theorem 4.4. Let (M,g), (M,E), be two Ricciflat Riemannian manifolds of
dirnension n>4, f:M-M a conformal morphism, and V aflat [resp. Riccifiat]
hypersurface of M. In order that f(V) be flat [resp. Ricci-flatJ it is necessary and
sfficient that thefield grad(lf'l-L) be tangent or normal to V.

In particular, the only flat hypersurfaces of Ro whose image, under an inversion

with pole 0, is a flat hypersurface, are parts of cones with vertex 0 (this result being
also true for n:3).

However these results cannot be extended to submanifolds of co-dimension

=2, as is proved by the following counter-example which infirms an assertion of
t rl.

Example. Let V be the submanifold of R2p, image of the domain (r,=0)
of Rp under the imbedding f of components

.fo\r, ... , to) : 
#/o 

cos (Log /e) r I
fo*o : E 

/o sin (Log rr) (1 = k = P).

We have Zi:, df,' - ZX=, dtt ,

The image of V under the
g:j o f, which satisfies

z::, ds?

which proves that V is flat.
inversion j: x,-,|*l-'* admits the param etruation

!2p dft' _ 4 ,, Åfl-.4i=LW - W-4k-Lutk'

So 7(Z) is flat, althoughV is neither tangent nor orthogonal to the field grad lj'l-1.
In fact the tangential and normal components of grad lj'(x)l-t:2x at the point
x:f(t\ are given by:

Nr, :fnt.f*+p, No*r:fo*r-fo $ = k = P)

T* =.fx-.f**p, Tu*o : fu*fo*, $ = k = 
p).

We can check that Nis an umbilical direction for V, and that grad l.l'l-1 makes

an angle of nl4 with V. Thus conditions of Theorcm 4.2 are exactly fulfilled.
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