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1. Introduction

Suppose that D is a domain in the euclidean plane R2, that f'is analytic in D and
that O<a=1. If there exists a constant m; such that

1.1) 1f () —f(x2)] = my|x;—x,|*
in D, then it is not difficult to show that
1.2) |f/ (x)| = myd(x, 0D)*~*

in D, where d(x, dD) denotes the distance from x to dD and m,=m,. Conversely
if D is a disk, then by a well known theorem of Hardy and Littlewood [HL], (1.2)
implies (1.1) with m,=(a/a)m, where a is an absolute constant.

In a recent paper [GM] we observed that the Hardy — Littlewood theorem can
be extended to a very large class of domains D, namely those which are uniform.
(See Section 2 for the definition.) This fact can be viewed as the result of two impli-
cations. First, if (1.2) holds, then by the Hardy — Littlewood theorem,

1.3 |f(x) —f(x2)| = mg|x; —x,/*

in each disk Uc D where my=(a/a)m,. Second, if D is uniform and if (1.3) holds
in each disk UcD, then (1.1) holds in D with m,=b m; where b depends only
on D. The first step shows that (1.2) implies f satisfies a uniform local Lipschitz
condition in D while the second step derives a global Lipschitz condition from the
local condition whenever D is uniform.

In the present paper, we consider both of these implications for domains D in
euclidean n-space R" and functions f: D—~RP. In Section 2 we characterize the
domains D with the property that functions which satisfy a local Lipschitz condition
in D for some a always satisfy the corresponding global condition there; this class
includes the uniform domains mentioned above. In Section 3 we study conditions
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which guarantee that a quasiconformal mapping f: D—~D’ satisfies a local Lipschitz
condition in D. In particular, we obtain a geometric condition on D’ which is necessary
and sufficient for this to be the case whenever D satisfies the same condition ; bounded
uniform domains have this property.

2. Lip,-functions and Lip,-extension domains

Given a set 4 in R" we let Lip,(4), O<a=1, denote the Lipschitz class of
mappings f: A—~RP satisfying for some m—< o

(2.1) [f(e)—f(x0)] = m|x; —x,|*

in 4. If D is a domain in R", then f: D—~RP belongs to the local Lipschitz class
loc Lip,(D) if there exists a constant m<-< such that (2.1) holds whenever x,, x,
lie in any open ball which is contained in D.

In Lip,(D) and in loc Lip,(D) we shall use seminorms | f]|, and | f o, re-
spectively, which mean the smallest m for which (2.1) holds in the corresponding set.

The class Lip, (4) does not depend on the set 4 since there is a bounded exten-
sion operator Lip,(4)—~Lip,(R"). To prove this observe that d(x,y)=|x—y[*
defines a metric in R" and there is an extension operator Lip,, 4(A4)—~Lip,, 4(R")
defined by

f*(y) = inf {f(x)+md(x, y): x€A}
for real valued functions in the 1-Lipschitz class Lip, ,(A4) with respect to the metric
d, cf. [McS]. Moreover, f* has the same Lipschitz constant m as f. For vector valued
functions f€Lip,(4), ACR", the Lipschitz constant may increase by a factor
x=1 depending only on p. For a=1, Kirszbraun’s theorem yields »=1.

On the other hand, the metric structure of the domain D has an important
influence on the class loc Lip,(D). A domain DcR" is called a Lip,-extension
domain if there is a bounded extension operator A:loc Lip,(D)—Lip,(D), i.e.,
there exists a constant a depending only on D, « and p such that

1l = alflee
for each fcloc Lip,(D). The next theorem characterizes Lip,-extension domains.
2.2. Theorem. A domain D in R" is a Lip,-extension domain if and only if

there is a constant M < oo such that for all x,, x,€D there exists a rectifiable curve
y joining x; to X, in D with

(2.3) [ d(x, 0Dy~  ds = Mlx;—xy/*
Proof. First we show that a Lip,-extension domain D satisfies (2.3). Fix x,cD

and let
=1 -1
u(x) =inf [ d(x,0D)ds
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where the infimum is taken over all curves joining x, to x in D. Now let x;, x,€ D
and let y be any curve joining x; to x,. Fix a curve f joining x, to x; in D. Then

- a—1 .
u(x) = [, d(x,0Dy"ds;
hence
u(xy) = inf S ,d(x, 9D ds+ f d(x, 9Dy ds
and thus
u(xg) —u(xy) = fy d(x, 0D)*1ds.

Reversing the roles of x; and x, yields
(2.4 u(x)—uxs)| = [ d(x, 0Dy ds.

Next assume that x;, x, belong to an open ball U which is contained in D. Let
y, be the circular arc in U perpendicular to U and passing through x;, x,. Let y,
and y, be the endpoints of y; on AU and let the points lie in the order y,, Xy, X5, ¥,
on y,. We parametrize y, by arc length ¢ measured from y,. Let y be a subarc of y,
joining x; to x, and parametrized by arc length s measured from x; . If / is the length
of y, then clearly

l

1A

I
5 |1 — |
and by plane geometry

min (1, b —1) = 5 d (71 (2), V)

for all r€[0, ;] where /; is the length of y,. Now fix s€[0,/] and then ¢€[0, /]
such that y,(#)=7(s). Since s=¢ and /—s=/,—t, we obtain

min (s, 1—-5) = min (, h— 1) = 2-d(n (), 0U) = 549, 0U).
Thus the above inequalities yield
l—a
«— = a1 ge < | b _§)e-1
fyd(x, OD)*1ds = fyd(x, AU)~lds = [2] fomm(s,l s)*~1ds

1—a
I =

1—a
— l 12 g—1 _ T |
_2{2] fo s*~lds = p, oL [2g — xo|%.

Together with (2.4) this gives
[u(xr) — u(xa)| = mlx;—xp|",

m=na"127% Hence u belongs to loc Lip,(D). By the assumption, u€Lip,(D)
and |ul|, has an upper bound M which is independent of x,. The definition of u
now yields (2.3).
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Next suppose that D satisfies the condition (2.3), choose a positive constant
¢=1/2 and suppose that

2.5) |f(x0) —f(x2)] = m|x;—X|*

whenever x,, X,€ D with |x; —x,|=c d(x;, 0D). Fix x;, x,¢ D and let y be a curve
as in (2.3) and parametrized by arc length s measured from x;. Write ¢’=c¢/2 and
choose balls B"(y;,r;) as follows. Let y,=x;, ry=c’d(y,,0D). Set I =
max {s€[0, I]: y(s)€ B"(y,, r;)} where [ is the length of y. If y;, ; and ; have been
chosen, i=1,2,....,k, and [l,<I, set Yy 1=y(), rcy1=cd(Yxs1,0D) and
L1 =max{s€[0, I]: ()€ B"(¥x4+1> Tes1)}- After a finite number of steps, say &,
I,=1 and the process stops. Write y;,;=X,.
By (2.5)

2.6) ) —f ()| = Sy ) —~fGiadl = m S, 1= Yl
Let [,=0 and for each i=1,2,...,k—1 let
A; = {s€[li—1, I]: y(9)€B"(yi, 1)}
Then A;C[l;_,, ;] is a closed set and
@7 my(4) =1 = |yi— Vil
Moreover, for s€A;
d(y(s), D) = |y(s)—yil+d(y;, 0D) = ri+ri/c’ = ry(1+1/c),

and hence
d(y(s), DY~ = (1+ 1/ Y72,

Together with (2.7) this yields
(2.8) f d(x, dD) 1 ds = S 406, dD)*~1ds
= (L+ 1) S0 ri i m(4)
=141/ 2,":11 [yi—=Yieal*
To complete the proof suppose first that

|, — x| < [Yi=Yk+1l = [ye—xal.
Then

%1 —Xo| < |yx—%a| = ¢’d(y, OD),
and hence

d(x;, OD) = d(yx, OD)—|x1—Xo| =[x — yie| = %d(h, oD)
since ¢=1/2. This combined with the previous inequalities gives

|x,—X5| = 2¢’d(x,, OD) = cd(x;, 0D)
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and we obtain

(2.9) [f(x) —f(x2)| = m|x;— X,
by (2.5). Suppose next that
(2.10) X1 = X2| = [Ve—Yeral-

Then (2.6), (2.8) and (2.10) with the assumption (2.3) yield
(2.11) |fGa) —f(x2)] = m(1+1/c ) fyd(x, ODY* 1 ds+ m|x; — xa*

= amlxl—x2|a’

where a=(1+2/c)* *M+1.
Finally if f¢loc Lip,(D), then f satisfies the condition (2.5) with ¢=1/2 and
m=||f]'. Thus by (2.11)
I£1. = all £

where a=5'"*M+1, and this completes the proof.
In view of the opening remark Theorem 2.2 yields

2.12. Corollary. There is a bounded extension operator from loc Lip,(D)
into Lip,(R") if and only if D satisfies the condition (2.3).

The proof for Theorem 2.2 also yields the following alternative characterization
for the class loc Lip,(D).

2.13. Theorem. Suppose that D is a domain in R". Then f: D—~RP belongs
to loc Lip,(D) if and only if there are constants m<eo and O<c<1 such that

(2.19) |f(x)—f(x2)| = m|x;—x,|*
whenever |x,—x,|=c d(x;, D).

Proof. The necessity is immediate. For the sufficiency let U be an open ball in
D and fix x;, x,€U. As in the first part of the proof for Theorem 2.2 let y be a cir-
cular arc in U joining x; to x, and we obtain

7
o2*

fyd(x, Uy lds = |1 —x,|* = M|x;—x,|"

Next by replacing ¢ by min (c, 1/2) we see that we may assume without loss of gener-
ality ¢=1/2. Then (2.14) implies that
| f(x) —f(x2)| = mlx,—x,[*

whenever x;, x,€ U with |x;—x,|=cd(x;, 0U), and we conclude from the second
part of the proof of Theorem 2.2 that f¢Lip,(U) with

Il = ((L+2/)*M+1)m = m;.
Thus f€loc Lip,(D) with || f|l°=m,.
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The next theorem rules out the existence of inward directed cusps for n=2
and inward directed ridges for n=3 in Lip,-extension domains.

2.15. Theorem. Suppose that a domain D satisfies (2.3). Then there is a
constant c<-oo depending only on a and M such that for each x¢€R" and r=0
points in DA B*(x,,r) can be joined in D~ B"(x,, cr).

Proof. Set ¢=2(M+1)"/*—1. Let x,€R" and r=0. Choose points x;, X,
in DN B"(x,,r) and let y be a curve as in (2.3). We may assume that there is a point
y€0D N B*(x,, r). Suppose that y is not contained in D n B"(x,, ¢ #). Then

z—1 = — ple—1 = — a—1
‘/‘yd(x, oD)*"1ds = f, [x—yl*~tds = f7(|x Xo| +1r)*1ds
= 2fc' (t+r)eldt = E((c+1)°‘—2“)
r o ’

where t=|x—x,|. On the other hand,
[ d(x, 0Dy ds = M|x,—x,|* = 2* M7,
v

which together with the previous inequality yields
2% M = 20~} (c+1)*—2%).
This is impossible for the given c¢. The proof is complete.

Next we point out a relatively large class of domains in R" which satisfy the
condition (2.3) for all O0<a=1. A domain GCR" is said to be a John domain [MS]
if there exist constants a, b, o=>a=b=0, and a point x,€G, called a John center,
such that each x€G can be joined to x, by a rectifiable curve y in G with

I(y) = a,

(2.16) s
bm = d(y(s), 0G)

for 0=s=I(y). Here I(y) denotes the arc length of y and y(s) its arc lenigth repre-
sentation with y(0)=x. A domain DcCR" is called uniform if for some constants
a,beach x;, x,6D, x;5Xx,, liein a John domain G D with constants alx; —x,|,
b |x; —X,|.

If D is uniform, then (2.16) implies directly that each x,;, x,€D can be joined
by a rectifiable curve y in D such that

1) = a’|x1— x|,
min (s, I(y)—s) = b’d(y(s), D)

where a’=2a and b’'=a/b. Conversely, if each x,, x,€ D can be joined by a curve
y satisfying (2.17), then D is uniform with constants a, b which depend only on a’
and b’. For other characterizations of uniform domains see [GO] and [M].

2.17)
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A domain DcR" is said to be c-locally connected if for each xy€R" and r=0,

(i) pointsin D n B"(x,,r) can be joined in D N B"(x,, cr),

(i) points in DN\ B"(xy,r) can be joined in D\ B"(x,, r/c).
We say that D is linearly locally connected if it is c-locally connected for some c.
If D is an (a, b)-uniform domain, then an elementary argument based on (2.17)
shows that D is c-locally connected with

¢ = 2max (2(1, -‘bi]+1.

The next lemma will be needed in Section 3.

2.18. Lemma. Suppose that D is a bounded uniform domain. Then D is a

John domain with constants
b2 dia (D)

a, = 2adia(D), b, = 5

where a, b are the constants for D.
Proof. Since D is bounded, there is x,€D with
d(xy, D) = max {d(x, dD): x€D}.
Set r=d(x,, D). Now
(2.19) r = b dia (D).
To prove this let ¢=0 and choose x;, x,€ D such that
|x, — x,| = dia (D) —e.

Since D is uniform, there is a John domain G D with constants a|x; —x,|, b|x; — x|
containing x; and x, and a John center y, of G which by (2.16) satisfies

d (9, D) = d(3,,0G) = b|x,—x,| > b(dia (D) —e).

Thus
d(xq, 0D) = d(y,y, 0D) = b(dia (D)—¢)

and letting ¢—~0 we obtain (2.19).
Fix x€D. Since D is uniform, there is a rectifiable curve y joining x to x, as in
(2.17) and parametrized by arc length measured from x. Now

(2.20) 1(y) = 2alx — x| = 2a dia (D).
Let O0=s=I(y). If I(y)—s<r/2, then by (2.19)

_ o B _ bdia(D) s b2 dia (D) s

1]
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Next suppose /(y)—s=r/2. Then by (2.17)

2o

(2.22) d(y(s), 0D) = mm (s, 1(y)—s) = —min (s, r/2)

and hence for s<r/2

bl(y) s b(r/2+s) s bzdla(D) s

=

a 1@y a 1)~ 22 1)
On the other hand, if s=r/2, then (2.22) yields

(2.23) d(y(s), D) =

s:[c-'

b r b r s _ b’dia(D) s
S22 20 I

This together with the inequalities (2.20), (2.21) and (2.23) yields the desired result.

d(y(s), dD) =

2.24. Theorem. Uniform domains are Lip,-extension domains for all 0<a=1.

Proof. By Theorem 2.2 it suffices to show that a uniform domain D satisfies
the condition (2.3). Let x;, x,€ D and let y be a curve in D joining x; to x, and
satisfying (2.17). Then

d(x, ODy~tds = |- o (min (s, 1(y)—s))*~1 ds
Y b 0

=2 [“ab']l_ S 1 as = LA

(2a)y*|x,— Xo|* =

2a/b)L—¢ 2ab*1
_ Gay -

and thus D satisfies the condition (2.3) with M =2ax~15*~1. The proof is complete.

We can generate a large class of Lip,-extension domains by combining Theorem
2.24 with the following observation.

2.25. Theorem. Suppose that M, m and k are fixed constants and D is
the union of a family 9 of Lip,-extension domains G which satisfy (2.3) with the
same constant M. Suppose also that for all x,, x,€D there exist domains Gy, ...,
G;€9 with j=k and points y,, ..., ;i1 Such that x,=y,, x,=y;,, and

Vis Yis1€Gis  |yi—Yisa] = mix;— X,

for i=1, ...,j. Then D is a Lip,-extension domain.

Proof. Given x;, x,6 D and G;, y; as above, we can choose a curve y; joining
yito ;41 in G;CD such that

f d(x, 0D)*"1ds éfy d(x, 0G)* tds = M|y;— yi41|*
Vi i
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Then y=y,+...+7; is a curve joining x, to x, in D,
fy d(x, 0D)*1ds = {=1 M|y;— y;1|* = Mm*k|x;— x|
and the desired conclusion follows from Theorem 2.2.

2.26. Examples. (a) Let D be the domain {x€R":0<x,<I1} between two
planes or the tube domain {x€R": |x;|<1, i=1,...,n—1}. Then it is easy to see
that D satisfies the condition (2.3) only for a=1 and hence D is a Lip,-extension
domain only for a=1.

(b) A domain in R" is said to be a K-quasiball if it is the image of a ball under
a K-quasiconformal mapping f: R"—R". It follows from [MS, Theorem 2.15] that
every quasiball in R" is a uniform domain. (See also [GO, Corollary 4].) Hence a
quasiball is also a Lip,-extension domain for 0<a=1.

(c) There are Lip,-extension domains which are not uniform. To construct
such a Jordan domain in R? let G, denote the open triangle bounded by the lines

x=0, y=0, x—y=1
and for j=1,2,... let G; be the open triangle bounded by
x = 2—21’, y= 2—21’__2—-41" x+y= 2-2i -4,

By Theorem 2.24, each triangle G; satisfies (2.3) with a constant M independent of
j and it is not difficult to show that D=|J;_,G; is a Jordan domain which satis-
fies the hypotheses of Theorem 2.25 with m<16 and k=3. Thus D is a Lip,-exten-
sion domain for 0<a=1. However, D is not a quasidisk and hence not uniform.
A similar construction in R", n=3, yields a Jordan domain D which is a Lip,-
extension domain for O<oa=1 but is not a quasiball. The next theorem clarifies
the plane case.

2.27. Theorem. Suppose that DCR? is a simply connected Lip,-extension
domain with «€dD. If D’=R>\D is a Lip;-extension domain, then 0D is a quasi-
circle in R2.

Proof. By Theorem 2.2 and Theorem 2.15 there is a constant ¢ such that the
conclusion of Theorem 2.15 holds for D and for D’. To prdve the theorem it suffices
to show, see [G, Lemma 4], that D is ¢’-locally connected for some ¢’>c. Theorem
2.15 takes care of the first condition for the ¢’-local connectivity and we can now
argue exactly as in the proof of Theorem 4.2 in [GM] to obtain the second.

2.28. Remark. If J is a quasicircle in R? which contains o, then its residual
domains D and D’ are quasidisks and hence uniform domains, cf. Example 2.26 (b).
By Theorem 2.24, D and D’ are Lip,-extension domains for all O<a=1. This
together with Theorem 2.27 gives a characterization of quasicircles: 4 Jordan curve
J in R® which contains < is a quasicircle if and only if its residual domains are
Lip,-extension domains for some o, O<a=1.
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3. Quasiconformal mappings and Lip,-classes

It is well-known that a K-quasiconformal mapping f: D—~R" is KYd-n.
Lipschitzian on compact subsets of D. However, this does not imply that f€loc Lip, (D)
for some O<a=KY~". On the other hand, in Lip,-extension domains D,
f€loc Lip,(D) implies f€¢Lip,(D). In this section we shall give two necessary and
sufficient conditions for a quasiconformal mapping f of D to be in loc Lip,(D).
The above result can then be used to conclude f€Lip,(D) and, in particular, we
employ this method to study quasiconformal mappings on uniform and John do-
mains.

As we noted in Section 1, for f analytic in a plane domain D the condition

3.1) \f’ (2)| = md(z, dD)* 1

can be used on some domains D, e.g. on uniform domains, to conclude f¢Lip,(D);
see [GM]. In this section we have replaced analytic functions and the property (3.1)
by quasiconformal mappings and by f€loc Lip,(D), respectively. Hence this section
is, in a sense, a quasiconformal counterpart of [GM].

3.2. Quasiconformal maps and loc Lip,. If DcR" is a domain and f: D—~R?,
then the boundary cluster set for f'is given by

C(f,d D)= NfUAD)

where the intersection is taken over all neighborhoods U of dD.

3.3. Lemma. Suppose that f: D—~RP is in loc Lip,(D). Then

d(f(x), C(f, dD)) = md(x, dD)*

for xcD where m=| f|'.

Proof. Fix x,€D, choose x,€dD such that

|Xy— x| = d(x1,0D) =d

and let U=B"(x,,d)cD. Now

() —f(32)| = m|y,—y,l*

for y;,y,€U where m=| f|'°>. Thus f has a continuous extension to U, f(x,)€
C(f,0D) and

d(f(xl)9 C(f, 3D)) = | f(x) —f(x2)| = m|x; — x|
= md(x,, OD)*.

The next theorem gives a condition in terms of the distances d(x, D) and
d(f(x), 0D’) for a quasiconformal mapping f: D—~D’ to be in" loc Lip,(D).
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3.4. Theorem. Suppose that f is a K-quasiconformal mapping of D onto D’
and that 0<a=KY1="_ Then fcloc Lip,(D) if and only if there exists a constant
M <o with

(3.5) d(f(x), dD") = Md(x, OD)*
for all x€D.

Proof. First suppose that f belongs to loc Lip, (D). Since fis a homeomorphism
C(f,dD) ¢ fID\S(D) = D'\D' = oD’
and hence by Lemma 3.3
d(f(x), 0D’) = d(f(x), C(f, dD)) = Md(x, OD)*

where M=] f].
Next suppose that (3.5) holds. Since 0<a=K"4"" [GO, Lemma 2]
implies that
) Sa) (=i )
d(f(xl)’ 3D/) o " d(xl’ a[))
whenever x,€D and |x,—x,|=c d(x,, D). Here ¢=(2A%)~Y* and 2, depends
only on n. Thus (3.5) yields

[ (1) —f(x2)]

IIA

c*d(f (xy), dD")d (x1, OD) ™% |x; — Xo|*

= 7" M|x;— x5
for x,€D and |x;—x,|=cd(x;, D). By Theorem 2.13, fcloc Lip,(D) as desired.

3.6. Quasihyperbolic boundary condition. A domain D in R" satisfies a quasi-
hyperbolic boundary condition if for some x,€D there exist constants a and b, such
that

1
(37) kD(x, xo) =a IOng—)'l' bO

for all xeD. (Cf. [BP, Theorem 1].) Here k, denotes the quasihyperbolic metric
in D, i.e.

(3.8) kp(x;, x3) = inf [ d(x, D) ds,
7 7Y

where the infimum is taken over all rectifiable curves joining x; and x, in D. For the
basic properties of this metric see [GP] and [GO]. Note that if D satisfies (3.7) for
some point x,€D, then for any point x;€D

kp(x, x1) = kp(x, xo) + kp(xo,%1) = +b,

log— L
@198 7%, aD)

for all x€D where b,=by+kp(xy, x;). Thus whether or not D satisfies (3.7) is
independent of the choice of the point x,.



214 F. W. GEHRING and O. MARTIO

We first study some properties of domains satisfying a quasihyperbolic boun-
dary condition and relate these domains to the domains mentioned in Section 2.

3.9. Lemma. If D satisfies (3.7), then D is bounded with
dia (D) = 2aeble,

Proof. Let x,€D and let y be a quasihyperbolic geodesic joining x, and x; in
D, cf. [GO, Lemma 1]. Suppose that y is parametrized by arc length measured from
Xo. For each s write f(s)=kp(y(s), x,). Then

[ = [:d(y@,6D) dr

and thus f’(s)=d(y(s), ?D)~* for each s. Now by (3.7)

1
f(s) = alogw+ b, = alogf’(s)+ b,

and hence
logf’(s) = %(f(s)— by).

This yields a differential inequality
1

(3.10) f(s)ee

for 0<s<! where [ is the length of y. The inequality (3.10) can be written in the
form

(bo—S(s))

v

1

1
l=—a % (ea(bo—f(S)))

and by integration we obtain
d |, Zwe-re»
= 4y = — 1% (ga'®
l—fods_ afo ds(e )ds

1 1
—(b,— —(b,—
ed Go=IO) —e" o N») = gebole

= a(
since f(0)=0. This holds for each x;€D; hence

dia (D) = 2aeble
as desired.

3.11. Lemma. If D is a John domain, then D satisfies a quasihyperbolic
boundary condition.

Proof. Let D be a John domain with constants a, b and let x, be a John center
for D. Next given x,€D let y denote a rectifiable curve joining x; to x, in D which
satisfies (2.16). We consider two cases.
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Suppose first that

(.12) d(x,,9D) = "“;” 1),
Then by (3.12)

b
d(x,0D) = d(x;,0D)— |x;— x| = - 1(y)
for all x€y and hence

N — s _ a
ko(e, %) = [, G050y = 5

On the other hand, d(x, 0D)=a for all xéD by (2.16) and thus

A

a a a
kp(x1, Xo) = 3+?10gm

a 1 a
?logm+—b-(loga+l).

Suppose next that (3.12) does not hold. Then we can choose a proper subarc y,

of y with endpoints x, and x, so that

a+b

d(x, D) = —

1(yD)-
Then

a
kp(xy, x2) = 3

by what was proved above. If x€y\y,=y,, then by (2.16)

s b
d(x, 0D) = bl—(-)')j_%;s

where x=y(s). Thus

_ ds a ruy ds
kD(xZa xO) = f'Yz d(x, 3D) = b Yy _S—

= —b—IOg[d(xl,aD) a

and we obtain

1(y) a+b]

=
Combining these two cases yields

’ 1 ’
kp(x1, xo) = a’log —d(xl, B—D) + b,
with

’

a ,_a
a’=-, by = b(loga+1)+1.
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3.13. Remark. The converse of Lemma 3.11 is false, i.e. there are domains
which satisfy a quasihyperbolic boundary condition but which are not John domains.
In fact, the plane domain D constructed in Example 2.26 (c) has this property.
Since D is not a John domain, it remains to show that D satisfies a quasihyperbolic
boundary condition. To see this let z; denote the center of the maximum disk
inscribed in G; for j=0, 1, ... and let w; denote the midpoint of the line segment
0GynG; for j=1,2,.... Fix zéDNG;, let y be the segment joining z; to z and
let s denote arc length measured along y from z. Then by elementary geometry

d(y(s), D) = s/3
for 0=s=|z—z;| and

d(y(s), 8D) = d(z, dD)/2

for 0=s=d(z, dD)/2; these estimates imply that

1
(3.14) kD(Z, Z_]) = 3 10gm+3~

Thus (3.7) holds for points z€G,. If z€G;\G,, then (3.14) and the triangle ine-
quality yield

kp(z, zo) = kp(z, Zj)+kD(Zj, Wj)+kD(Wja Zp)

1 1 1
= _— — 49 =15log———
3log g—spy tolog g —py 70 = 151oe g 5py 0
since
d(z,9D) = +27% < (527" = d(w;, D).

Hence D satisfies a quasihyperbolic boundary condition.

3.15. Remark. By Lemma 2.18 a bounded uniform domain is a John domain.
Hence Lemma 3.11 holds for bounded uniform domains as well.

3.16. Quasihyperbolic boundary condition and quasiconformal mappings. For a
quasiconformal mapping f: D—~D’ we shall relate the condition f&loc Lip,(D)
with quasihyperbolic boundary conditions on D and D’.

3.17. Theorem. Suppose that f is a K-quasiconformal mapping of D onto
D’. If D’ satisfies a quasihyperbolic boundary condition, then f¢loc Lip,(D) for
some O<a=KY-n,

Proof. By Theorem 3.4 it suffices to show that there exist constants « and M
such that 0<a=KY@-" and

(3.18) d(f(x), 0D") = Md(x, OD)*
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for all x€D. Fix x,£D such that D’ satisfies the quasihyperbolic boundary condi-
tion (3.7) at f(x,). Now [GP, Lemma 2.1] and [GO, Theorem 3] yield
d(x,, 0D)

log 753y = ko xo) = e(kp( S, flxg))+1)

§c(alog +b0+1)

1
d(f(x), dD’)
1
= N - (Bo+1)/a
ac (log A7), 9D)) +loge ),
where ¢=c(n, K). Thus

d(xy,0D) _ (e(bo+1)/a ___1_—)“
d(x,0D) — d(f(x), 0D’)
and hence
d(f(x), 3D’) = Nd(x, 0D)?,
where

N = e®otViad(x,, dD)~#, B = 1/(ac).

Set a=min (f, KY4~") and M=max (N, dia(D")). Observe that D’ is bound-
ed by Lemma 3.9. If now d(x,dD)=1, then by the previous inequality

d(f(x), 8D’) = Nd(x, OD)* = Md(x, dD)*
while if d(x, dD)=1, then
d(f(x), dD’) = dia (D") = Md(x, 0D)".
Thus (3.18) holds as desired.
Lemma 3.11 gives the following corollary of Theorem 3.17.

3.19. Corollary. Suppose that f is a K-quasiconformal mapping of D onto
a John domain D’. Then f¢loc Lip,(D) for some 0<a=KY@~",

Next we shall study the converse of Theorem 3.17.

3.20. Lemma. Suppose that f is a K-quasiconformal mapping of D onto D’
and that D satisfies a quasihyperbolic boundary condition. If f€loc Lip,(D) for some
O<oa=KY1=" then D’ satisfies a quasihyperbolic boundary condition.

Proof. By Theorem 3.4 there is M such that
(3.21) d(f (), dD’) = Md(x, D)
for all x€D. Fix x,€D so that D satisfies (3.7) at x,. By [GO, Theorem 3]
(3.22) kp (f(x), £(x0)) = ¢(kp(x, x0)+1)
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where c¢=c(n, K) and the inequality (3.21) yields

1 M 1/a
(3.23) d(x,0D) — [ d(f(x), 9D')] ;

hence by (3.22), (3.7) and (3.23)

kp (fx), f(x0)) = ¢ (a log m+b0+ 1]

=a’log + bg

1
(), oD’
where a’=ac/u and bj=a’log M+c(by+1). Thus D’ satisfies a quasihyperbolic
boundary condition at f(x,).

Theorem 3.17 and Lemma 3.20 give a characterization for f€loc Lip,(D) in
terms of D and D’.

3.24. Theorem. Suppose that f is a K-quasiconformal mapping of D onto D’
and that D satisfies a quasihyperbolic boundary condition. Then f¢cloc Lip,(D) for
some 0<a=KY=" if and only if D’ satisfies a quasihyperbolic boundary condition.

) 3.25. Quasiconformal mappings and Lip,. For a quasiconformal mapping
f: D—~D’ we combine the results above with Section 2 to conclude that f€Lip,(D).
The first theorem follows directly from Theorem 3.17.

3.26. Theorem. Suppose that f is a K-quasiconformal mapping of D onto D’
and that D’ satisfies a quasihyperbolic boundary condition. Then there is an
o, 0<a=KYA"" sych that fcLip,(D) whenever D is a Lip,-extension domain.

3.27. Corollary. Suppose that f is a K-quasiconformal mapping of D onto
D', that D satisfies (2.3) for all 0<a=K®=" and that D’ satisfies a quasihyper-
bolic boundary condition. Then fcLip,(D) for some 0<a=KY4=".

Proof. The corollary follows from Theorem 3.26 and Theorem 2.2.
Theorem 2.24, Lemma 3.11 and Corollary 3.27 yield

3.28. Theorem. Suppose that f is a K-quasiconformal mapping of a uniform
domain D onto a John domain D’. Then fcLip,(D) for some O0<o=KY0=".

3.29. Remark. An inspection of the proofs leading to Theorem 3.28 shows
that o depends only on n, K and the constants for D’ and that | f|, depends only
on n, K, the constants for D and D’ and d(f~(y,), D) where y, is a John center
of D'.

Finally we obtain the following far reaching extension of a well known theorem
due to A. Mori [LV, Theorem I1.3.2] from Theorem 3.28 and Lemma 2.18.



Lipschitz classes and quasiconformal mappings 219

3.30. Corollary. Suppose that D and D’ are bounded uniform domains in
R" and that f is a K-quasiconformal mapping of D onto D’. Then f€Lip,(D)
and f~1cLip,(D’) for some O0<a=K"~", where o depends only on n,K,D
and D’.
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