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LOCAL VALUE DISTRIBUTION
OF FUNCTIONS BOUNDED IN A HALF-PLANE

W. K. HAYMAN

1. Introduction

Suppose that f(z) is meromorphic in an angle, which we may for definiteness
take to be the right half-plane

P: —%< arg z <—7£,
and smooth at the origin, so that roots of f=a do not accummulate there. In a
recent paper [2] the notion of the inner order k;(P,f) of f(z) in P was introduced
and so was the inner order k;(a, P, f) of the roots of the equation f(z)=a. One
then obtains the following result, using ideas of Valiron [7].

Theorem A. We have 0=k;(P)=--.
@D If 1=k(P)= e,

then ki(a, P)=k;(P) except for at most two values a for which k;(a, P)<k;(P).
i) If 0=k®) <1,

then we have at most two values a for which k;(a, P)<k;(P) and a certain small
exceptional set V of values a for which

k,(P) < k;(a, P) = 1.

It turns out that the nature of the set ¥ can be precisely described in terms of a
set function due to Hyllengren [3, 4]. The positive theorems were obtained in [2]
and examples are given in [1] for any value of the order ¢=k;(P) satisfying 0=o=1.

If f(z) is regular and bounded in P then f(z) does not assume large values a and
so k;(a, P)=0 for such a. The small set ¥ in (ii) can certainly not contain all values
in a disk and so we deduce that k,(P)=0 for bounded functions. Thus we obtain
results concerning the nature of ¥ for bounded functions by applying Theorem A
with k;(P)=0. In this paper we show, using a result on interpolation due to Kats-
nel’son [5] and Carleson (see appendix) that the results obtained in this way are
sharp. The technique used by Drasin and the author [1] to obtain functions of order
zero does not appear able to yield bounded functions although it does yield func-
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tions which are regular in P and grow at most like |z| as z—<- in P. In order to
obtain the result of Theorem 1 I needed an interpolation theorem such as Lemma 1.
Iwrote to Carleson about this and the theorem proved by him in the appendix was
the result.

2. Statement of results

Let V be a plane set and write
2.1) e(x) = exp {—exp exp x}.

Suppose that for some sequence g, of complex numbers and some positive ¢, every
point of V lies in infinitely many of the disks

2.2) la—a,| < e(cn).

Then we say following Hyllengren [3, 4] that the sequence e(cn) majorises V. The
span s(V) of V is defined to be the greatest lower bound of all numbers ¢~ for which
e(cn) majorises V. If e(cn) does not majorise ¥ for any ¢, we say that s(V)=co.
If V=uV,, where s(V,)<< for each n, we say that V" has at most countably
infinite span.

With the above definition the results on ¥ in [2] can be stated as follows.

Theorem B. If 9=k;(P)=0 and in particular if f(z) is regular and bounded
in P, supposethat 0<o'<1. Thenif V(g’) isthesetofall a for which k;(a, P)=¢’,
we have

(2.3) s{V(e)} = {log

1+Q, }—1
1—9') °
Corollary. If V(0) is the set of a for which k;(a, P)=0 then V(0) has at
most countably infinite span. If V(1) is the set for which k;(a, P)=1, then
s{F()} = 0.

In this paper we obtain a converse result, at least if strict inequality holds in
(2.3).

Theorem 1. Suppose that 0<g’<1 and that V'=V(¢") is any bounded
plane set such that

1 s7y—1
s(V’)<{log1iZ,} .

Then there exists f(z) regular and bounded in P and such that

ki(a, P) = ¢’
for every acV’.
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To define k;(a, P) we let n,(r,a) be the number of roots of f(z)=a in

n
|z <, |Jargz] <= =—c¢,

2
and write
2.4) k(a,¢) = Tim 087" @)
' ’ r-w logr
Then
(2.5) ki(a, P) = lim k(a, 2).

3. The fundamental interpolation lemma

We shall need to use the following result which is a very special case of Kats-
nel’son’s sufficient condition. A more complete result is proved in the appendix.

Lemma 1. Suppose that p, is a sequence of positive integers, a, is a sequence
of complex numbers, such that |a,|=1, and r, is a sequence of positive numbers such
that, for some positive constant K,

G3.1) I’;—“—zl-l—Kp,,an, n=1,2, ...

n

Then there exists a function f(z) regular in P and bounded there by a constant K, de-
pending only on K, such that

3.2 fr)=a,, fP@,)=0, 0<p=p,—1.
We write
Fm—2z)"
3.3) B,(2) = H'";*”[rm+z] .

Katsnel’son [5] shows that, if
349 |B,(r)l =6=0, n=1,2, ...,

then the interpolation problem (3.2) can be solved by a function f(z) regular in P
and bounded by a constant depending on J only. Thus to prove Lemma 1 we need
only show that (3.1) implies (3.4). We proceed to prove this result. We denote by
K;, K;, ... positive constants depending on K; only.

We note first that (3.1) implies

(3.5) —:— =~ Ky(1+K)""™pppy, m=<n.

m

If n=m+1 this follows from (3.1) with K,=K/(1+K). Next, if n—m=2, (3.1)



230 W. K. HAYmMAN

shows that
D =11k ntl=v=m—1.
Thus
rm+1 rn
_— = =K
" Kpm» P Dn
and

Dol = (14 K)ym-2

Tm+1

On multiplying these inequalities we obtain (3.5) with

K 2
&= (1 +K ] '
We now form the Blaschke products (3.3). We deduce from (3.5) that these products
converge and in fact (3.5) yields

T'm Tn
_log Bn(rn) = K3 {Z’m<n Pm r_+ 2m>n Pm T}

m

K. : K.
=3, U+ "+ 3, P U+K " = K,
2 2
This proves (3.4) and thus Lemma 1 is proved.
We also need a form of the Milloux-Schmidt inequality.

Lemma 2. Suppose that ¢, n,r lie between 0 and 1, that F(z) is regular in
lz|<1 and satisfies |F(z)|<1 there and further that

(3.6) Iilnf |F(z)l =1, O<g<e.
z|=¢
Then for ¢/2<r<1, we have
1
(3.7) log |F(z)| < \ogloer =r

6log(e2) ||

We consider first the case r=g/2. Then since |f(z)]<1 in |z]<e and (3.6)
holds, the classical Milloux-Schmidt inequality [6, Theorem 1, p. 107] yields for
|z|=r

4 _
log |F(z)| = (logn) [1 —;tan‘1 ]/1/2] < %log 7.
Now Hadamard’s convexity theorem shows that for &/2=r<1, we have

log(1l/r) 1
log F(2)| = 120 & logn,
which is (3.7).

It is convenient to express this result a little differently.
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Lemma 3. Suppose that F(z) is regular in |z|<1 and satisfies |F(z)|<M
there and further |F(0)|=1 and |F(r)|=2 where 1/2<r<]1. Then if 0<e<1/2,
there exists o, such that O0<gp<e¢ and

(3.8) - |F(z)—F(O) =4, |z| = ¢
where

1 6log(2/e)log(M+1)
(39 log 7 = log (1/r)

In particular if F(z)—F(0) has a zero of order p at the origin then the equation
F(z)=a has at least p rootsin |z|<e, if |a—F(0)|<d.

We consider
_ F(2)—-F(0)
“O="4T

so that |G(z)|<!1 for |z]<1. Suppose that (3.8) is false for 0<g<e. Then we can
apply Lemma 2 to G(z) with

=T

We obtain

1L _ _ log(d/(M+ 1)logr

log (M+ 1 ] =10gl6l = ——¢liog @)y
ie.
M+1 6log (2/e)
log[ ] ] = Tog (1/7) log(M+1),

so that

log L 6 (log (2/e)) log (M + 1)

087G = log (1/7) :

Thus when (3.9) holds, (3.8) must be true for some g. The last part of Lemma 3
follows at once from Rouché’s theorem.

4. A general example

We can prove

Theorem 2. Suppose that p,,r, satisfy the hypotheses of Lemma 1 and that
a, is an arbitrary sequence of complex numbers satisfying |a,|=1. Suppose further
that 0<g<1/2. Then there exists f(z) bounded and regular in P and such that for
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la—a,|<d,, the equation f(z)=a has at least p, roots in |z—r,|<er, where
dn = €Xp (_KSPn)
and K; is a constant depending on ¢ and K only.

We write C=(14+K)2—1 and define r, by

’

I —1+cp,.
We note that
(1 + Cpn)(l + Cpn+1) = 1+ C(pn+pn+1)+ Czpnpn+1
E 1+pnpn+1(2c+c2) = 1+Kpnpn+l'
Thus

r,,+1/r,', = 1 +Cpn+l'

Hence the sequence ry,ry, 7y, 7y, ... and the associated sequence p;,1,p,, 1, ...
satisfies (3.1) with C instead of K, and so we can find f(z) satisfying the conditions
of Lemma 1, and in addition

fG) =2, 1=n<+o.

We now assume that a,=f(r,) is a preassigned sequence such that |a,|=1,
and that :
|l f(2)] <M.
Consider

FO =7 (nsy).

Then F({) is regular in [{|<1, |F({)|<M there and F({)—a, has a zero order at
least p, at the origin. Also

F(ry=2
where r is given by
rli=r’ ie rzrz_r”= Cp
"l—r 7 rp+r, 2+Cp,’

It now follows from Lemma 3 that F({) assumes at least p, times in |{|<e every
value a, such that |a—a,|<d, where

1 6log(2/e)log (M+1)

logd—,, ~ log((2+Cp)/(Cpy))

Thus

1
logT = K5pns dn = €Xp (_K5pn)’
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where K; depends only on K;, M and ¢ and so on K; and &. Also if

1+¢

Z:r"_l—i,”

we have
2{
1-¢

Thus the function f(z) assumes every value a such that |a—a,|<d, at least p, times
in |z—r,|<4er, and replacing 4¢ by ¢ we deduce Theorem 2.

< der,, if || <£<%.

,Z—-rnl =",

5. Proof of Theorem 1

We now choose a=g’, so that O<a<1, set c=log((1+a)/(1—a)), and
(5.1) r, = expexp (cn), p, = [2r3]+1, n =1,

where [x] denotes the integral part of x. Then

Fpy1 = r'£1+a)/(1—a)

and so

pnpn+l}
9 .

— a 200
rn+1/rn - rﬁ+lrn = max {7'1 ’

Thus the conditions of Theorem 2 are satisfied, and taking ¢=1/2 we see that f(z)
assumes the value a at least p, times in |z—r,|<r, tan ¢ provided that

(5.2 la—a,| < d,.

If a lies in infinitely many of the disks (5.2), then we see that the equation f(z)=a
has more than (2r,)* roots in |arg z|<e, |z|<2r, for infinitely many n. This implies
by (2.4) and (2.5) that k;(a, P,f)=a. Also the set of a in question includes all a
lying in infinitely many of the disks (5.2). For a, we can choose any sequence such
that |a,|]<1, and so any bounded sequence, for if |a,|<M, where M=>1, we con-
sider f/M, a,/M instead of f, a,. For d, we have from Theorem 2 and (5.1)

d, > exp{—3K; exp (x exp (cn))} > exp {—exp exp (cn)}

for large n, since a<1. Thus for our exceptional set we can choose any bounded set
V’ of span less than ¢~1={log ((1+¢")/(1—¢"))}~

In conclusion we note that by using Theorem 2 and the technique employed in
[1, Section 10] we can also deal with the limiting cases ¢’=0 and ¢’=1. In this
way we can construct a regular bounded function in P, which assumes all values
a of a preassigned set of countably infinite span ¥ (0) with positive order ¢’(a) and
all values of a preassigned set V(1) of zero span with order 1.
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