Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 227–234 Commentationes in honorem Olli Lehto LX annos nato

LOCAL VALUE DISTRIBUTION OF FUNCTIONS BOUNDED IN A HALF-PLANE

W. K. HAYMAN

1. Introduction

Suppose that f(z) is meromorphic in an angle, which we may for definiteness take to be the right half-plane

$$P: -\frac{\pi}{2} < \arg z < \frac{\pi}{2},$$

and smooth at the origin, so that roots of f=a do not accummulate there. In a recent paper [2] the notion of the inner order $k_i(P, f)$ of f(z) in P was introduced and so was the inner order $k_i(a, P, f)$ of the roots of the equation f(z)=a. One then obtains the following result, using ideas of Valiron [7].

Theorem A. We have $0 \leq k_i(P) \leq \infty$.

(i) If $1 \leq k_i(P) \leq \infty$,

then $k_i(a, P) = k_i(P)$ except for at most two values a for which $k_i(a, P) < k_i(P)$.

(ii) If
$$0 \le k_i(P) < 1$$
,

then we have at most two values a for which $k_i(a, P) < k_i(P)$ and a certain small exceptional set V of values a for which

$$k_i(P) < k_i(a, P) \leq 1.$$

It turns out that the nature of the set V can be precisely described in terms of a set function due to Hyllengren [3, 4]. The positive theorems were obtained in [2] and examples are given in [1] for any value of the order $\varrho = k_i(P)$ satisfying $0 \le \varrho \le 1$.

If f(z) is regular and bounded in P then f(z) does not assume large values a and so $k_i(a, P) = 0$ for such a. The small set V in (ii) can certainly not contain all values in a disk and so we deduce that $k_i(P)=0$ for bounded functions. Thus we obtain results concerning the nature of V for bounded functions by applying Theorem A with $k_i(P)=0$. In this paper we show, using a result on interpolation due to Katsnel'son [5] and Carleson (see appendix) that the results obtained in this way are sharp. The technique used by Drasin and the author [1] to obtain functions of order zero does not appear able to yield bounded functions although it does yield functions which are regular in P and grow at most like |z| as $z \to \infty$ in P. In order to obtain the result of Theorem 1 I needed an interpolation theorem such as Lemma 1. I wrote to Carleson about this and the theorem proved by him in the appendix was the result.

2. Statement of results

Let V be a plane set and write

(2.1)
$$e(x) = \exp\{-\exp \exp x\}.$$

Suppose that for some sequence a_n of complex numbers and some positive c, every point of V lies in infinitely many of the disks

$$|a-a_n| < e(cn).$$

Then we say following Hyllengren [3, 4] that the sequence e(cn) majorises V. The span s(V) of V is defined to be the greatest lower bound of all numbers c^{-1} for which e(cn) majorises V. If e(cn) does not majorise V for any c, we say that $s(V) = \infty$. If $V = \bigcup V_n$, where $s(V_n) < \infty$ for each n, we say that V has at most countably infinite span.

With the above definition the results on V in [2] can be stated as follows.

Theorem B. If $\varrho = k_i(P) = 0$ and in particular if f(z) is regular and bounded in P, suppose that $0 < \varrho' < 1$. Then if $V(\varrho')$ is the set of all a for which $k_i(a, P) \ge \varrho'$, we have

(2.3)
$$s\{V(\varrho')\} \leq \left\{\log\frac{1+\varrho'}{1-\varrho'}\right\}^{-1}.$$

Corollary. If V(0) is the set of a for which $k_i(a, P) > 0$ then V(0) has at most countably infinite span. If V(1) is the set for which $k_i(a, P) = 1$, then

$$s\{V(1)\}=0.$$

In this paper we obtain a converse result, at least if strict inequality holds in (2.3).

Theorem 1. Suppose that $0 < \varrho' < 1$ and that $V' = V(\varrho')$ is any bounded plane set such that

$$s(V') < \left\{ \log \frac{1+\varrho'}{1-\varrho'} \right\}^{-1}.$$

Then there exists f(z) regular and bounded in P and such that

$$k_i(a, P) \ge \varrho'$$

for every $a \in V'$.

To define $k_i(a, P)$ we let $n_{\varepsilon}(r, a)$ be the number of roots of f(z) = a in

$$|z| < r$$
, $|\arg z| < \frac{\pi}{2} - \varepsilon$,

and write

(2.4)
$$k(a,\varepsilon) = \lim_{r \to \infty} \frac{\log n_{\varepsilon}(r,a)}{\log r}$$

Then

(2.5)
$$k_i(a, P) = \lim_{\varepsilon \to 0} k(a, \varepsilon).$$

3. The fundamental interpolation lemma

We shall need to use the following result which is a very special case of Katsnel'son's sufficient condition. A more complete result is proved in the appendix.

Lemma 1. Suppose that p_n is a sequence of positive integers, a_n is a sequence of complex numbers, such that $|a_n| \leq 1$, and r_n is a sequence of positive numbers such that, for some positive constant K,

(3.1)
$$\frac{r_{n+1}}{r_n} \ge 1 + K p_n p_{n+1}, \quad n = 1, 2, \dots$$

Then there exists a function f(z) regular in P and bounded there by a constant K_1 depending only on K, such that

(3.2)
$$f(r_n) = a_n, \ f^{(p)}(r_n) = 0, \ 0$$

We write

$$B_n(z) = \prod_{m \neq n} \left(\frac{r_m - z}{r_m + z} \right)^{p_m}.$$

Katsnel'son [5] shows that, if

$$(3.4) |B_n(r_n)| \ge \delta > 0, \quad n = 1, 2, ...,$$

then the interpolation problem (3.2) can be solved by a function f(z) regular in P and bounded by a constant depending on δ only. Thus to prove Lemma 1 we need only show that (3.1) implies (3.4). We proceed to prove this result. We denote by K_2, K_3, \ldots positive constants depending on K_1 only.

We note first that (3.1) implies

(3.5)
$$\frac{r_n}{r_m} > K_2 (1+K)^{n-m} p_m p_n, \quad m < n.$$

If n=m+1 this follows from (3.1) with $K_2 = K/(1+K)$. Next, if $n-m \ge 2$, (3.1)

W. K. HAYMAN

shows that

$$\frac{r_{v+1}}{r_v} \ge 1+K, \quad n+1 \le v \le m-1.$$

Thus

$$\frac{r_{m+1}}{r_m} \ge Kp_m, \quad \frac{r_n}{r_{n-1}} \ge Kp_n$$

and

$$\frac{r_{n-1}}{r_{m+1}} \ge (1+K)^{n-m-2}.$$

On multiplying these inequalities we obtain (3.5) with

$$K_2 = \left(\frac{K}{1+K}\right)^2.$$

We now form the Blaschke products (3.3). We deduce from (3.5) that these products converge and in fact (3.5) yields

$$-\log B_n(r_n) < K_3 \left\{ \sum_{m < n} p_m \frac{r_m}{r_n} + \sum_{m > n} p_m \frac{r_n}{r_m} \right\}$$
$$\leq \sum_{m < n} \frac{K_3}{K_2} (1+K)^{m-n} + \sum_{m > n} \frac{K_3}{K_2} (1+K)^{n-m} = K_4.$$

This proves (3.4) and thus Lemma 1 is proved.

We also need a form of the Milloux-Schmidt inequality.

Lemma 2. Suppose that ε, η, r lie between 0 and 1, that F(z) is regular in |z| < 1 and satisfies |F(z)| < 1 there and further that

(3.6)
$$\inf_{|z|=\varrho} |F(z)| \leq \eta, \quad 0 < \varrho < \varepsilon.$$

Then for $\varepsilon/2 < r < 1$, we have

(3.7)
$$\log |F(z)| < \frac{\log \eta \log r}{6 \log (\varepsilon/2)}, \quad |z| = r.$$

We consider first the case $r=\varepsilon/2$. Then since |f(z)|<1 in $|z|<\varepsilon$ and (3.6) holds, the classical Milloux-Schmidt inequality [6, Theorem 1, p. 107] yields for |z|=r

$$\log |F(z)| \le (\log \eta) \left(1 - \frac{4}{\pi} \tan^{-1} \sqrt{1/2} \right) < \frac{1}{6} \log \eta.$$

Now Hadamard's convexity theorem shows that for $\varepsilon/2 \le r < 1$, we have

$$\log |F(z)| \leq \frac{\log (1/r)}{\log (2/\varepsilon)} \frac{1}{6} \log \eta,$$

which is (3.7).

It is convenient to express this result a little differently.

230

Lemma 3. Suppose that F(z) is regular in |z| < 1 and satisfies |F(z)| < Mthere and further $|F(0)| \le 1$ and |F(r)| = 2 where 1/2 < r < 1. Then if $0 < \varepsilon < 1/2$, there exists ϱ , such that $0 < \varrho < \varepsilon$ and

$$(3.8) |F(z) - F(0)| \ge d, |z| = \varrho$$

where

(3.9)
$$\log \frac{1}{d} = \frac{6 \log (2/\varepsilon) \log (M+1)}{\log (1/r)}.$$

In particular if F(z) - F(0) has a zero of order p at the origin then the equation F(z)=a has at least p roots in $|z| < \varepsilon$, if |a-F(0)| < d.

We consider

$$G(z) = \frac{F(z) - F(0)}{M+1},$$

so that |G(z)| < 1 for |z| < 1. Suppose that (3.8) is false for $0 < \varrho < \varepsilon$. Then we can apply Lemma 2 to G(z) with

$$\eta = \frac{d}{M+1}.$$

We obtain

$$\log\left(\frac{1}{M+1}\right) \le \log|G(r)| \le \frac{\log\left(d/(M+1)\right)\log r}{6\left(\log\left(\varepsilon/2\right)\right)}$$

i.e.

so that

 $\log\left(\frac{M+1}{d}\right) \leq \frac{6\log\left(2/\varepsilon\right)}{\log\left(1/r\right)}\log\left(M+1\right),$

$$\log \frac{1}{d} < \frac{6\left(\log\left(2/\varepsilon\right)\right)\log\left(M+1\right)}{\log\left(1/r\right)}.$$

Thus when (3.9) holds, (3.8) must be true for some ρ . The last part of Lemma 3 follows at once from Rouché's theorem.

4. A general example

We can prove

Theorem 2. Suppose that p_n, r_n satisfy the hypotheses of Lemma 1 and that a_n is an arbitrary sequence of complex numbers satisfying $|a_n| \leq 1$. Suppose further that $0 < \varepsilon < 1/2$. Then there exists f(z) bounded and regular in P and such that for

 $|a-a_n| < d_n$, the equation f(z) = a has at least p_n roots in $|z-r_n| < \varepsilon r_n$ where

 $d_n = \exp\left(-K_5 p_n\right)$

and K_5 is a constant depending on ε and K only.

We write $C = (1+K)^{1/2} - 1$ and define r'_n by

$$\frac{r'_n}{r_n} = 1 + Cp_n.$$

We note that

$$(1+Cp_n)(1+Cp_{n+1}) = 1+C(p_n+p_{n+1})+C^2p_np_{n+1}$$

$$\leq 1 + p_n p_{n+1} (2C + C^2) = 1 + K p_n p_{n+1}.$$

Thus

$$r_{n+1}/r'_n \ge 1 + Cp_{n+1}$$

Hence the sequence $r_1, r'_1, r_2, r'_2, ...$ and the associated sequence $p_1, 1, p_2, 1, ...$ satisfies (3.1) with C instead of K, and so we can find f(z) satisfying the conditions of Lemma 1, and in addition

$$f(r'_n) = 2, \quad 1 \le n < +\infty.$$

We now assume that $a_n = f(r_n)$ is a preassigned sequence such that $|a_n| \le 1$, and that |f(z)| < M.

Consider

where r is given by

$$F(\zeta) = f\left(r_n \frac{1+\zeta}{1-\zeta}\right).$$

Then $F(\zeta)$ is regular in $|\zeta| < 1$, $|F(\zeta)| < M$ there and $F(\zeta) - a_n$ has a zero order at least p_n at the origin. Also

F(r) = 2

$$r_n \frac{1+r}{1-r} = r'_n$$
, i.e. $r = \frac{r'_n - r_n}{r'_n + r_n} = \frac{Cp_n}{2+Cp_n}$.

It now follows from Lemma 3 that $F(\zeta)$ assumes at least p_n times in $|\zeta| < \varepsilon$ every value *a*, such that $|a-a_n| < d_n$ where

$$\log \frac{1}{d_n} = \frac{6 \log (2/\varepsilon) \log (M+1)}{\log ((2+Cp_n)/(Cp_n))}.$$

Thus

$$\log \frac{1}{d_n} \leq K_5 p_n, \quad d_n \geq \exp\left(-K_5 p_n\right),$$

where K_5 depends only on K_1 , M and ε and so on K_1 and ε . Also if

$$z=r_n\frac{1+\zeta}{1-\zeta},$$

we have

$$|z-r_n|=r_n\left|\frac{2\zeta}{1-\zeta}\right|<4\varepsilon r_n, \quad \text{if} \quad |\zeta|<\varepsilon<\frac{1}{2}.$$

Thus the function f(z) assumes every value *a* such that $|a-a_n| < d_n$ at least p_n times in $|z-r_n| < 4\varepsilon r_n$ and replacing 4ε by ε we deduce Theorem 2.

5. Proof of Theorem 1

We now choose
$$\alpha = \varrho'$$
, so that $0 < \alpha < 1$, set $c = \log((1+\alpha)/(1-\alpha))$, and

(5.1)
$$r_n = \exp \exp (cn), \ p_n = [2r_n^{\alpha}] + 1, \ n \ge 1,$$

where [x] denotes the integral part of x. Then

$$r_{n+1} = r_n^{(1+\alpha)/(1-\alpha)}$$

and so

$$r_{n+1}/r_n = r_{n+1}^{\alpha} r_n^{\alpha} \ge \max\left\{r_1^{2\alpha}, \frac{p_n p_{n+1}}{9}\right\}.$$

Thus the conditions of Theorem 2 are satisfied, and taking $\varepsilon \le 1/2$ we see that f(z) assumes the value *a* at least p_n times in $|z - r_n| < r_n \tan \varepsilon$ provided that

$$(5.2) |a-a_n| < d_n.$$

If a lies in infinitely many of the disks (5.2), then we see that the equation f(z)=a has more than $(2r_n)^{\alpha}$ roots in $|\arg z| < \varepsilon$, $|z| < 2r_n$ for infinitely many n. This implies by (2.4) and (2.5) that $k_i(a, P, f) \ge \alpha$. Also the set of a in question includes all a lying in infinitely many of the disks (5.2). For a_n we can choose any sequence such that $|a_n| < 1$, and so any bounded sequence, for if $|a_n| < M$, where M > 1, we consider f/M, a_n/M instead of f, a_n . For d_n we have from Theorem 2 and (5.1)

$$d_n > \exp\left\{-3K_5 \exp\left(\alpha \exp\left(cn\right)\right)\right\} > \exp\left\{-\exp\left(cn\right)\right\}$$

for large *n*, since $\alpha < 1$. Thus for our exceptional set we can choose any bounded set V' of span less than $c^{-1} = \{ \log ((1 + \varrho')/(1 - \varrho')) \}^{-1}$.

In conclusion we note that by using Theorem 2 and the technique employed in [1, Section 10] we can also deal with the limiting cases $\varrho'=0$ and $\varrho'=1$. In this way we can construct a regular bounded function in P, which assumes all values a of a preassigned set of countably infinite span V(0) with positive order $\varrho'(a)$ and all values of a preassigned set V(1) of zero span with order 1.

References

- [1] DRASIN, D., and W. K. HAYMAN: Value distribution of functions meromorphic in an angle. -Proc. London Math. Soc. (3) (to appear).
- [2] HAYMAN, W. K.: Value distribution and exceptional sets. Lectures on approximation and value distribution, Sem. Math. Sup. 79. Presses Univ. Montréal, Montréal, Que., 1982, 79—147.
- [3] HYLLENGREN, A.: Über die untere Ordnung der ganzen Funktion $f(z) e^{az}$. Festschrift zur Gedächtnisfeier für Karl Weierstraß 1815—1965, herausgegeben von H. Behnke und K. Kopfermann, Westdeutscher Verlag, Köln—Opladen, 1966, 555—577.
- [4] HYLLENGREN, A.: Connections between two set functions. Ark. Mat. 13, 1975, 273-285.
- [5] KATSNEL'SON, V. È.: Conditions for a system of root vectors of certain classes of operators to be a basis. Funkcional. Anal. i Priložen. 1, 1967, 39–51 (Russian).
- [6] NEVANLINNA, R.: Analytic functions. Springer-Verlag, Berlin—Heidelberg—New York, 1970.
- [7] VALIRON, G.: Directions de Borel des fonctions méromorphes. Mémor. Sci. Math. 89, 1938, 1-70.

Imperial College Department of Mathematics London SW7 2BZ England

Received 6 October 1983