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ON A CONJECTURE BY M. OZAWA
CONCERNING FACTORIZATION OF
ENTIRE FUNCTIONS

W. H. J. FUCHS and G. D. SONG

0. In a series of four papers [2, 3] M. Ozawa considered entire functions F(z)
possessing, for infinitely many k, a factorization

1 F(z) = Pyog(2),
where P, is a polynomial of degree k and g, is an entire function. He proved

Theorem A. If (1) holds for k=2 (j=1,2,...) and for either k=3 or k=5,
then either

2 F(z) = ae"+b (a, b€C, H(z) entire)
or
3) F(z) = acos((H(2))"?)+b.

Indeed for a function of the form (2)
F(z) = (au"+b)oelH@/"
shows that (1) holds for k=1,2,3,.... And if the polynomial T, is defined by
@ T,(cos 0) = cos nb,
then a function of the form (3) satisfies

H(2)'
n

F(z)=aT,,[cos }—l—b n=12,..)

and again (1) is true for k=1, 2, ....
Ozawa also proved

Theorem B. If (1) holds for k=3, k=2 and k=4, then F(z) must be
either of the form (2) or of the form (3).

These results led Ozawa to the

Conjecture. If (1) holds for k=¢=2 and k=n;=2, where n; divides n;,
and (g,n;)=1 (j=1,2,...), then the conclusion of Theorem A holds.
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We shall show that this conjecture is not generally correct by proving

Theorem 1. There are entire functions F(z) which are not of the form (2) or
(3) and which satisfy (1) for k=nz=2, k=q=2, (n,q)=1, and for k=(+nq)
(=1,2,..).

However, if the sequence n; does not increase too rapidly, then the conjecture
is correct.
We shall prove

Theorem 2. If the entire function F(z) satisfies (1) for k=n;, k=gq
(2=m=<gq, (n;, q9)=1) and for k=n; (j=2,3,...) where n;,,=n;q, (n; =1,
then F(z) is either of the form (2) or of the form (3).

1. Proof of Theorem 1. Let

0i(2) = z+2"* e, (¢ > 0).
Let
hv,m(z) = Qv+1 O... OQm(z) (m >0 = 0)

We prove first that the constants ¢, can be chosen so that
h,(2) = lim h,,(2)
m-—oco

is an entire function for every v=1.
As the first step in the construction we choose

a=1, 0;(2) = z+z"+%

Suppose Q,...Q, have already been chosen. Put

hv,k(Z/) _hv,k(z)

A, = max su
k 0=v=k-1 lz]épk zZ'—z ’
|z’|=k+1

with the obvious definition of the right hand side for z=z".
Let c;.1=[2"k""1max (1, 4;)]. Then, in |z|=k,

. knq+1
Q+1(D = |zl + Sepmgrr < l2l+1.
For v %“—1, |z|=k, by the definition of 4,

qu+1

I
B, k+1(2) =y, 1 (D] = 44| Qxs1(2)— 2| = SRl 27k

Therefore

lim by (2) = hypsr @D+ | 2 {hos1 (D —hoi()}
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is uniformly convergent in |z|<m for every m=0, i..
hv(z) = ,}lm hv,k(Z)
is an entire function. Obviously

ho(z) = R,0h,(z2) (v=1)
where

Rv = QIOQZ“' OQv

is a polynomial of degree (1+ng)’.
The functions 4,(z) are not constants, because it follows from the definition that

h,(1) =1, h,0)=0 (»v=0,1,2..).
By induction on v it is easily seen that
R, (u) = uk, ("),
where k, is a polynomial of degree
1 v

Choose
F(2) = (ho(2)), g,(2) = (ho(2))"
Then

F(2) = u" o(hy(2))* = ut o (e ()" = (R, 0 hy(2))"1 = (ko (2) K, (,(2)"))"™
= u(k,(u))" 0 g,(z) = P,0g,(2),
where P, is a polynomial of degree
1+ng-degk, = (1+nq)"

The function F(z) has all the required factorizations.
We must still show that F(z) is not of the form (2) or (3). The equation

g(w) = u(k; (W) = u(1+uw)" =

has at least 2 distinct roots for every value of a, since g’(#) is not a perfect power.
The entire function g; (z) omits at most one value. Therefore F(z)=u(ky (1)) 0g,(2)
assumes every value and so F(z) is not of the form (2).

Suppose
Q) F(z) = (hy(2))" = acos VH(2)+b.
Choose y so that acos y+b=0. If z, is a root of multiplicity / of
(©6) H(z) = (y+2kn)® # 0 (k€Z),

then the power series of } H(z) in powers of z—z; is
VH(z) =2 (y+2kn)+a(z—z) ' +... (o = 0).
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By Taylor’s theorem
acos VH(2)+b = acosy+b+p(z—z) ' +...= B(z—z)'+...
where B0, if y20 (mod n). If y=0 (mod =), then
acos VH(Z)+b = p(z—z)*+... B=0.

By (5) every zero of acos }VH(z)+b must have a multiplicity divisible by ng=6.
Hence every root of (6) has multiplicity /=3, the value (y+2kn)? of H(z) is com-
pletely ramified. But a well known theorem of Nevanlinna theory [1, p. 44] asserts
that an entire function has at most 2 completely ramified values. This contradicts
(5) and the proof of Theorem 1 is completed.

2. Some preliminary results. Our proof, like Ozawa’s work, is based on

Picard’s theorem. (cf. [4].) Let R(u,v) be an irreducible polynomial in
Clu, v]. If there are non-constant entire functions f(z), g(z) such that

(M R(f(2), g(2)) =0 (vz€0).
then the Riemann surface defined by
®) R(u,v)=0

is of genus zero.

(The Theorem is usually stated in the form: If (7) holds for meromorphic func-
tions f, g, then R(u,v)=0 defines a Riemann surface of genus =1. But Riemann
surfaces of genus one can only be uniformized by elliptic functions, not by entire
functions.)

A Riemann surface X of genus 0 is conformally equivalent to the Riemann
sphere, i.e., its points can be put into 1—1 correspondence with a parameter s rang-
ing over the Riemann sphere so that any holomorphic function on X can be written
as a holomorphic function of s defined on the Riemann sphere, that is to say a ra-
tional function of s. In particular the points of the surface (8) are in 1—1 correspond-
ence with the points s of the Riemann sphere by

) u=U(), v=V() (U,V rational).

Note that the parameter s can be replaced by any fractional linear transform 7T of s,
if U and V are changed into UoT™!, VoT .

Lemma 1. If f(z) and g(z) are non-constant entire functions and if P, and
P, are polynomials of relatively prime degrees m, n respectively, then the identity

(10) P,of(z) = P,og(z) (Vz€C)

implies the existence of an entire function s(z) and of polynomials U (of degree n)
and V (of degree m) such that

f(2) = U(s(2)), g(2) =V(s(2))
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Proof of Lemma 1. Factorize
Py ()= P, (v)

into irreducible factors in Clu, v]. If (10) holds, then one of these irreducible factors,
R(u, v), say, will satisfy

R(f(2), g(2)) = 0.

By Picard’s theorem this means that there is a conformal map s=y(p) of
the points p of the Riemann surface X of

R(u,v)=0

onto the points s of the Riemann sphere. Without loss of generality we may assume
that s=-oo corresponds to a point with u= .

Except at a finite number of branch points of R we may use u as local uniformiz-
ing parameter, so that s is a holomorphic function ¢(#) of u near all points of R
except the branch points. Therefore the map

2> (f(2), g(2)) = pr—>s =¥ (p) = 00f(2) = 5(2)

is holomorphic near all z except perhaps those for which (f(2), g(2))=(u, v;)=p;
is a branch point of X. These values of z form a discrete set E. If z—z,€E, s(z)—~s(p,).
Therefore z, is a removable singularity of s(z), s(z) is entire.
By (9), on X
u=U(®k), v="V(s)
and so
f(2)=U(s(2), g(2)=V(s(2))

U, V rational functions.

Suppose R(u, v) is of degree m; in u, n, in v. Then for a given value of v, u has
in general m, possible values, i.e., there are m, values of s for given v, i.e., V is of
degree m;. Similarly U is of degree n; .

Since f(z) and g(z) are entire, U and V cannot have poles at any value taken on
by s(z). Since s(z) omits at most one finite value, U and ¥ can have poles at one
finite value s, at most and then s(z)#s, (z€C). Without loss of generality we may
suppose s,=0 (otherwise replace s by s—s,). Combining all the information on
U and V we find that we must have

@11) Us) =2""as®, V(s) = ZTL_u bys",
O=sv=m=n O0=u=m =m.
By (10),
12) P,oUos(z) = P,oVos(z) (z€C).

Since s(z) takes on infinitely many distinct values, this implies

(12) P,oU(s) = P,oV(s) (s€C).
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For large values of s, by (11) and (12")

P, oU(s)~const. st=™ P oV(s)~const. st —H"
Therefore
(ny—v)m = (my—wn.

Since 0=n,—v=n, O=m; —u=m, (m,n)=1, we must have
either ny—v=n, my—u=m; n,=n, v=0, my=m, pu=0
or m=v, m=pU.

That js to say that either U and V are polynomials of degree n and m respectively
or they are polynomials in 1/s. In this case s(z)=0 (z€C). Put 1/s(z)=t(z). Argu-
ing with the polynomials U,(t)=U(s), Vi(t)=V(s) we obtain again that (12)
implies n,=n, m;=m and the proof of the Lemma is completed.

Lemma 1 reduces the study of the identity (10) to the investigation of polyno-
mials P,,, P,, U,, V,, satisfying

(13) P,oU,=P,oV, (n,m)=1

This relation was the subject of a beautiful and deep investigation by J. F. Ritt in
his paper [5]. The results of Ritt are summarized by

Lemma 2. The equation (13) can only hold under the following circumstances:
(A) There are first degree polynomials 2, », v, u such that

AoPj,ox=T,, AoP,ov=T,
x1oU,ou=T, vioV,ou=T,,
AoP,oU,op=AoP, oV, ou="T,,,

where the polynomials T are defined by (4).
(B) Suppose m=n. There are first degree polynomials 1, %, v, i and a polynomial
h(u) of degree <mjfn such that

AoP,ox(u)=uh"(u) (r+ndegh=m),
% 1oU,ou(s) = s",
AoP,ov(u) =u",
v 1oV, ou(s) = sh(s)",
(19 AoP,oU,ou(s) = LoP,oV,ou(s) = (s"h(s")"
Lemma 3. Unless the polynomial Q of degree p is of the form
Q(w) = A(u—0)’+B,

there are only a finite number of pairs of first degree polynomials v, u such that

voQ =Qou
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Proof. Let v(t)=at+b, u(t)=ct+d. If

voQ = aQ(u)+b = Qop=Q(cutd),
then
aQ’ (u) = cQ’ (cu+a).

Therefore the set S of zeros of Q' is invariant under the map w—cu+d. Since no
translation leaves a finite set invariant, c#1, unless v(w)=pW)=u. If c#1 we

can write
u() =c(it—a)+a, a=d/(1-c).

The invariance of S now requires |c|=1, unless S={a}. (Consider a value of
te S for which |t—a| is maximal.)

If Ss{a}, then ¢ must be a root of unity, ¢¥=1, c¢*#1 (0<k<N). S con-
sists of corners of some regular N-gons with center o and possibly also u=a. Hence

Q'(u) = Clu—a) J[;Z, {(u—a)"—b}
and, by integration,
Q) = (u—oa)* " h[(u—o)"1+B
where h is a polynomial.

Qou=c*1QW)+B(1—c*) =voQ,
V(@) = ¢tt+B(1—ctY), (N =1).

There are only a finite number of possibilities for 4 and v in this case.
Finally, if S={«}, then

Q) =Cu—a)%, Q(u)=Au—x)’+B.
In this case any pair g, v with
u(@ =c(t—a)+a, v(@)=cPt+B(1—c?) (c#1)
is possible.

3. Proof of Theorem 2. Without loss of generality we may suppose that €))
holds for k=n,, q, ns, n;, ... where

(15) (n,q)=1;1<n <g=<=ny<ng...; Ny = n;q.

Using Lemma 1 with m=n; (j=2), n=q we see that there are polynomials
U (of degree gq), V (of degree m) and an entire function s,,(z) such that

(16) P oU0s,(2) = P,oV 0s,(2) = F(2).

Now Lemma 2 shows that P,,, U, P,, V must be given either by the formulae (A)
of Lemma 2 or by the formulae (B).

We show next that if (B) holds for a pair m=n;, n=gq, then (B) holds also
for any other pair (x, q) (k=1).
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Suppose we were in case (A) for (n;, g). Then we can find first degree polynomials
0, o such that
goP,o0(u) = T,(u).

On the other hand (B) for m and n=g<m shows that there are first degree poly-
nomials %, A such that
AoPjox(u) =viou.
Hence
goirovtoxtoo(u) = T,(u),

or, writing out the first degree polynomials
A(Bu+C)+D = T, (u).

But T, does not have any values of multiplicity >2. This leads to a contradiction,
since g=3.

Theorem 2 will therefore be a consequence of the two statements:

(O) If there is an infinite sequence M={m,};~, and a g=3 prime to all m,
such that (16) and (A) of Lemma 2 hold, then F(z) is of the form (3).

(D) If, for a sequence m=n;, where the n; satisfy (15), (16) and (B) of
Lemma 2 hold, then F(z) is of the form (2).

Proof of (C). By (A) there are first degree polynomials A=4,,, v=v,, such that
LoPov=T,.

If Z and # are the first degree polynomials corresponding to another value

me M, then
loz—lquoﬁ_lov =T,.
For g=3 T,(u) is not of the form A(u—a)’+B. By Lemma 3 there are only a
finite number of possible values of the pair (Loi~1, $~1ov). Keeping m fixed and
replacing M by a subsequence, if necessary, we may assume that 1 does not depend
on the choice of m. Formulae (16) and (A) now show that there is a first degree

polynomial A such that
A0 F(2) = Ty, (Sp(2)) (meM),

where S,,(z) is an entire function (S,, is the composition of s,,(z) in (16) with a first
degree polynomial). Put

17) Su(2) = cos ¢(2),
so that
(18) Ao F(z) = cos gm ¢(2).

The expression ¢(z) is not uniquely determined, but in a disk U of the z-plane
which contains no roots of S, (z)=+1 we can define ¢(z) as a holomorphic func-
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tion equal to a branch of arc cos S,,(z). All possible values of ¢(z) in U are ob-
tained from one, ¢,(z), say, by the formula

¢ (2) =t @o(z) (mod2n) (z€U).

Replacing m by another member  of the sequence M we can similarly define
¥(2) by
(19) Sa(z) = cos Y (2),
(20) Ao F(z) = cos gt Y (2).

Again ¥ is not uniquely defined, but in a disk in which S;(z)> +1 ¥ can be chosen
as a holomorphic function. We may assume without loss of generality that this disk
is identical with U.

Again all possible determination of Y can be derived from one of them, y,,
by the formula

@y ¥(2) =tyo(2) (mod2r) (z€U).
By (18) and (20),
gmy(z) =t gm @o(z) (mod 2x).
Changing /, into —,, if necessary, we may suppose
g o (z) = qm @o+2hm,
VYo(2) = (m[m)po(2)+2hn/qm.

Changing y, by adding a suitable multiple of 2z we have

(22 Yo(2) = (m/m)py(2) +ec,
where c is a real number satisfying
(23) —T<Cc=T.

Next we observe that the functions ¢, and ¥, can be analytically continued
along any path C which avoids the roots of S,,(z)==+1, S;(z)==%1. If Cis chosen
as a closed path from a point in U to U, then the results of the continuation ¢, Y
still satisfy (17), (19) and (22) with ¢, and V, replaced by ¢ and .. Let

¢c(2) = epo(2)+2Iln (e =%£1).
Then

(24) Ye(2) = (m/m)pc(2) + c= e(m/m)py(2)+2mln/m+c.
Also
(25) Ye(2) = npo(2) +2kn = n(m/i) o (2) +nc+2kn  (n =£1).
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Note that k depends on # and C, / on m and C, and ¢ on m and 7 only.
Comparing (24) and (25) we see that g¢=#, since @,(z) is not constant. There-

fore
c+2lmnjm = ne+2km.

If »n=1 this reduces to
Im/m =k

and for sufficiently large # we must have k=0 and therefore also /=0. If n=—1,
then

(26) 2kn = 2¢+2lmxn/m.
For large /i (26) and (23) imply

k=—1 or 0 or 1.

And since ¢ is independent of the path C, so k must be independent of C, pro-
vided n=—1. We see that Y is only capable of assuming four values:

@ If k=0, Ye=¢o (=1 or Yc=—¢o (m=-1).
(ii) If k=1, yYc=2n—1y,.
(iii) If k=—1, Yc=—-2n—y,.
In the three cases respectively the functions
(27) WZ’ ('// - ﬂ)2’ (l// + 7I)2

are single-valued functions of z, holomorphic at all points where S,(z)#+1. As z
approaches a root of this equation ¥, which is locally defined as a branch of
arc cos S;(2), approaches a finite limit. The roots of S;(z)= £ 1 are therefore remov-
able singularities of one of the functions (27). In case (i) we have

V2(z) = H(z)/(gm)* = entire function
and AoF(z)=cos VH(z) is of the form (3). In the other cases
Yxn =V H(2)/qm,
Ao F(z) = cos (F gimn+VH(z)) = +cos VH(z)

and again F(z) is of the form (3).

Proof of (D). By (14) and (16) with m=n,, n=q, there is a first degree poly-
nomial 4, and an entire function S, (z)=4;s, (z)+B, (4, B¢ C) such that

(28) M F(z) = [Sih (SO (k=12,3,..),
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where £, is a polynomial, 4,(0)>40, and
re+q deg by = ny.
By replacing S, by ¢Sy, if necessary, we may assume
h(0) = 1.
Also, using (14) for the indices n, and g¢,
(29) Aoo F(2) = [STh(S™)I",
r+n;degh =gq.

If a is the root of A4(¢)=0, B the root of A,(#)=0; then every root of F(z)=a,
has multiplicity =n,, every root of F(z)=p has multiplicity =g¢, by (28) and
(29). By Nevanlinna’s 2nd fundamental theorem [1, p. 43], if a=p

(30) T(r, F) = N(r, F)+N(r, Ti_oc]-l_ﬁ(r’ F—iﬁ)ﬁ-o(T(r, F)),

as r—oo through a suitable sequence of values. But

Ne.F =0, N, Fia)gnilzv(r, Fia]gn—llm, F)(1+o(D)),

N[r, ﬁ] = %N[r, —1——] = %T(r, F)(1+o0(1)).

Therefore (30) leads to the contradiction

T(r, F) = [—;—+-ﬁll—+ 0(1)) T(r, F).

This contradiction can only be avoided, if a=p, ie., if 4, (f)=cl,(?). Replacing
S,(2) by bS,(z) with a suitable b, we may suppose that

=1y (k=2,3,..),
31) Fy(2) = A0 F(2) = (Sichy (SO)T = (STh(S™))™.

Since (n;,q)=1, (31) implies that F,(z)=0 has only roots whose multiplic-
ity is divisible by mq;
Fy(2) = (G,

G(z2) entire. By (29) we can choose G so that

G1 = S"h(S™).
Suppose
h(t) — H}' (t__‘ynl)”('”‘
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Then h("™)=]], [Iix, (t—¢’y)*?, where ¢ is a primitive n,-th root of unity. If
z, is a root of S(z)=¢’y of multiplicity v, then gqlv-u(y). If gfu(y), then v=2,
i.e., the value ¢’y of S is completely ramified. Also r+n; degh=q. Therefore
O0<r<gq and each root of S=0 has multiplicity =2, by the preceding argument.

We have at least 3 ramified values of S:0,7, oy, if deg/h=0 and not all
roots of h have multiplicity divisible by ¢. Since an entire function has at most 2
ramified values we have either

(32 STh(S™) = S1
or q|u(y) for ally,
STh(S™) = S™(k(s")2.

But
g=r+n,degh; = r+n;qgdegk;

this is impossible, if deg k=0, because n;>1. Hence (32) holds and, by (29),

Fy(2) = S™a.
By (31) with k=2
(S5eha(SP) = S

and we may suppose

S52hy(S§) = ST, re+qdeghy = n,.

By repeating the reasoning above with S, in place of S;, S; in place of G and n,
and g interchanged we find

hy(S3) = (kz (Sé'))"l,
ro+n,q deg ky = n,.
Since (ny, q)=1, ry=>0, and since n,=n,g, we must have
Sitha(S9) = S
Therefore
Fy(2) = (S52h3(S9))* = Sp
which leads by the same reasoning to

Fy(z) = SIst = Spat... .

If F, has a root we arrive at a contradiction as soon as g is greater than the multi-
plicity of the root. Therefore

Fy(2) = A, 0 F(2) = e,

H entire. F(z) is of the form (2).
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