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CONCERNING FACTORIZATION OF

ENTIRE FUNCTIONS

W. H. J. FUCHS and G. D. SONG

0. In a series of four papers [2, 3] M. Ozawa considered entire functions F(z)
possessing, for infinitely many k, a factorization

(1) F(21 : Poo go(z),

where Po is a polynomial of degree k and gyis an entire function. He proved

Theorem A. If(l)holdsfor k:2i U:1,2,...) andforeither k:3 or k:5,
then either

(2) F(z) : uefl(') +b (a, b(C, H(z) entire)

or

(3) F(z) : acos(1np\rrz1+ b.

Indeed for a function ofthe form (2)

F(z) : (au"*b)oeH(z)tt

shows that (1) holds for k:1,2,3,.... Aud if the polynomial 7} is defined by

(4) [(cos 0) : cos n0,

then a function ofthe form (3) satisfies

F(z):oz;("o, #)*u (n:1,2, ...)

and again (l) is true for k:1,2, ....
Ozawa also proved

Theorem B. If (L) holds for k:3i, k:2 and k:4, then F(z) must be

either oftheform (2) or oftheform (3).

These results led Ozawa to the

Conjecture. If (l) holds for k:q>2 and, k:ni?2, wherc ry divides zr*,
and (q,n):l Q:1,2,...), then the conclusion of Theorem A holds.
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We shall show that this conjecture is not generally correct by proving

Theorem l. There are entire functions F(z) which are not of the form (2) or
(3) and which satisfy (l) for k:n?2, k:Q>2, (n,q):|, and for k:(t+nq)'
(l:1,2,...).

However, if the sequence z, does not increase too rapidly, then the conjecture

is correct.
We shall prove

Theorem 2. If the entire ftmction F(z) satisfies (l) for k:rr, k:Q
(2=nr=q,(nr,q):l) and for k:rj (i:2,3, ...) where ftiar3niQ, (ny 4\:1,
then F(z) is either of the form Q) or of the fonn (3).

l. Proof of Theorern l. Let

QoQ) : z+ z'q+Llc* (c* = o).

Let
h,,^(r) : Qo+to... oQ*(z) (m > o >-0).

We prove first that the constants ce c:rn be chosen so that

h,("): jt1g h*(t\

is an entire function for every u=1.
As the first step in the construction we choose

ct: l, QrQ) : Z* z'q+t'

Suppose Qt...Qo have already been chosen. Put

A,: ma) lh"'o?)-h"'ok)l'-K oiiäi'-r t:ig- lTl'
lz'l=k*t

with the obvious definition of the right hand side for 2:s'.
Let cr,+t-l2ok'q*1 max (1, Ao)1. Then, in lzl=k,

ieo*Jz)l = pl+#:* =Vl+l.

For a ': -1, lrl€k, by the definition of Ak

lhu,x+L@)-h,,*(z)l = AolQo*Jz)-zl = #: 2-k.

Therefore

Jig hu,ke) : hu,u+r4)+ ,år{hu,r(+l (|-hu,k4))
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is uniformly convergent in lzl=m for every m>0, i.e.

huQ): [ph,,r@)
is an entire function. Obviously

where 
o@): R,oh,(z\ (u = 1)

Ru: QtoQz...oQ,

is a polynomial of degree (I*nq)'.
The functions h,(z\ are not constants, because it follows from the definition that

h"(l) = 1, h"(0) : Q (u : 0, 1,2...).

By induction on o it is easily seen that

Ru(u): uku(u"q),

where k, is a polynomial of degree

degk,: !(t+nq)"-t).nq"
Choose

F(z): (ho@))'o, gu(z\ : (h,("))'n.
Then

F(z) : u" o(ho@)) : tf o(hok))' : (R, oh,(4)"o : (h"(z)k"(h,(z)ne))"e

: u(k"(u))'n o gu(z) - Puo gu(z),

where P, is a polynomial of degree

l,inq.degku: (l+nq)".

The function F(z) has all the required factorizations.
We must still show that F(z) is not of the form (2) or (3). The equation

q(u): u(tct1u))"t : u(l+u)q: a

has at least 2 distinct roots for every value ofa, since q'(u)is not a perfect power.

The entire function g1(z) omits at most one value. Therefore F(z):u(11t1uSYn "gr(r)
assumes every value and so F(z) is not of the form (2).

Suppose

(5) F(z) : (ttok))"': 4 cos 1/E@+U.

Choose y so that acosy*b:0. lf zt is a root of multiplicity / of

(O H(z):(y+2ktt)2*0 (k<z>,

then the power series of @ in powers of z-21 is

l@ : t(t* 2kn)+a(z- z)t + "' (u * O)'
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By Taylor's theorem

a cos / n 1) * b : acos y * b *B( z - z1)t * ... : B Q - z)' * ...
where flo, if ylo (modz). If 7=0 (modz), then

acos@+b : f(z-zr)t*... p *o.
By (5) every zero of a cos tEt4 +t must have a multiplicity divisible by nq>6.
Hence every root of (6) has multiplicity l>3, the value (y +2kn)2 of fl(z) is com-
pletely ramified. Buta well known theorem of Nevanlinna theory ll, p. 44|asserts
that an entire function has at most 2 completely ramified values. This contradicts
(5) and the proof of Theorem I is completed.

2. Some preliminary results. Our proof, like Ozawa's work, is based on

Picard's theorem. (cf. pl.) Let R(u,u) be an irreducible polynomial in
Cfu,uf. If there are non-constant entire functions f(z\, g(z) such that

(7) R(f(r), se)):O (!z€c),

then the Riemann surface defined by
(8) R(u, o) : g

is ofgenus zero.

(The Theorem is usually stated in the form: If (7) holds for meromorphic func-
tionsl,g, then rR(u,u):Q defines a Riemann surface of genus 

=1. But Riemann
surfaces of genus one can only be uniformized by elliptic functions, not by entire
functions.)

A Riemann surface X of genus 0 is conformally equivalent to the Riemann
sphere, i.e., its points can be put into 1-l correspondence with a parameter s rang-
ing over the Riemann sphere so that any holomorphic function on X can be written
as a holomorphic function of s defined on the Riemann sphere, that is to say a ra-
tional function of s. In particular the points of the surface (8) are in l-1 correspond-
ence with the points s of the Riemann sphere by

(9) u: U(s), o : V(s) (U,V rational).

Note that the parameter r can be replaced by any fractional linear transform I of s,

if U and V arc chuged into U o l-1, l/ o f-1.

Lemma l. ff fQ) and g(z) are non-constant mtire functions and if P^ and
Pn are polytomials of relatiuely prime degrees m,n respectiuely, then the identity

(10) P-o/\z) : P,o g(z) (Y z€C)

implies the existence of an entire function s(z) and of polynomials U (of degree n)
qnd V (ofdegree m) such that

.f(z) : u(s(z)), g(z) : v(s(z)).
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Proof of Lemma l. Factorue

P^(u)- P"(a)

into irreducible factors in Clu, ul. If (10) holds, then one of these irreducible factors,
R(u, u), say, will satisfy

R(J'Q), g(z)) : o.

By Picard's theorem this means that there is a conformal map s:ty'(p) of
the points p of the Riemann surface X of

R(u, u) : g

onto the points s of the Riemann sphere. Without loss of generality we may assume
that s: € corresponds to a point with a: -.

Except at a finite number of branch points of .R we may use u aslocal uniformiz-
ing parameter, so that s is a holomorphic function o(u) of u near all points of R
except the branch points. Therefore the map

z * (fl2), C(4) : p - s : * (p) : o of(z\ : s(z\

is holomorphic near all z except perhaps those for which (/(z), g(z)):(ur, ur):pt
is a branch point of X. These values of z form a discrete set,E If Z*Z,(.E, s(z)-s7pr1.
Therefore z, is a removable singularity of s(z), s(z) is entire.

By (9), on X
u:U(s'), u:Y(s)

and so

f(z) : u(s(z)), g(z) : v(t(4),

U, V rational functions.

Suppose R(u,u) is of degree mrin u,n1in u. Then for a given value of u,uhas
ingeneralzrpossiblevalues,i.e.,there ztarnlvaluesof sfor giver'u,i.e., Zisof
degree zr. Similarly U is of degree nr.

Since/(z) and g(z) are entire, U and V cannot have poles at any value taken on
by s(z). Since s(z) omits at most one finite value, U and V can have poles at one
finite value so at most and then s(z)+ss (t€C). Wthout loss of generality we may
suppose so:0 (otherwise replace s by s-sj. Combining all the information on'
U and V we find that we must have

(11) U(s) : Z!1" aos*, V$) : Z!;r boto,

0=V< flt<_fl, O= p=tf\< 7t.
By (10),

(12) P-oU os(z): PnoYos(z) (z(C).

Since s(z) takes on infinitely many distinct values, this implies

(12') P-o(J(s): PnoV(s) (s€C).
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For large values ofs, by (11) and (12')

P. o U(s) -ca13f. 5(rr-v)n, PnoV(s) -s9151. 5(zr-P)r.
Therefore

(n1-t)m : (mr- P)n.

Since O=nr*v3r\ 0<m1-p<m, (m,n):1, we musthave

eithet nt-v:/l; mr-F:mi fi1:fl, \):Q1 l7l1:flt2 lt:o
Ot fl1:|1 fflt: F'

That is to say that either U and Z are polynomials of degree n and m respectively

or they are polynomials in l/s. In this case s(z)+O (z€Q. Pfi lls(z):t(z). Argt-
ing with the polynomials Ut(t):91t1, Vr(t):Z(s) we obtain again that (12')
implies nt:n, tnL:m and the proof of the Lemma is completed.

Lemma I reduces the study of the identity (10) to the investigation of polyno-

mials P., Po, Un, Z- satisfying

(13) P*oUo: ProV* (n, m) : 1.

This relation was the subject of a beautiful and deep investigation by J. F. Ritt in
his paper [5]. The results of Ritt are summarized by

Lemma 2. The equation (13) can only hotd under the following circumstances:

(A) There are first degree polynomials 1, x,'v, trt such that

),.oP^o24,: f*, ).oPnoY : fn,

N-L oUro F : Tn, y-r oV^o lt : T^,

), o P-oaoo [a : ). o PnoV-o F : To*,

where the polynomials T are defined by @).
(B) Suppose m>n. Thereare f,rstdegreepolynomials ).,x,,t,p and a polynomial

h(u) of degree <mfn such that

)uoP^ox(u) : fh(u) (r*n deg h -- *),
%-L oUnoP(s) : t',
)"oPnot(u): Y",

Y-l oV^oP(s): Sh(s)n,

(14) )uoP*oU,op(s\ - ).oPooV^op(s): (s'ft(s)".

Lemma 3. Unless the polynomial Q of degree p is of the form

Q@): A(u-u)n+B,

there are only afinite number of pairs offirst degree polynomials v, p such that

'v oQ: QoP".
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Proof. Let t(t):a1*b, P(t):gt+d. If
tt oQ : aQ@)*b : Q o p : Q@u*il,

then
aQ'@) : cQ'@utd\

Therefore the set S of zeros of Q' is invariant under the map uåcu+d. Since no

translation leaves a finite set invariant, cll, unless t(u\:1t(u):u- lf c+l we

can write
p(t) : c(t-u)la, u: ill(L-c).

The invariance of S now requires lcl:l, unless S:{a}. (Consider a value of
r€S forwhich lr-al ismaximal.)

If S#{a}, then c must be a root of unityn cN:I, cr+l 10=k=N). S con-

sists of corners of some regular N-gons with center a and possibly also u:a. Hence

Q'(u): C(u-u)" ilfr{(u-a)n -ut\
and, by integration,

Q @) : (u - a1' +r 711u - a)Nl + B
whereåisapolynomial.

Q o lt: c"+'Q@) + n$ - c"+1) : v oO,

v(t) : ."+rlaB(1-c"rl), (cil : 1).

There are only a finite number of possibilities for ;r and v in this case.

Finally, if S:{c}, then

Q'(u) : C(u- u1o-t, Q@) : A(u-a)e+ B.

In this case any pair p, v with

p(t): c(t-a)+a, v(t): cpt*B(r-cp) (c + l)

is possible.

3. Proof of Theorem 2. Without loss of generality we may suppose that (l)
holds for k:nt, Q, rlz, tts, . . . where

(15) (ni, e): 1; 1 = nr= 4 < ttz< ns' i n;a11niT.

Using Lemma 1 with m:ni (i>-2), ft:Q we see that there are polynomials

U (of degree q), V (of degree m) and an entire function s-(z) such that

(16) P^oU os^(z) - PnoVos^(z): F(z).

Now Lemma 2 shows that Pn, (J, Pq, Z must be given either by the formulae (A)

of Lemma 2 or by the formulae (B).

We show next that if (B) holds for a pair rn:rtit n-q, then (B) holds also

for any other pair (nr,q) (k=1).
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Suppose we were in case (A) for (no, q). Then we can find first degree polynomials
g, o such that

qopnoo(u): Tn(u).

On the other hand (B) for m and n:q<m shows that there are first degree poly-
nomials z, ,1, such that

)"oPnox(u): u4 ou.
Hence

Q o )'-r o pQ 6 24-r o o (u\ : Tn(u),

or, writing out the first degree polynomials

A(Bu+C)q+D: T,r(u).

Bat To does not have any values of muliiplicity >2. This leads to a contradiction,
since 4>3.

Theorem 2 will therefore be a consequence of the two statements:
(C) If there is an infinite sequence'1rt:{m,,}f:, anda q>J primeto all mo

such that (16) and (A) of Lemma 2 hold,, then F(z) is of the form (3).
(D) If, for a sequenca rk:nit where the n; satisfy (15), (16) and (B) of

Lemma 2 hold, then F(z) is of the form (2).

Proof of (C). BV (A) there are first degree polynomials l:l^, y:y. such that

)-oPnov : Tn.

If I and i are the first degree polynomials corresponding to another value
thQM, then

)"oI"-L oTuoi-L o,t : To.

For q>3 To@)is not of the form A(u-a)e*B. By Lemma 3 there are only a
finite number of possible values of the pair ().oI-,, fi-t ov). Keeping rz fixed and
replacipg M by a subsequence, if necessary, we may assume that ,t does not depend
on the choice of z. Formulae (16) and (A) now show that there is a first degree
polynomial,[ such that

),o F(z) : Tn*(S^(4) (m€M),

where S-(z) is an entire function (S. is the composition of s^(z) in (16) with a first
degree polynomiat). Put

(I7) S^(z) : cos E(z),

so that

(18) )'o F(z) : cos qm E(z).

The expression q(z) is not uniquely determined, but ina disk U of the z-plane
which contains no roots of S^(r): t I we can deflne EQ) as a holomorphic func-
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tion equal to a branch of arc cos S-(z). All possible values of Ek) n U are ob-
tained from one, Eo(z), say, by the formula

EQ) : XqoQ) (mod 2z) (zeU).

Replacing m by another member fi of the sequence M we can similarly define

tk)bv
(19) 5,6 Q\ : cos t @),

(20) L o F(z) - cos qft rlr (z).

Again rlr is not uniquely defined, but in a disk in which So(z) I Xl {t can be chosen

as a holomorphic function. We may assume without loss of generality that this disk
is identical with t/.

Again all possible determination of ry' can be derived from one of them, ry'o,

by the formula

QD rLQ):xrLok) (mod2n) (z(u).

By (18) and (20),

qfrrltoQ) : tqm Es(z) (mod 2z).

Changing ry'o into -ry'g, if necessary, we may suppose

qfitok): qmqo*2hn,

t oQ) : (m I mr)qo@) + 2hn I qrh.

Changing ry'o by adding a suitable multiple of 2n we have

Q2) toQ): (mlm)qs(z)tc,

where c is a real number satisfying

(23) -n<c=n.
Next we observe that the functions Eo and rlr, can be analytically continued

along any path Cwhich avoids the roots of S.(z): Xl, S*(z):t1. If Cis chosen

as a closed path from a point in U to U, then the results of the continuation ec, {c
still satisfy (17), (19) and (22) with Eo and, rlro replaced by E" and rlt". Let

Then

(24)

Also

Ec@) : teok) +2ln (e - t 1)-

trQ) - (mlrvt)pr(r) + c: t(mlflr)qoQ)t2mlnlrvr* c.

(25) tr/) : UtoQ)+2kn - q(ml,DEoQ)irtc*2kn (q : t1).
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Notethat kdepends on fiand C, I onmand C,andc onmand fionly.
Comparing Q$ and (25) we see that e-4, since Eo@) is not constant. There-

fore
c-f2lmnlfr - rtc.f2kn.

If 4:1 this reduces to 
lmftt: k

and for sufficiently large fi we must have ft:O and therefore also /:0. lf q: -1,
then

Q6) 2kn :2c*2lmnlrh.

For large frt (26) and (23) imply

k:-l or 0 or 1.

And since c is independent of the path C, so k must be independent of C, pro-

vided 4: - 1. We see that ry'g is only capable of assuming four values :

(D If k:0, *c:to (4:1) or tc:-{o (ry:-1).
(iD If k : l, ta :2n-rlto.

(iiD If k : -1, tc : -2n-t*
In the three cases respectively the functions

(27) t', (t-n)', Q!+n)'

are single-valued functions of z, holomorphic at all points where Sr(z) * tl. As z
approaches a root of this equation ry', which is locally defined as a branch of
arc cos ^So(z), approaches a finite limit. The roots of So(z): t 1 are therefore remov-

able singularities of one of the functions (27).In case (i) we have

fu'(t) : H(z)l(qfrt)'z: entire function

and LoF(z):sss {nA is of the form (3). In the other cases

fuXn : llH(z)lqrft,

). o F(z) : cos (+ qfltn + ltnf4) : tcos fm

and again F(z) is of the form (3).

Proof of (D). By (1a) and (16) with m:n*, n:q, there is a first degree poly-

nomial Lo and an entire function Sy(z):Ars,u@)*Be (A,B€C) such that

(2S) ).pF(z): [Sitå*(Sf)]a (k:2,3, ...),
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where å* is a polynomial, ho(0)10, and

r;f q deg h* : rt*.

By replacipg Sp by cSo, if necessary, we may assume

h*(0) : 1'

Also, using (14) for the indices nl and q,

Q9) )'so F(z): [S'h(S'r)]rr,

r+r'i.degh: Q.

If a is the root of /'e(t):Q, p the root of ,10(l):6; then every root of F(z\:q,
has multiplicity =nr, every root of F(z):B has multiplicity >q, by (28) and

(29). By Nevanlinna's 2nd fundamental theorem [, p.'43], if a*f

(30) r(r, F)= fi(,, r;+r(", ti)."(" ,h)*"frl, F)),

äs /+e through a suitable sequence of values. But

ff(r, F): s, 
"(","+) = *"(,, *)= Lrb,r)(l+o(r)),

"(","+) =- i*(,,+) = 
Lro,D(1+o(r)).

Therefore (30) leads to the contradiction

r(r, F) =(+*+*o1r))r1", r1.

Thiscontradictioncan only be avoided, if a:f, i'e., if )'o?):s7r117. Replacing

So(z) by bSr,k) with a suitable å, we may suppose that

' Irr: )ro (k : 2,3, ... ),
(31) FnQ): X"so F(z): (S;.ft&(,Sf))e : (S'å1S"';|'.

Since (n1, g):1, (31) implies that Fo(z):O has only roots whose multiplic-
ity is divisible by ng;

Fs(z): (ek)Y'n,

e:127 enrtre. By (29)we can choose G so that

Ga: S'h(S").
SuPPose 

he) : II ,(t -yn,)u<rt .
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Then h(t",1:Ilrlliyr,(t-piy1t'<tt, where q is a primitive n -th root of unity. lf
zris a root of S(z):qi, of multiplicity u, then qlu.p(y). If qIp(y), then u>2,
i.e., the value giy of S is completely ramified. Also r*nt degh:q. Therefore
0<r<q and each root of S:0 has multiplicity =2, 

by the preceding argument.

We have at least 3 ramified values of ,S: O,l, eT, if deg h>O and not all
roots of h have multiplicity divisible by q. Since an entire function has at most 2
ramified values we have either

(32) S'h(Snr) : 5r

or qlp$) for all y,

S'ft(Snrl : S"(k1s';)e.
But

q: r-fnydeght: r*n1q degk;

this is impossible, if degk=O, because n1>1. Hence (32) holds and,by (29),

Fs(z): $nM'
By (31) with k:2

(sgin'1sgf : s'ulq

and we may suppose

Sr'hl6il: Sf', 12*qdeghz: nz.

By repeating the reasoning above with S, in place of 'S1, Sr in place of G and n.
and q interchanged we find

hr(S$: (k,(,st))"',

r2i-n1q deg k2 : n2.

Since (nr, Q\-1, r2>0, and since nr<n1q, we must have

' S{"hz(Sf) : S{'.
Therefore

Fs(z) : (s;'lr1srg)e - S;,e

which leads by the same reasoning to

Fo(z): 
^S;ee - SXna....

If Fo has a root lve arrive at a contradiction as soon as nkq is greater than the multi-
pticrty of the root. Therefore

F6Q) : ).ro F(z) - s4Q).

11 entire. F(z) is of the form (2).
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