
Annales Academire Scientiarum Fennicre

Series A. I. Mathematica
Volumen 10, 1985, 239-245

Commentationes in honorem
Olli Lehto

LX annos nato
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1. Let P denote the set of analytic functions f on a given Riemann surface S

which have positive real part and are normalized to satisfy the condition f(a):I,
where a is a given point of S. The family P is convex and compact. The existence

of extreme points of P is assured by the Krein-Milman theorem - cf. [9, 130] -
or in a more elementary fashion by a proof using the argument of my paper [7].

We remark that the "schwarz lemma" extremal problem for (S, a,b) wherc

b(+a)QS, namely: "What are the g analytic on ,S, satisfying lgl=1, g(a):O,
which maximize lg(b)l?" has in any case solutions that are of the form of the com-

position of a Möbius transformationmmapptng {Re z>0} onto {lzl=1}' m(l):0,
with an extreme point of P. We observe concomitantly that there exist S|O,^B

such that no extreme member of any associated P has as real part a singular positive

harmonic function or a finite sum of minimal positive harmonic functions. The

assertion may be established with aid of the method of the celebrated construction

of P. J. Myrberg [10].
We are led to the conclusions that rilithout firriteness conditions on the topolog-

ical structure of S (relative to the genus and the number of boundary elements in

the sense of Kerdkjårtö and Stoilow) the extreme members of P may have real parts

with quite complicated structure and that the simplicity of the "Schwarz lemma"

extremals present in the case where S has finite topological characteristics and non-

pointlike boundary components (for which cf. [1], [4], [5]) does not persist.

The object of the present paper is to characterize the extreme members of P for
the cited "reasonable" situation where S has finite topological characteristics and

nonpointlike boundary components (Theorem 5.1). Forelli [3] showed that in the

important subcase where S is a plane region of connectivity n the extreme functions

are exactly the members of P having constant valence n on {Re z>0}. Accounts of
suchmapsareto be found in [2]-modulo a Möbius transformation-and [6]. We

shall give an account (Section 3) of the plane case following the formulation of
Grunsky in [6], which brings to the fore a natural correspondence between the

extreme functions and the cartesian product of the boundary components when ,S

is taken to have a "reasonable" boundary. Valuable historical notes are given in [6];
cf. p. 198. We remark that maps generically of this kind were envisaged by Riemann

in the last section (Section 22) of his Dissertation [11, 42-3] and in llL,44H1.
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For the case where 
^S 

has finite positive genus g and c boundary components
Forelli [3] showed that the extreme functions are contained in the subset of P whose
members have constant valence on {Re z>0), the value of the valence belonging
to {c, ...,2g*c}, and that if a member of P has constant valence c on {Re z>0},
it is an extreme function.

In the present paper we charactenze the extreme functions in terms of the
period vectors of the normalized minimal positive harmonic functions on S. Cf. [8].

The study of the real part of an extreme function, which is basic, is treated by
Forelli with the aid of Poisson type representations derived by uniformization
methods. Here the study is based on elementary extremal considerations concerning
positive harmonic functions and classical results concerning sub- and superharmonic
functions (Lemma 3.2).

We plan to apply the results of this paper elsewhere to finite Pigk-Nevanlinna
problems.

2. The case: 5:{lzl<1}, a:0. Here the situation is prototypical for the
plane theory. The extreme functions are given by

(2.1) /r: z+(rt+z)lQt-z), Itl < I,

where l4l:1. That eachf, is extreme follows on direct examination of the terms
entering a proposed representation as a barycenter of two members of P with par-
ticular reference to their behavior at points of {lzl:l}. If/is an extreme point of
P, then limoRe/:O, lql:l, save for exactly one q, say (, as we see with the aid
of the Poisson-Stieldes integral representation of f. We conclude that f:fr.

3. The case where S is a plane region of finite connectir:ity n*l (>l). We
suppose, as we may, that S is a bounded region QcC, the frontier of which con-
sists of z*1 disjoint regular analytic Jordan curves fr, ...,i-n*r, the component
l-o *, separating O from -.

Given n real-valued harmonic on O, we introduce the period vector a(u):
(rr.(u), ..., tpo(u)), where aro(rz) is the period of the conjugate of u along a level line
of the harmonic measure of l-o with respect to O, the level being less than but near
I and the sensing being that given by homotopic deformation from .fo positively
sensed.

Suppose that for k:1,...,n the function z1 is positive harmonic on Q and
vanishes continuously on f -fo. Then @j(uk)=O, j+k. By Green's theorem
ay(uo)> - Zi+nai(un\, it being observed that the period of the conjugate of uo along
fo*, positively sensed is negative.

It will be convenient to have available the following standard lemma concerning
cones in .Ro generated by vectors of a special kind which subsume the period vectors
al(z) justconsidered.For k:1,...,fl let C1,:(cr0,...,c,*)(Rn andhavetheprop-
erty that cpt>0; cip<O, j+k; Zicip>0. The lemma in question is
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Lemma 3.1. The aectots Cr,...,C, form abasefor R". The cone generated

by them contains the points x:(xr, ..., xo\ all of whose coordinates are nonnegatiue.

If not all the x, qre zero, the cofficients in the representation x:)u1,Co are all
positioe.

For an elementary account of substantially this lemma cf. [6, 136-7].
On introducing the minimal positive harmonic functions on O one obtains with

the aid of Lemma 3.1 the following theorem.

Theorem 3.1. Let (:((t,...,(,o+t)€ftx...Xfo+1. There exists a unique

member fi o.f P hauing the property that Re ft uanishes continuously at each point
of r-{h,...,(,*r}.

The proof is very simple. It sufrces to introduce uq, the minimal positive har-
monic function on O vanishing continuously at each point of f - {(*} and normalized
to satisfy uru(a):l. If a function I exists, then Re;[: Zl*t pouE*, where po>0
and )i+t 1tp: l. The pk are determined by virtue of Lemma 3.1 as we see on noting
that )i+L pea(ug):O. It follows that there is at most one ft. The existence follows
from the fact that there is a sequence Qtr)i*' satisfying: F*>0, k:1,...,n*l;
Zl*'tto:t; Zi*t poa(aE*):0. The function Zi*'ttrue* is the real part of an

admitted[.
Our concern here is to show

Theorem 3.2. The extteme members of P are precisely the fr.

Proof. That eachfris an extreme member of P is easily seen as follows. Suppcse

that fs:(l-t)g*th, where g, hCP and 0<t<1. Then Reg:}+r dpu;, whlta
ay?O, k:1, ...,n* l, and Zl*'oo:1. Usingtheperiodcondition, )!+La1,a(a6u):0,
we infer that Reg:Red and consequently that g:fE:h. Hence I is extreme'

As is to be expected, the main burden of the proof is to show that each extreme

member of P is an[. This will be accomplished by showing that if f is an extreme

member of P, then the set {ry€i':limsupoRe/>0} has at most n*l elements.

For the set in question has at least one point on each i"o and so will have as a con-

sequqrce of the asserted property exactly one point on each i-0. We then conclude

that Re/is of the form )i+rp1,ug* where po>O and h"(l* for eachk, whence

7:7r' (:((r,'.., (n+r).

To establish the asserted boundary property of f€P, we use the following
lemma.

Lemma. 3.2. Let h be positiue harmonic on Q and let 4r, ...,4^ be m(=2)
distinct points of f such that limsupouå>0, k:1,...,m. Then for gium

i€{1, ... ,m} there exists a positiue harmonicfunction hi on Q satisfying:limrht:0
for 4€f near 4k for each k#j, limq(h-h):O for q€.f near qj, and ht<h.
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Proof. We introduce, as we may, a regular analytic Jordan arc a lying in O

save for its endpoints that are on f such that (1) O-a is not connected, (2) the
endpoints of a are also the endpoints of an arc B c f, such that 4 t is an inner point
of f and qt|f, k*j, (3) the component of Q-a of which 4iis a frontier point
is the bounded Jordan region co satisfying: fr ctt:avF.

We introduce pr, the smallest positive harmonic function on o satisfying the
condition that lim"pr:h(z), z(uop. The function pt has limit 0 at each inner
point of f. We thereupon introduce Sr:prvhl(9-crr), which is superharmonic
on O. We introduce S, analogously, replacing rcoby Q-4. Given a superharmonic
function S on a region, not the constant f e, poss€SSing a harmonic minorant, we
let mS denote its greatest harmonic minorant. Since å=St+,S2, it follows that
h<mS1*m52. From the definition of ,S, (respectively Sr) we have mSr, mSr<.ft.
Taking hi:m52, we see that the requirements of Lemma 3.2 arc fulfilled by the hi.

Turning to the study of the extreme members of P we suppose that/is an extreme
member and that E:Pt€f :fimsupoRe/>0) contains at least n*2 points.
With å:Re/ we introduce hL)...,hn+z of Lemma 3.2 corresponding to distinct
points 4r,...,1n+z€E. There exist real numbers cr, ..., co11 where max lcol:1
such that Zi*'"oho is the real part of an analytic function g on O satisfying
Img(a):0. The function g has the property that limo,*, Reg:9.

Now Re l(n+l)f-g1:)i+L(h-coh,,) is positive and less than (2n*2)å. Since

f is an extreme member of P, we conclude that (n-ll).f-S:cf for some positive
number c. Hence g:df, d€R. Since li*n,*rReg:9, we conclude thatg is the
constant 0. However limsupo, lRegl=0 for some l<{1,...,n*1} as we see by
the properties of the ho and the c1,. Contradiction.

Theorem 3.2 is thereby established.

4. A remark concerning the fE. We ernbed Q tn a compact Riemann surface

O by Schottky doubling and let a denote the anticonformal involution of ,0 leaving
each point of fr O fixed. Given an allowed (, we consider the family M($ of mero-
morphic functions on CI having a divisor at least as large as å defined as taking the
value - 1 at each (o ffid elsewhere the value 0. We shall see that dim M(():) sy14

{fe ,l) is a generatingpur of M(0, it being understood thatherefrdenotes the mero-
morphic prolongation to Ö of the function I of Section 3.

To this end, given f€M(O, we introduce g:i(fafoa), which has real part
taking the value 0 at each point of fr O-{(1, ..., (o*r}. Suppose that g is not con-
stant. With zru denoting here the harmonic prolongation to ö- {(,k} of the function
so designated in Section 3 we have Reg:)"+ropuqu,o*€R. Let c denote azeto
of t*min {po-too}, where pp is the coefficient entering in the representation of
Re[ of Section 3. (Such a zero exists.) We see that Re (fE-cd is nonnegative in O
and its representation as a sum of positive constant multiples of the aru involves
at most n terms. Hence fe-cg is a pure imaginary constant. It follows that g:
Af(+Bi, A, B€R, without restriction on g. A similar result holds *i11, 11:gt-foa)
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replacing g. Noting that 2f: -ig*h, we conclude the assertion of the preceding

paragraph.

5. The case where S is a noncompact Riemann surface hauing finite topological

characteristics and nonpointlike boundary components. We suppose as we may that

S is a region of a compact Riemann surface ,S, the frontier of S consisting of a finite

number of mutually disjoint regular analytic closed Jordan curves the points of
which constitute the fixed point set of an anticonformal involution of ,S interchanging

S and S-S. Let g denote the genus of S; let c denote the number of components

of fr S; let 7r, ...,!zg+q"-t1 be representatives of the members of a basis for

the l-dimensional homology group of S. Given a harmonic on S, let co(r.r) denote

the vector in R2s+(c-1) given by

(5. 1) a(u) : (l ,,uu, 
-. , I rzst+(c-,röu),

where öu is the abelian differential given In

-2i(uo0)"d2. The significance of the notation
present setting.

The following theorem holds.

terms of a local uniformizer 0 bY

u€k of Section 3 is to Persist in the

Theorem 5.1. (1) rf f is an extreme member of P, then Pief has limit 0 at

each point of ft S sauefor at most 2gIc exceptions and consequently is represen-

table as a sum of at most 2g*c minimal positiue hsrmonic functions on S.

(2) A member f of P is qn extreme member if and only if Ref admits a rep-

resentation of the form ){ pougu, where l<m<2glc, Fr,=O, Z{ po:I, the (o

are distinct points of fr S, and a(uq,,,,),...,a(ue ,r^-rr) orc linearly independmt

for euery permutation j of {1,...,^} ihen m=2. The indicated representation of
R:ef for exffeme f is essentially unique'

(3a) Suppose that 2g*c>2. Giuen distinct points (t,.-.,(-€fr,S, there exists

an extreme member of P whose meromorphic prolongation to S has poles exactly

at the (o if andonlyif m>2 and (0,...,0)6120+t"-r1 admits a unique representa-

tion as a barycenter of a(pe),...,a(ut) with positiue masses. There is at most one

suchmember. The case, m:2, occursfor all (g,c) with 8>1, c:l or2-
(3b) suppose that 2g*c:1. Then (3a) holds with the conditional clause re-

placed by "if and only if m:1" '

proof. (1) when 2g]-c>2, the corresponding developments of section 3 may

be paraphrased. Here a l-dimensional homology basis has 2g*(c-l) elements.

The case, 29*c:1, follows from Section 2.

(2) Using (1) we see that if/is an extreme member of P, then Re/ admits a

representation of the stated form apart from the asserted linear independence of
@ (ue 

rrrr), 
..,, a(uE 

rr^ - rr).
iT'the vectori'in-luestion were linearly dependent, there would exist ft analytic
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on ^Ssatisfying: Re h:)l-L),.ug,,u,, where Ly€R andmax)"o:l andlm h(a):9.
Let a:min $l'pio:,11=0). Wd see that Re U-ah) would be a sum of the form
(Zf-'!*uE,rur)*Fi1*1ugr^r,where min ro:6. Since/isextreme,åwould beaconstant
multiple of I The factor in question would be positive since max,lr:l implies
that Re å is not bounded above. We conclude that Fi61:0. Contradiction. The
asserted linear independence follows.

Conversely, suppose that f(P satisfies the condition stated in (2). Suppose

that f:(l-t\fi*tf, where fr,fr€P and t((0,1). Then R:ef,:)- ,6*,juEo,
j:1,2, where oo,r>0 and 2{:ro*,i:1. We conclude that fr:.f2, the period
,crrndition being used when m>2. Hence/is an extreme member of P.

The second assertion of (2) is immediate.
Sufficiqncy (3a), (3b). Each case is immediate.
Necessity (3a). Let/be an extreme member of P of the stated kind, so that m>2

(otherwise 8:0 and c:1) and R:ef:Zipous* where po>O and Zipr:1.
If the stated barycenter condition did not hold, there would exist ,trp(R, k:1, ..., m,
satisfying: max,l.o>O, 2{1*:0, )fl.ea(uq):0. Consequently, there would exist
h analytic on S satisfying: Re h:){ L1,usu, h(a):O. Since/is an extreme member
of P, for a and B small and positive a(f+ Ph) would be a constant multiple of /
and so å would be also. Since å(a):0, å would be the constant 0. This is not the
case. Necessity follows.

Necessity (3b). The discussion is routine and will be omitted.
The uniqueness statements are immediate.
The observation concerning the realization of the case, m:2, is vacuous for

(3b) and is established for (3a) by considering S admitting a 2-sheeted covering of
the open unit disk with 2g*c distinct ramification points.

6. Remark. The observations of Section 4 persist, mutatis mutandis, for the
extreme functions considered in Section 5.
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