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1". Introduction

Suppose that f(z) is meromorphic in an angle, which we may for definiteness

take to be the right half-plane

and smooth at the origin, so that roots of f:a do not accummulate there' In a
recent paper [2] the notion of the inner order ki(P,fl of f(z) in P was introduced

and so was the inner order ki(a,P,f) of the roots of the equation f(z):a. One

then obtains the following result, using ideas of Valiron [7].

Theorem A. We haae O<ki(P)=-.

(i) If l=ki(P)=-,
then k1(a, P):kt(P) except for at most two aalues a for which ki@, P)<ki(P).

(ii) If O=ki(P)<L,
then we haue at most two aalues a for which k{a, P)<ki(P) and a certain small

exceptional set V ofualues a for which

fu(P) =. ki(a, P) = t.

It turns out that the nature of the set V canbe precisely described in terms of a

set function due to Hyllengren [3,41. The positive theorems were obtained in [2]
and examples are given in [1] for any value of the order e:k{P) satisfying 0 

= 
q 

= 
1.

If f(z) is regular and bounded in P thenf(z) does not assume large values a and

so ki(a,P):O for such a.The small set Zin (ii) can certainly not contain all values

in a disk and so we deduce that kr(P):0 for bounded functions' Thus we obtain

results concernipg the nature of V for bounded functions by applying Theorem A
with k,(P):Q. In this paper we show, using a result on interpolation due to Kats-

nel'son [5] and Carleson (see appendix) that the results obtained in this way are

sharp. The technique used by Drasin and the author [] to obtain functions of order

zero does not appear able to yield bounded functions although it does yield func-

P: -+ < argz - +,')
z.L
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tions which are regular in P and grow at most like lzl as z** in P. In order to
obtain the result of Theorem I I needed an interpolation theorem such as Lemma l.
I wrote to Carleson about this and the theorem proved by him in the appendix was

the result.

2. Statement of results

Let V be a plane set and write

(2.r)

Suppose that for
point of V lies in

(2.2)

In this paper

(2.3).

Theorem 1.

plane set such that

s{v(e)} = {rosi+r,}-'

e (x) - exp { - .*p exp x}.

some sequence Qn of complex numbers and some positiva c, every

infinitely many of the disks

la- a,l <. e(cn).

Then we say following Hyllengren 13, 4l that the sequence e(cn) majorises Z. The
span s(Z) of Zis defined to be the greatest lower bound of all numbers c-r for which
e(cn) majorises Z. If e(cn) does not majorise V for any c, we say that s(Z):-.
lf V:vVo, where s(V)-.- for eachn, we say that V has at most countably
infinite span.

With the above definition the results on V inl2lcan be stated as follows.

Theorem B. If p:ftt(p):O and in particular if f(z) is regular and bounded

in P, supposethat 0=Q'=1. Thenif Y(p') isthesetof all a forwhich ki(a,P\>p',
we haoe

(2.3)

Corollary. ff V@) is the set of a for which ki(a, P)=0 then V(0) has at
most countably infinite span. If V(l\ is the set for which ki(a, P):1, then

s {v(1)} : o.

we obtain a converse result, at least if strict inequality holds in

bounded

s(v')={ros #}-'.
Then there exists f(t) regular and bounded in P and such that

Suppose that 0< Q'=l and that V':V(g') ,s any

for euery a€V'
kr(a, P) =- Q'
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To define ki@,P) we let n"(r,a) be the number of roots of f(z):s irl

lzl < r, laryzl <.l-r,
and write

(2.4) k(o,r) : 
,Tn- "tr:t;'^ .

Then

(2.s) ki(a, P): lilp k(4, e),

3. The fundamental interpolation Iemma

We shall need to use the following result which is a very special case of Kats-
nel'son's suffi.cient condition. A more complete result is proved in the appendix.

Lemma l. Suppose that p, is a sequence of positiue integers, a, is a seqaence

of complex numbers, such that la,l=|, and ro is a sequence of positiue numbers such

that,for some positioe constant K,

(3.1) '".!t = l* Kpnp,+r, n : 1,2, ....
rn

Thm there exists afunction f(z) regular in P and bounded there by a constant Klde-
pending only on K, such that

(3.2) f(t):a,, f@(rn):0, 0=P * P,-!.
We write

(3.3) B,(") : II^.,(Ti1)'^.
Katsnel'son [5] shows that, if
(3.4) l4(r)l = ä = 0, n:1,2, ...,

then the interpolation problem (3.2) can be solved by a function f(z) regalar in P
and bounded by a constant depending on ä only. Thus to prove Lemma I we need

only show that (3.1) implies (3.4). We proceed to prove this result. We denote by
Kr, Kr,... positive constants depending on Kt only.

We note first that (3.1) implies

(3.5) L=Kz(l*K)n-^p^po, m<n.
rm

lf n:m*l this follows from (3.1) with Kr:l(l(l+K). Next, if n-m>2, (3.1)
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shows that

)=+X, n+l<v<m-1.
Thus

and t= KP^, += KPn

#=(I+K1-^-2.
On multiplying these inequalities we obtain (3.5) with

r:(#)'
We now form the Blaschke products (3.3). We deduce from (3.5) that these products

converge and in fact (3.5) yields

logr,(r) = K"{Z^-,n-}+ 2^-,0*?I

=- Z.-,8(1+K)'-"+ Z^-,8(r+K1'-- : vo.

This proves (3.4) and thus Lemma I is proved.

We also need a form of the Milloux-Schmidt inequality.

Lemma 2. Suppose that e,q,r liebetween O and l, that F(z) isregular in

lzl=1 and satisfies lF(z)l-I there andfurther that

(3.6) ,iy!olF(z)l=n, 0<ere.

Thenfor ef2=7-.1, we haue

Q.7) toelF(z)l =ffi, lzl: r.

We consider first the case r:e12. Then since lf(z\l<l in lzl-.e and (3.6)

holds, the classical Milloux-Schmidt inequality [6, Theorem I, p. 107J yields for

l"l:r
log lF(z)l = (log4) (t-!ruo-tf;lit) =*toto.

Now Hadamard's convexity theorem shows that for ef2=r<.1, we have

toglF(z)l = ffiItorr,
which is (3.7).

lt is convenient to express this result a little differently.
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Lemma 3. Suppose that F(z) is regular in lzl<.I and satisfies lF(z)l=M
there andfurther lf(0)l=l and lf1r11:2 where lf2<r<1. Thenif 0<e<1f2,
there exists p, such that O<q<e and

23t

(3.8)

where

(3.9)

lF(z)- r(0)l = d, I'l _ q

1- - 1 6log (2le) los (M+l)
t^^_'"u d log (Ili '

In particular if F(z)-F(0) has a zero of order p at the origin then the equation
F(z):a has at least p roots in lzl=e, if la-F(O)l=d.

We consider

e:p1:W,
so that lG(z)l-l fot lzl<.1. Suppose that (3.8) is false for 0= q=e. Then we can

apply Lemma 2 to G (z\ with
il4: M+T'

We obtain
(

"rtrh) = roerG(r)r =wWu,
i.e.

,^,(M+1) = 
6loe(2le) tno(M_t_1\'""1 d t: log(1/r)

so that

,__ 1 6(log(2/e))loe(M+I)togA <.

Thus when (3.9) holds, (3.8) must be true for some p. The last part of Lemma 3

follows at once from Rouch€'s theorem.

4. A general example

We can prove

Theorem 2. Suppose that pn,rn satisfy the hypotheses of Lemma I anit thai
a, is an arbitrary sequence of complex numbers satisfuing la"l=\. Suppose further
that 0<e<112. Then there exists f(z) bounded and regular in P and such that for
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la-a,l=dn, the equation f(z):a has at least po roots in lz-rol<srn wftg7s

d,: exp(-Kup,)

and Ku is a constant depending on e and K only.

We write C:(1+K)1/2-l and define ri by

L: t+cpn.
rn

We note that
(1 + Cp,Xl + Cpo+t) : I * C (p,* p,+t) * C2 pnpn+t

1 I I pnpn+tQc + Cz) : I + Kpopn*r.
Thus 

r,+lr,o >- r+cpn*r.

Hence the sequenc e rr, rl, rr, r'2, ... and the associated sequence pt, l, pz, | , ...
satisfies (3.1) with C instead of K, and so we can findf(z) satisfying the conditions
of Lemma 1, and in addition

f(ri):2, l=n< 1-a.

We now assume that a,:f(r) is a preassigned sequence such that la,l=|,
and that

lf(z)l < M.
Consider

F(O: r(r"#_)

Then I'(0 is regular in l(l=1, lF(01<M there and F(}-a, has a zero order at
least p, at the origin. Also

F(r):2
where r is given by

"E:'i' i'e'':*':#h'
It now follows from Lemma 3 that F(O assumes at leastpn times in l(l<e every
valte a, such that la-anl<f,, ylllers

,^_ I _ 6logQle\log(M+l)'"64-WTepJi@'
Thus 

l ogl=Kup,, d,=exp(-Ksp,),
un
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where Ku depends only on Kr, M and e and so on K1 and e. Also if
t+(z: r"T1,

we have

lz-r'l : '"1ft1< 48rn' ir 1g1= ' = ! '

Thus the functionf(z) assumes every value a such that la-aol=dn atleastpn times
in lz-rol-.4ern and replacing 4eby e we deduce Theorem 2.

5. Proof of Theorem 1

We now choose q.:Q', so that 0=u=1, set c:log(t+ay(t-c1), and

(5.1) rr : exp exp (cn), p,: l2frl+l, n > l,

where [x] denotes the integral part of x. Then

ln+!: rF+a)lG-d)
and so

rn+tl tn : 4+Jf,= max {rf, "*-}
Thus the conditions of Theorem 2 are satisfied, and taking e<ll2 we see thatf(z)
assumes the value c at leastp, times in lz-r,l-r,tane provided that

(5.2) la - a,l d,n.

If a lies in infinitely many of the disks (5.2), then we see that the equation f(r):a
has more than Qr) roots in larg zl=e, lzl<2r, for infinitely many n. This implies
by Q.D and (2.5) that ki(a, P,fl=a. Also the set of a in question includes all a
lying in infinitely many of the disks (5.2). For atwe can choose any sequence such

tbat la,l<.l, and so any bounded sequence, for if la,l<M, where M=\ we con-
sider f/M, a,f M instead of f,an. For dnwehave from Theorem 2 and (5.1)

d, = exp{-3Ku exp (a exp (cn))} = exp {-exp exp (cn)}

for large n, since a<1. Thus for our exceptional set we can choose any bounded set

V' of span less than r-t: flog ((1+c)/(t -a)))-t.
In conclusion we note that by using Theorem 2 and the technique employed in

F, Section l0l we can also deal with the limiting cäs€s g':Q and q':1. In this
way we can construct a regular bounded function in P, which assumes all values

a of a preassigned set of countably infinite span Z(0) with positive order q'(a) and
all values of a preassigned set Z(1) of zero span with order 1.
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