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1. Introduction

Suppose that D is a domain in the euclidean plane JR2, that/is analytic in D and
that 0<a< l. If there exists a constant z, such that

(1 .1)

(t.2)

(1.3)

ifkrl -'f(xr1l = *rlx' - xzl"

in D, then it is not difficult to show that

lf'@)l = *rd(x,0D1"-t

in D, where d(x,lD\ denotes the distance from x to 0D and, fttz:tnr. Conversely

if D is a disk, then by a well known theorem of Hardy and Littlewood [HL], (1.2)

implies (1.1) with my:(ala)m2 where a is an absolute constant.

In a recent paper [GM] we observed that the Hardy-Littlewood theorem can

be extended to a very large class of domains Do namely those which are uniform.
(See Section 2 for the definition.) This fact can be viewed as the result of two impli-
cations. First, if (1.2) holds, then by the Hardy-Littlewood theorem,

lf@r1-f@r\l = *'1"'- xzl"

in each disk UcD where mr:(ala\ms. Seand, if D is uniform and if (1.3) holds
in each disk UcD, then (1.1) holds in D with mr:bms where å depends only
on D. The first step shows that (1.2) implies / satisfies a uniform local Lip;chrtz
condition in D while the second step derives a global Lipschitz condition from the
local condition whenever D is uniform.

In the present paper, we consider both of these implications for domains D in
euclidean n-space Än and functions f: D*Ro. In Section 2 we characterize the
domains D with the property that functions which satis$ a local Lipschitz condition
in D for some d always satisfy the corresponding global condition there; this class

includes the uniform domains mentioned above. In Section 3 we study conditions

-) 

This research was supported in part by a grantfrom the U.S. National Science Foundation.

Mika
Typewritten text
doi:10.5186/aasfm.1985.1022



204 F. W. GnHmNc and O. Manuo

which guarantee that a quasiconformal mapping f: D*D' satisfies a local Lipschitz
condition in D. In particular, we obtain a geometric condition on D'which is necessary
and sufficient for this to be the case whenever D satisfies the same condition; bounded
uniform domains have this property.

Given a set A
mappings -f: A---ÄP

(2.r)

2. Lipo-functions and Lipo-extension domains

in R" we let Lip,(A), 0= d,=1, denote the Lipschitz class of
satisfying for some m< @

lfb)-f(xrSl = *lx'- xzlo

in A.If D is a domain in Ä', then f:D*Re belongs to the local Lipschitz class
loclip,(D) if there exists a constant m<@ such that (2.1) holds whenever x,ox,
lie in any open ball which is contained in D.

In Lip"(D) and in loc Lip,(D) we shall use seminorms ll,fll, and ll/lll.", re-
spectively, which mean the smallest rn for which (2.1) holds in the corresponding set.

The class Lip" (A) does not depend on the set I since there is a bounded exten-
sion operator Lip*(A)*Lip"(R'). To prove this observe that d(x,y):lx-yl"
defines a metric in Rn and there is an extension operator Lipr,o(A)tlipr,a(R")
defined by

f*(y): inf U@)*md(x, y): x(A\
for real valued functions in the l-Lipschitz class Lipr,o(A) with respect to the metric
d, cf. [McS]. Moreover,lf * has the same Lipschitz constant m as f. For vector valued
functions f<Lip"(A), Ac.Rn, the Lipschitz constant may increase by a factor
z> I depending only on p. For c:1, Kirszbraun's theorem yields z: l.

On the other hand, the metric structure of the domain D has an important
influence on the class loc Lip"(D). A domain DcR" is called a Lipo-extension
domain if there is a bounded extension operator A:locLip,(D)*yip,(D), i.e.,
there exists a constant a depending only on D, a andp such that

ll"fll, = all/'llt:"

for each f(locLip,(D). The next theorem characterues Lipn-extension domains.

2.2. Theorem. A domain D in R" is a Lipn-extension domain if and only if
there is a constant M<.- such that for all x1, x2QD there exists a rectifiable curue
y joining x, to x2 in D with

Q.3) I ral*,}D1"-r ds 3 Mlxr-x21".

Proof. First we show that a Lipn-extension domain D satisfies (2.3). Fix xo€D
and let

u(x'S : inf ! ud@,LDl'-r 6t
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where the infimum is taken over all curves joining .r0 to t in D. Now let xr, x2(D
and let y be any curve joining x, to xr. Fix a curve p joining xo to r. in D. Then

u(x) = I u *ro(*, lD\o-r ds ;

hence

u(x)=intIu

Next assume that xr, x, belong to an open ball U which is contained n D. Let
?r be the circular arc in A perpendicular to 0U and passing through xr, xz. Let yt
and yrbe the endpoints of 7, on 0U andlet the points lie in the order yr, xt, xz, lz
on yr. We paramel'ru,e 71 by arc length t measured from yr. Let y be a subarc of 7.
joining x, to x, and parametrized by arc length s measured from xr. If / is the length
of 7, then clearly

and by plane geometry

t =ät*r- xzt

min (t, 1,,- t) = + d\rQ), 0u)

for all t€[0, å] where /, is the length of yt. Now fix s€[0, /] and then t€[0, []
suchthat yr(t):y(s). Since s<t and l-s=la-t, we obtain

min (s, /-s) = min (t, lr- t) = + d\rQ),0U) - | a(y(t), 0U).

d(x, AU)"-L ds {t min(r, / - s)n -L ds

In = #l"r- xzlo

lu(x) - u (x2)l = mlxr- x21",

m:nd,-12-'. Hence a belongs to loc Lip,(D). By the assumption, u(Lip,(D\
and llnll, has an upper bound M whtch is independent of xo. The definition of u
now yields (2.3).

d(x, AD)'-L ds * I ,d(x, LD)'-L ds

and thus

u(xz) - u(xr) = I ,d(x, aD)"-L ds.

Reversing the roles of x, and x, yields

(2.4) lu(*r)- u(xr)l = I ,d(x, AD)"-L ds.

Thus the

I

Together

=(or)'-"

Jd-L ds
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Next suppose that D satisfies the condition (2.3), choose a positive constant
c=ll2 and suppose that

(2.s) lf(x)-fk)l =- mlx,-x,l'
whenever xr, x2(D with lxr-x2l=c d(xr, åD). Fix xr, x2€D and let 7 be a curve

as in (2.3) and parametrized by arc langth s measured from x1. Write c':cl2 and
choose balls Bo(yi,r) as follows. Let !t:xt, rt:c'd(yt,0D\. Set It:
max{s([0,/]:r(s)eB"(yt,rr)] where /is the length of y. If y1,ri and /, have been

chosen, i:1,2, ..., k, and l*<1, set h+t:!(lrr), r*+t:c'd(lr,*r,0D) and

[..1:max{s€[0,/]: y(s)(B'(yr,+r,/r+J]. After a finite number of steps, say k,
Ir,:l and, the process stops. Write !r,+r:xz.

By (2.s)

(2.6) lfk)-f(x,)l = z!=,lf(y)-f(y,*)l= *zf=,\y,-y,*,1".

Let /o:Q and for each i:1,2,...,k-l let

,{; : {s([I1-1, lr]: f (s)e.B' (yr, r)\.

Then Aicflt-t, {l is a closed set and

(2.7) mr1,l,,) >- ti: lY,- Y,*rl.

Moreover, for s(A1

d(r(s), 0D) = lr(t)-y,l * d(yt,0D) = r1*rif c' : ri(l*llc'\,
and hence

d(f (r), Do)'-t =- (l+11c'1o-tra-r.

Together with (2.7) this yields

(2.8) f,a1*,0D7'-tds= Z!::l^d(t1),Lo)-to'

= (1+ llc)'-r 2*-' ri-rm1(A)

> (t+Uc)"-, Z!:i ly,- t,*r|".

To complete the. proof suppose first that

lxr-xrl = lyt - y**rl : lyr,- xzl.
Then

lxr-xrl = ly*- xzl < c' d(yy, 0D'),
and hence

d(x1,0D) =- d(yo,lD)-lxr-xrl-lxr- yol 
= + djtk, aD

since c< l/2. This combined with the previous inequalities gives

lxr- xrl = 29' d (x1, 8D) : cd (x1, 0D)
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and we obtain

Q9) lf@)-l'k)l = ml4-x21"

by (2.5). Suppose next that

(2.10) lxt-xrl = ly*-yr*r.|.

Then (2.6), (2.8) and (2.10) with the assumption (2.3) yield

Q.II\ lf6r)-f(x)l = m(l+ll")'-o f rd(x, LD)"-L ds*mlx1-x2lo

< amlxr-x21",

where a:(l +2lc)r-" M+1.
Finally if /€loc Lip"(D), then f satisfies the condition (2.5) with c:ll2 and

m:llfll.". Thus by (2.11)

llfll,= allJllt:'

where a:51-"M+ l, and this completes the proof.

In view of the opening remark Theorem 2.2yields

2.12. Corollary. There is a bounded extension operator from loc Lip"(D)
into Lip,(N) if and only if D satisfies the condition Q,.3).

The proof for Theorem 2.2 also yields the following alternative characlet'uation
for the class loc Lip,(D).

2.13. Theorem. Suppose that D is adomainin N. Then f: D*N belongs

to loc Lip,(D) if and only if there are constants m<6 and O=c=l such that

Q.t4) lf@r)-f(xr)l= mlx'-xrl"

wheneuer l"r-xrl =c 
d(xt,0D).

Proof. The necessity is immediate. For the sufficiency let U be an open ball in
D and fix x1, xs€ U. As in the first part of the proof for Theorem 2.2 let 7 be a cir-
cular arc in U joining x1 to x, and we obtain

f raT*,0r4'-t at =- #lxr-xrl" : Mlxr-xzl".

Next by replacing c by min (c, ll2) we see that we may assume without loss of gener-

ality c= ll2. Then (2.14) implies that

I l'k) -f(x)l = mlx'- x2l"

whenever xy, x2(.U with lrr-xrl =cd(xy 0U1, and we conclude from the second

part of the proof of Theorcm2.2that f(Lip"(U) with

llf ll,= ((t+2lc)L-"M1-l)m: m,-

Thus /€loc Lip,(D\ with ll/lll""=zr.
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The next theorem rules out the existence of inward directed cusps for n:2
and inward directed ridges for n>3 in Lip"-extension domains.

2.15. Theorem. Suppose that a domain D satisfies Q.3). Then there is a
constant c=- depending only on q. and M such that for each xs(R" and r>O
points in DnB"(xo,r) can be joined in DnB"(xo,cr).

Proof. Set c:2(M+l)t/n-1. Let xs€Rn and r>0. Choose points xr,x,
in D nB"(xo, r) and let y be a curve as in (2.3). We may assume that there is a point

l(OD n P (xo, r). Suppose that 7 is not contained in D n ,8" (xo, c r). Then

f ,a1*,0D1"-t4t= f rl*-yl"-'6t= f r(l.r-xol+r)'-1ds

=- z I:(r+ ry-r 4, : ! 11, + r\" -2,),

where t: l"-"o1. On the other hand,

I ra6,0D1"-r 
ds = Mlxr-xzl" = 2" Mf 

'

which together with the previous inequality yields

2"M =2u_L((c+t)"_2,).
This is impossible for the given c. The proof is complete.

Next we point out a relatively large class of domains in Ä' which satis$ the

condition (2.3) for all 0<a< 1. A domain GcR" is said to be a John domain lMSl
if there exist constants a,b, *>a>b>O, and a point xs€G, called a John center,

such that each x(G can be joined to xo by a rectifiable curve ), in G with

l(y) 5 e,

b6-= d(y(r), AG)

for O=s=/(y). Here /(l) denotes the arc length of 7 and f(s) its arc lefgth repre-

sentation with y(01:.:e. A domain DcR" is called uniform if for some constants

a, b each x1, x2QD, x1*x2, lie in a John domain GcD with constants alxt-xrl,
b l4-x,1.

(2.t6)

If D is uniforffi,
by a rectifiable curve

(2.17)

then (2.16) implies directly that each xL, xz€D can be joined
y in D such that

,(y) = a' l"t- xzl,

min (r, /(y)-s) = b'd(y(t), AD)

where a':2a urd b':alb. Conversely, if each xr, x2€D can be joined by a curve

7 satis$ing (2.17), then D is uniform with constants a, b which deperrd only on a'
and b'. For other charactenzations of uniform domains see [GO] and [M].
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Adomain DcP{ is saidtobecJocallyconnected if foreach xo€Rn and r>0,
(i) points in D n,B"(x6, r) can be joined in D aP(xo, cr),

(ii) points in D\.B'(xo,r) can be joined in D\,B'(xo, r/c).

We say that D is linearly locally connected if it is c-locally connected for some c.

If D is an (a,å)-uniform domain, then an elementary argument based on (2.17)

shows that D is c-locally connected with

( - a\
c : 2maxlza, f,)+t.

The next lemma will be needed in Section 3.

2.18. Lemma. Suppose that D is a bounded uniform domain. Then D is a
John domain with constants

dt : 2adia (D), b., : b'*L(D\-
2a

where a,b are the constantsfor D.

Proof. Since D is bounded, there is xo€D with

d(xo,0D): max {d(x,0D): x(D}.

Set r:d(xo, å41. Now

(2.19) r>bdia(D).

To prove this let e>0 and choose xr, xr(D such that

l*r-*rl > dia(D)-e.

Since D is uniform, there is a John domain GcD wrth constants alxr-xsl, blxt- xzl

containing x1 and x2 and a John center yo of G which by (2.16) satisfies

it(ys,0D) = d(yo,0G) = blxl-x2l = b(dia (D)-t)'

Thus
d(xs,!D) = d(yo,AD) = b(dia (D)-e)

and letting e*0 we obtain (2.I9).

Fix x€D. Since D is uniform, there is a rectifiable curve y joining x to x6 as in

(2.17) and parametrized by arc length measured from x. Now

(2.20) l(y) = 2alx - xsl = 2a dia (D).

Let 0=s=/(y). If l(y)-s=r12, then by (2.19)

(2.2t) d(y(s), 0o\=-rp=f;aia(D) = ryå=-u'|'';OA 6
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Next suppose l(y)-r>r12. Then by (2.17)

(2.22) d(r(s), 0o) =- *^^G, l(y) - s) = å min (s, r/2)

and hence fot s<rf2

(2.23) d(y(r), aD)=b ,- bl(v)j- 
= 

b(r/2+s) 
,f , = 

å'dlu(') 
,f ..ct a l(y)- a l(y\- 2a l(y\'

On the other hand, if s>r12, then (2.22) yields

d(r(s), oo) =_ * t = + +6 = ry 16
This together with the inequalities Q.20\, (2.21) and (2.23) yields the desired result.

2.24. Theorem. Uniform domains are Lipn-extension domains for all 0=a< 1.

Proof. By Theorem 2.2 it suffices to show that a uniform domain D satisfies

the condition (2.3). Let x1, x2QD and let y be a curve in D joining x, to x, and
satisfying (2. I 7). Then

f ,a6, itDf -r o, =(+)'-"/jt" (-,n (s, r(y)-s)f -1ds

:r(i)'-" 
fi(1)/2rc-r 6r: (2ol!)'-" 

,rr'r,

= ry(2a)nlxr_x2y - 
2ab"-t 

lxr_xrl,

and thus D satisfies the condition (2.3) with M:2aa-Lbo-t. The proof is complete.

We can generate alarge class of Lip,-extension domains by combining Theorem
2.24 rdth the following observation.

2.25. Theorem. Suppose that M, m and k are fixed constants and D is

the union of a family I of Lipn-extension domains G which satisfy Q.3) with the
same constant M, Suppose also thatfor all xr,xz(D there exist domains Gt,...,
GfQ with j=k and points yr,...,!i+t such that xr:!r, x2:yi*, and

!i, !i+r(Gi, lyr- Yt*tl = mlxl- x2l

for i:1,...,j. Then D is aLipn-extensiondomain.

Proof. Given x1, x2€D and G1,!i as above, we can choose a curve y; joining

ltto lt+rin GtcD such that

,t rt
f d(x, oD)"-L ds

rYt
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Thpn T:Tt+ .. . tT i is a curve joining x1 to x, in D,

- !i*,.|o = Mm" klxt- xzl"

and the desired conclusion follows from Theorem 2.2.

2.26. Examples. (a) Let D be the domain {:r(JP:0<x,<l} between two

planes or the tube domain {x€R": lx;l=1, i:1,,..,n-I\' Then it is easy to see

that D satisfies the conditio n (2.3) only for a : I and hence D is a Lipo -extension

domain only for oc:1.
(b) A domain in R" is said to be a K-quasiball if it is the image of a ball under

a K-quasiconformal mapping /: Ro*R'. It follows from [MS, Theorem 2.15] that
every quasiball in R" is a uniform domain. (see also [Go, corollary 41.) Hence a

quasiball is also a Lipo-extension domain fs1 Q<a< 1.

(c) There are Lipn-extension domains which are not uniform. To construct

such a Jordan domain in R2 let Ge denote the open triangle bounded by the lines

.p: 0, y:0, x-y : I

and for j:1,2,... let G, be the open triangle bounded by

v - l-zi, y - 2-zi -2-4i, xl y : 2-zi -2-4i.^_2 t !_ ,

By Theorem 2.24, each triangle G; satisfles (2.3) with a constant M independent of
j and it is not difficult to show that D:l)70 Gr. is a Jordan domain which satis-

fies the hypotheses of Theorem 2.25 \r{tth m<16 and k:3. Thus D is a Lipn-exten-

sion domain for 0=s< 1 However, D is not a quasidisk and hence not uniform.
A similar construction in K, n>3, yields a Jordan domain D which is a Lip,-
extension domain for 0<a< I but is not a quasiball. The next theorem clarifies

the plane case.

2,27. Theorem. Suppose that DcRz is a simply connected Lipn'extension

domain *i11 *E|D. .I/ D':R\D is aLipu-extension domain, then 0D is a quasi'

circle in R2.

Proof. By Theorem 2.2 and Theorem 2.15 there is a constant c such that the

conclusion of Theorem 2.15 holds for D and for D'. To prove the theorem it suffices

to show, see [G, Lemma 4j,that D is c'-loc,ally connected for some c'>c. Theorem

2.15 takes care of the first condition for the c'-local connectivity and we can now

argue exactly as in the proof of Theorem 4.2 in [GM] to obtain the second.

2.28. Remark. If "I is a quasicircle in R2 which contains -, then its residual

domains D and D' are quasidisks and hence uniform domains, cf. Example 2.26 (b).

By Theorem 2.24, D and D'are Lipn-extension domains for all 0=c<1. This

together with Theorem 2.27 gives a characterization of quasicircles: A Jordan curue

J in Rz which contains - ls a quasicircle if and only if its residual domains are

Lipn-extension domains.for some q,, 0<a= l.

[ ,o(x, \D)o-t ds = Zt,:r MlYi
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3. Quasiconformal mappings and Lipn-classes

It is well-known that a K-quasiconformal mapping f: D-R" is 11t!(t-n)-

Lipschitzian on compact subsets of D. However,this does not implythat/€locLip,(D)
for some O<a<KLl(L-a,. On the other hand, in Lipn-extension domains D,

f(locLip"(D) implies f€Lip,(D). In this section we shall give two necessary and
sufficient conditions for a quasiconformal mapping f of D to be in loc Lip"(D).
The above result can then be used to conclude feLip"(D) and, in particular, we
employ this method to study quasiconformal mappings on uniform and John do-
mains.

As we noted in Section l, for f analytic in a plane domain D the condition

(3.1) l.f'Q)l = md(2,0O7"-r

can be used on some domains D, e.g. on uniform domains, to conclude fcLip"(D);
see [GM]. In this section we have replaced analytic functions and the property (3.1)

by quasiconformal mappings and by /€loc Lip"(D), respectively. Hence this section
is, in a sense, a quasiconformal counterpart of [GM].

3.2. Quasiconformal maps and loc Lipn. If DcÄn is a domain and f: D*Rp,
then the boundary cluster set for/is given by

cuf:a D: nf@;6
where the intersection is taken over all neighborhoods U of 0D.

3.3. Lemma. Supposethat f:D-Rp isin locLip"(D). Then

d(f(*), C(f,0D)) < md(x,0D\"

for xQD where rn:llfll.'.

Proof. Fix x.€D, choose xrl|D such that

lxt- xrl : d(xr,0D'1 : 4

and let U:Bn(xt, d)cD. Now

lfj)-f(v,)l = *lv,- v,l"

for 7r, yz((l where *:llfllY.Thus/has a continuous extension 6 A, f@r)(
C(f,0D) and

d(f(*), C(f, ADD = If @r) -f(xr)l = mlxr- xrln

: md(xr,LD)n.

The next theorem gives a condition in terms of the distances d(x,LD) and,

d(f(*),lD') for a quasiconformal mapping f: D*D' to be in loc Lip,(D).

I
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3.4. Theorem. Suppose that f is a K-quasiconformalmapping of D onto D'
and that O<a=KrtG-"). Then f€locLip,(D) if and only if there exists d constunt

M<* with

(3.5) d(fti,å'D') = Md(x,0D)'

for all x(D.

Proof. First suppose that/belongs to loc Lip"(D). Since/is a homeomorphism

cU,ob c/tD):/ta) : D'\D' : oD'

and hence by Lemma 3.3

d(f(*),0D') = d(f(*), c(f,0D>) = Md(x, aD)"

wnere M:llfllti".
Next suppose that (3.5) holds. Since 0<q< Ku(L-'t), [GO, Lemma 2]

implies that

l.f@r)-f(x,)l = "rr( 
lxr- xrl l"

d(f(xr), 0D') :''" \ d(x1, 0D) )

whenever xr€D and lx1-xrl=sd(x1,0D). Here c:pl)-tl" and ).o depends

only on z. Thus (3.5) yields

lf@')-f(xr)l = c-"d(f (x1),lD')d(xr, AD)-olxr- x,l"

= c-"Mlxt-.xzlo

for x1€D and lx1-x2l=cd(xr,lD). By Theorem 2.13, fQlocLip,(D) as desired.

3.6. Quasihyperbolic boundary condition. A dornain D in R' satisfies a quasi-

hyperbolic boundary condition if for some xs€D there exist constants c and åo such

that

(3.7)

for all x€.D. (Cf.

in D, i.e.

(3.9)

kr(x,xo) = alog#*bo

[BP, Theorem U.) Here kD denotes the quasihyperbolic metric

ko(xr, xz) : i\f .[ ,d(x,0D)-\ 
ds,

where the inflmum is taken over all rectifiable curves joining x1 and xrh 2. For the

basic properties of this metric see [GP] and [GO]. Note that if D satisfies (3.7) for
some point xs(D, then for any point xt€D

kp(x, x1) = kp(x, xs) + kp(xt,xr) = 
q bg# + t,

for all x€D where br:br*ko(xo, xr). Thus whether or not D satisfies (3'7) is

independent ofthe choice ofthe point xo.
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We first study some properties of domains satisfying a quasihyperbolic boun-
dary condition and relate these domains to the domains mentioned in Section 2.

3.9. Lemma. If D satisfies(3.l),then D isboundedwith

dia(D) = )ssbsla.

Proof. Let x&D and let y be a quasihyperbolic geodesic joining xo and x, in
D, cf. [GO, Lemma l]. Suppose that y is parametrized by arc length measured from
xe. For each s write /(s):ko(y(s), xo). Then

.f(s) : Ii n(rtt,0o1-r o,

and thus f'(s):d(y!),0O1-t for each s. Now by (3.7)

,f(g ='toe76{g6, * bo : atosf' (s)+ bs

and hence

logl'(s) = 
j{ft'l-a,).

This yields a differential'inequality

(3.10) f'(r)"i'u"-t(s)) = ,

for 0<s</ where / is the length of y. The inequality (3.10) can be written in the
form

d .*".-r,1
1 < - aV;le,

and by integration we obtain

t : r' a, = 
_ o !' $u1rao-/r")) ats

: o(år,"-r(q) - +Qo-trrr) 
= odo,o

since /(0):Q. This'holds for each xr€D; hence

as desired. 
dia (D) = /^sbnta

3.11. Lemm a. If D is a John domain, then D safisrtes a quasihyperbolic

boundary condition.

Proof. Let D be a John domain with constants a, b and let xe be a John center

for D. Next given xr€D let 7 denote a rectifiable curve joining x1 to xs in D which
satisfies Q.l6). We consider two cases.

I
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Suppose first that

(3.t2> d(x1,0D) = "Iu ,O).

Then by (3.12)

d(x,0D)= d(xr,LD)-lxr-rl = Ir@
for all x(1l and hence

ko(x,,.;=I,#nl=+.
On the other hand, d(x,LD)=-a for all x€D by (2.16) and thus

ko(x,, n) = i+ ibs#D = ircsffi + | we a *t\.

Suppose next that (3.12) does not hold. Then we can choose a proper subarc y1

of y with endpoints x1 and x, so that

d(x1,0D) : o!o' 
,Or).

Then

ko(xr, A = t
by what was proved above. If x(y\yr:yr, then by (2.16)

it(x,0D)=-bå=f,'
where x:l(s)' Thus 

kr(xr, n) = I r"# = + lå:r+

:lrcz(#+)=t^uw}w*,
and-we obtain

kr(xr; xo) = kr(xr, xr)+kr(xr, xi)

= ircz6|56;+t+i.
Combining these two cases yields

kr(xr, xo) = a'bg#D+U',
with

o, = t, uo: leosa*l)*1.
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3.13. Remark. The converse of Lemma 3.11 is false, i.e. there are domains

which satisfy a quasihyperbolic boundary condition but which are not John domains.

In fact, the plarre domain D constructed in Example 2.26 (c) has this property.

Since D is not a John domain, it remains to show that D satisfies a quasihyperbolic

boundary condition. To see this let z, denote the center of the maximum disk

inscribedin G; for j:0,1,..' and let w; denote the midpoint of the line segment

\GonGi for j:1, 2,.'.. Flx z€DnG1, let 7 be the segment joining zt to z and

let s denote arc length measured along y ftom z. Then by elementary geometry

Thus (3.7) holds for points z€Go. lf z€GÄGo, then (3.14) and the triangle ine-

quality yield

ko(t, zo) 5 kr(r, t)+koQi, w)Ikr(*i, to)

= sroe76ft6;+6toe---!-+e < 15 brå a'*g
since

d(2, 0D) = f, Z-zi < (L Z-ti)rtz : d(w i, 0D1'tz'

Hence D satisfies a quasihyperbolic boundary condition.

3.15. Remark. By Lemma 2.18 a bounded uniform domain is a Joba domain.

Hence Lemma 3.11 holds for bounded uniform domains as well.

3.16. Quasihyperbolic boundary condition and quasiconformal mappings. For a

quasiconformal mapping f: D*D' we shall relate the condition f€locLip"(n\
with quasihyperbolic boundary conditions on D and D'.

for 0= s=_lz-zjl and

for 0= s=d(z,0o1lz;

(3.r4)

3.I7. Theorem. Suppose that f
D'. If D' satisfies a quasihyperbolic

Some 0= qs=Ytl(t-n).

Proof. By Theorem 3.4 it suffi.ces

such that 0< a= YLI(r-n) and

d(v(s), åD) = s/3

d(v(s), åD) = d(r, ADl2

these estimates implY that

kr(r, zi) =3 log #+3.

is a K-quasiconformal mopping of D onto

boundary condition, then feloc Lip"(D) for

to show that there exist constants a and M

(3. 18) d(fti,å,D') = Md(x,0D)'
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for all x€D. Fix xq€D such that D'satisfies the quasihyperbolic boundary condi-
tion (3.7) at f(xr). Now [GP, Lemma 2.ll and [GO, Theorem 3] yield

, d(x".DD\,ot*o@,ffi = ko(x, x) < c(ke,ffjx), /(xo))+ 1)

=,(obcd6+b,+1)
: ac (los W#6* log etao+rrro),

where c:c(n, K.). Thus

ffi=('*,'*1*,1*
and hence

d(f(*), 0D') = Nd (x, lD)P,
where

lv - s(bs+L)lad(xo,|D\-F, fl: ll@c).

Set a:min (p, Krto-"5 and M:max (N, dia(D)). Observe that D'is bound-

ed by Lemma 3.9.lf now d(x,0D)=1, then by the previous inequality

d(J'@), 8D') = Nd(x, 0D)8 = Md(x, 0D)"

while if d(x, 0D)>1, then

d(f(*), 0D') = dia (D') = Md(x, 0D)".

Thus (3.18) holds as desired.

Lemma 3.11 gives the following corollary of Theorem 3.17.

3.19. Corollaty. Suppase that f is a K-quasiconformal mapptng of D onto

aJohndomain D'. Then f€locLip,(D) for some O<a=Kt!(t-n).

Next we shall study the converse of Theorem 3.17.

3.20. Lemma. Suppose that f is a K-quasiconformalmapptng of D onto D'
and that D satisfies a quasihyperbolic boundary condition. If f(locLip"(D) for some

0<c-Krl(r-"), thm D' satisfies a quasihyperbolic botmdary condition.

Proof. By Theorem 3.4 there is M such that

(3.21\ d(.f(x),0D')= Md(x,lD)'

for all x€D. Fix xs€D so that D satisfies (3.7) at xo.BY [GO, Theorem 3]

(3.22) kD'(f(x), f(x)) = c(kr1x,xJ+4
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where c:c(n, K) and the inequality (3.21) yields

(3.23)

hence by (3 .22), (3.7) and (3.23)

ko,(f@), -f(x)) =

1 - ( M 'lt'".

d(x,t,D- \a(fu),0D')) )

,(rros#.b*t)

a'rogffi+b'o
where a':acfw and b'o:o'logM*c(bo+l). Thus D' satisfies a quasihyperbolic
boundary condition at f(x).

Theorem 3.17 and Lemma 3.20 give a characterization for /€loc Lip,(D) in
terms of D and D'.

3.24. Th,eorem. Suppose that f is a K-quasiconformal mspp@ of D onto D'
and that D satisfies a quasihyperbolic boundary condition. Then f(locLip"(D) for
some 0<a< 6tl(r-n) if and only if D' satisfies a quasihyperbolic boundary condition.

3.25. Quasiconformal mappings and Lipn. For a quasiconformal mapping

f: D-D' we combine the results above with Section 2 to conclude that f€Lip"(D).
The first theorem follows directly from Theorem 3.17.

3.26. Theorem. Suppose that f is a K-quasiconformalmapping of D onto D'
and that D' satisfies a quasihyperbolic boundary condition. Then there is an

a, O < d, = Kr I {r- "), such that f€Lip,(D\ wheneuer D is a Lip o-extension domain.

3.27. Corollary. Suppose that f is a K-quasiconformal mapping of D onto

D', that D satisfies(2.3)forall O<a=KtlE-") and that D' satisfies aquasihyper-

bolic boundary condition. Then f(Lip,(D) for some 0<u<ytl(t-n).

Proof The corollary follows from Theorem 3.26 and Theorem 2.2.

Theorem 2.24,Lemma 3.11 and Corollary 3.27 yield

3.28. Theorem. Suppose that f i; a Kquasiconformal mapptng of a uniform
domain D onto u John domain D'. Then f(Lip,(D) for some O<u=Ku$-n).

3.29. Remark. An inspection of the proofs leading to Theorem 3.28 shows

that a depends only on n, K and the constants for D' and that ll/ll" depends only
on n, K, the constants for D and D' and d(f-L(yr\,0D) where yo is a John center

of D'.
Finally we obtain the following far reaching extension of a well known theorem

due to A. Mori [LV, Theorem II.3.2] from Theorem 3.28 and Lemma 2.18.
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3.30. Corollary. Suppose that D and D' are bounded uniform domains in

N and that f is a K-quasiconformal mapping of D onto D'. Then feLip"(D)
and f-L€Lip"(D') for some Q<q,=yuF-'}, where u depends only on n,K,D
and D'.

References

IBP] BncKEn, J., and C. Porr,runnsxrr: Hölder continuity of conformal mapprngs and non'quasi'

conformal Jordan curves. - Comment. Math. Helv. 57, 1982,221-225.

tcl GennrNc, F. W.: Univalent functions and the Schwarzian derivative. - Comment. Math.

Helv. 52. 1977, 561-572.

[GM] GsHmNc, F. W., and O. Mlrno: Quasidisks and the Hardy - Littlewood property. - Complex

Variables 2, 1983, 67-78.
[GO] GgrnrNG, F. W., and B, G. Oscoop: Uniform domains and the quasihyperbolic metric. - J.

Analyse Math. 36, 1979, 50-74'
[Gp] GBnmNc, F. W., and B. P. PAI.re: Quasiconformally homogeneous domains. - J. Analyse

Math. 30, 1976, 172-199'
tHLl Hnnpv, G. H., and J. E. LrruBwoop: Some properties of fractional integrals. II. - Math. Z.

34, 1932, 403-439.

tLVl Lrrro, O., und K. I. VrnmNrx: Quasikonforme Abbildungen. - springer-Verlag, Berlin-
Heidelberg-New York, 1965'

tMl Mlnrro, o.: Definitions for uniform domaini. - Ann. Acad. Sci. Fenn. ser. A I Math. 5,

1980, 197-205.

[MS] Mlnrro, O., and J. Slnvas: Injectivity theorems in plane and space. - Ann. Acad. Sci. Fenn'

Ser. A I Math. 4, 1978/79, 38H01.
[McS] McSneNr, E. J.: Extension of range of functions. - Bull. Amer. Math. Soc' N,1943' 837-

842.

iNp] Nfrxr, R., and B. Palre: Lipschitz condition, å-arcwise conn@tednes$ and conformal map'
pings. - J. Analyse Math. (to appeat).

University of Michigan University of Jyväskylä

Department of Mathematics Department of Mathematics

Ann Arbor, Michigan 48109 SF-40100 Jyväskylä

USA Finland

Received 9 April 1984


	IMG
	IMG_0001
	IMG_0002
	IMG_0003
	IMG_0004
	IMG_0005
	IMG_0006
	IMG_0007
	IMG_0008
	IMG_0009
	IMG_0010
	IMG_0011
	IMG_0012
	IMG_0013
	IMG_0014
	IMG_0015
	IMG_0016

