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1. Introduction anil results

We shall assume throughout the paper that Gis an open set in the plane such

that 0G, the boundary of G, contains at least two (finite) points and that/is a func-
tion continuous in G, the closure of G, and analytic in G.

We shall call a non-decreasing continuous function p : [0, -) *[0 , *) a maiorant.

The function p must always satisfy some extra conditions, but these vary.
We consider the following problem. Suppose that

(1.1) lfh)-f(2,)l= p(lz'-z,l)

for all zr,zrQ\G. When does (1.1) remain valid for all zr,zz(G? We prove the
following result.

Theorem L. Let G and f be as aboae, and let p be a majormtt such that
log pk) is a concauefunction of t for real t and that

(r.2) B: lisr "-:u-\') =r.,*o+ log t
We set

(1.3) a: timtogiu-\') = tt*€ log t
mtd assume that

(r.4) f(z\: o(lzl)

if A<.1, and that

(1.5) f(z) = o(lzl2\

if A:1, as z-* inanyunboundedcomponmtof G. If (l.l) holdsforall zr,zrq\G,
then (l.I) remains aalid for all zr, zr€G. If .(l.n) holds for a fixed z(0G and all
z2€0G, thm(l.l)remainsaalidfor this z, andall z2(G.
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(1.6)

If instead of(1.4) or (1.5) we only haue

"f (r) - o(lrln)

for some q>0, and if the conclusion of the theoremfails, then G contains a neigh-
bourhood of infinity, and f has a pole at tnfinity.

We may allow the case p=0. For if Theorem I has been proved in all other
cases, we may apply it with p:e for an arbitrary positive e to deduce that it re-
mains valid if pr:0. From now on we assume that p, does not vanish identically.
Hence l=0.

The condition (1.2) is natural, for p(t):tB+o(l) as l*0, and if .B>1, then
(1.1) cannot be true for all zr, zr(G unless/is constant.

Tamrazov [2, Theorem 9.3, p. 167] showed that if p is a majorant satisfying

a growth condition, e.g.

(r.7) p(2t)=21t(t), ,=0,
and if the conclusion of Theorem 1 for a fixed zgilG is correct for all bounded
Jordan domains G, then loe p@\ is concave. Hence this condition is necessary.

The reason behind it is that we want the functions -log p(lz-zoD to be subhar-

monic for zQG, for any zs(ilG.
Gehring, Hayman and the author [l, Theorem l] proved Theorem 1 for p(t):

Mtn, M>0,0--c=1. In this case log lr(e):at+logM isconcave, and A:B:a.
For 0<r4= 1, our Theorem 1 applies to other functions that p(t):1,1n. However,
as we shall show in Section 3, for A:1 we get only the functions p(t):Mt.

Our growth conditions (1.4) and (1.5) and their dependence on ,4 are the same

as [1, (1.2), (1.3)] in the case dealt with in []. As remarked in [, p. 243], the func-
tions z and 22, respectively, with G: {lzl>l}, show that o cannot be replaced by
o n (t.4) and (l.s).

Results like Theorem I were obtained by Tamrazov [2] for special open sets

and for majorants p satisfying a growth condition which we take to be (1.7). This
is satisfied, for example, by any subadditive p. Let cap -E denote the logarithmic
capacity ofthecompactsetE ThenTamrazov'sresults[2,Theorems 4.1.,6.1,9.1] can

be summarizecl. in a slightly simplified form as follows. Suppose that G is bounded

or that G contains a neighborhood of infinrty, in which case f is required to remain
analytic at -. Hence åG is bounded, and f is also bounded. If (1.1) holds for
zr, zu10G, and if ZL€AG, zz(G, then

(1.9)

where

lf@r\ -f(tr)l = 27 p(lzt- zzDlzr- zrl(2 cap E(tr, zr))-',

n in addition, G is

(1.e)

E(zr, zz) - {lt - z1l = * ltr- "rlNG.
simply connected, then

l"f(rr)-f(zr)l = Cp(lz1- zrl), z!, zz€G,
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whereC:108. If G is suitable, one can use (1.8) together with [2, Lemma4.l] to
deduce that (1.9) holds for some C depending on G but not on z, and. zr. lf
log p(et) is concave, we can take C:l in (1 .9) if (1.7) holds and 0G satisfies certain
capacity density conditions. Moreover, if (1.1) holds for a fixed zr€ilG and all
zr€ilG, if / is bounded and if log p(e) is concave, ttren (1.9) holds for this z, and
all z2(G with C:1, provided that0G is thick enough. In this case 0G neednot
be bounded.

Theorem 1 generalizes Tamrazov's results when log p(et) is concave, since we
need no assumption on the capacity density of 0G.

References to other earlier works related to this subject can be found in ll, p. 2441
and in 12, p. l4l-143}

2. Lemmas

Let u be a subharmonic function in the plane. We set

M(r, u\: suP {z(r)l ltl: ,}.

For all functions u that we shall consider, we have

(2.t) (r, u) : O(log r)

aS /+@.
To prove Theorem l, we need two lemmas. The first lemma follows from [],

Theorem 21.

Lemma l. Suppose that u is subhmmonic, non-negatiae mtd not constqnt in
the plane, that (2.1) holds as 7**, aftd that u(z):O for some z. Then the limit

(2.21 f : hm M(r, u)llogr

exists and 0<B<.*. Suppose further that thete is a component D of the set

{zlu(z)>0} such that u is harmonic in D and possesses there a local conjugate a,

and that for some d,, 0<c<1, and some positioe R, thefunction

F(z): zL-" ex'(u*io)

remuins single-aaluedin Dn{lzl=R}. Then D contains the set {lrl=Ro} for some

Ro, and F has a pole of order f +l-u at infinity.

Note that any such component D is unbounded.
Our second lemma is a generalization of Tamrazov's result l2,l-emma4.l, p.

ls6l.

Lemma 2. Let G be an open set with at least one (finite) botmdary point, and
suppose that

(2.3) f(z): o(lzl'\
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as z+@ in any unbounded component of G. Then for euery positiue t we hane

Q.4) sap {lf(zr)-f(zr)lllz,- zrl = t, zr, z,(G}
: sup{l/12.)-f(rr)lllrr- trl = t, z1(0G, 

"r(G}.
Tamrazav proved Lemma 2 with the additional hypothesis that åG is bounded

and/is bounded (cf. Section 1).

To prove Lemma 2, we consider a fixed positive t, denote the left and right
hand sides of (2.4)by L and Ä, respectively, and note that R=L. To prove that
L=R, we may assume that L>0, -R< -, so that/is not constant.

Pick zt,z2(G such that with h:zz-Zr we have lhl=t. lt suffices to show
that with

g(z) : f(z)-f(z*h)
we have lg(zr)l=R. The function g is defined and continuous in the closure of the
non-empty open set

(2.5) Q: {zlz(G, zth€G} c G

and analytic in Gr. Further, g is bounded in any compact subset of Gr, and z1(G1.
lf z(\Gr, then z€\G or z*h(ilG, so that lg(z)l=R. If g is bounded in Gr,
it follows from the maximum principle that lg(zr)l=R.

Suppose that g is unbounded, and let D be a component of the open sct

{z€Grllg(z)l=R}, so that D is unbounded. We set

(2.6) 
u(z): log lg(z)l-log Ä' z€D'

u(z): g, zqD,

and note that u is subharmonic and non-constant in the plane, and harmonic and
positive in D, and possesses a local conjugate in D, namely, arg g(z\. By (2.3),
the condition (2.1) holds, and we may apply Lemma 1 to uwtth s:1. It follows
tbat D and thus G contains a neighborhood of -, so that by (2.3), f remains analytic
or has a pole of order one at -. But in both cases g remains bounded 3f -, which
is against our assumption. Hence L=R, and Lemma 2 is proved.

3. ProofofTheorem 1

Suppose that the assumptions ofTheorem I are satisfied and take a fixed zr€ilG.
The function

(3.1) u1(z) : loelf?)-f(z)l-log p(lz- zrl)

is subharmonic in G and satisfies by (1.2),

lim_suo ur(z) =O



On the modulus of continuity of analytic functions 2st

for all ((.0G, C*zt Further, z, is bounded above in any compact subset of G not
containing zt.

First we show that z, is bounded above in a neighbourhood of z, in G. Suppose

that this is not true, and let Drbe acomponent of the open set {zllz-zrl=1, z€G,

ur(;V'1>M|, where , M:max(0, sup {ur(z)lz€G, lz-zrl:1y1. Hence zr€\Dr.
We set E(z):(z-21)-1, Q(G):Gt' Q(Dr):Dr, and note that E(zr):*,

and O{Gr. We set

u(z) : ut(E-'Q))- M, z(Dz,

u(z) : g, z,Dz,

so that u is non-negative, non-constant and subharmonic in the plane and positive

in Dr. Also,

u(z) : toelf@t+U z)-f(z)l-tos p(tllzl\- M' z(D2'

By (1.2),

Q.2) -tog p(tllzl) = (.4+o1t)) log lzl = (1+o(1)) los lzl

as z+6. Hence (2.1) holds. Now we apply Lemma I to u to obtain Q<f <B=1.
In particular, B>0.

Choose e such that O<e<f=-B. Consider the function

uz(z) : log lf(21* Il z) -f(z)l +(B-s) log lzl- M, z€Dz-

Since M(r, u)-f loer, since -logp(lllzl)-Blog ro r:lzl, and since

u(z)-ur(z) - -los p(!llzl)-(B-e) log lzl, z€Dz,

wehave M(r,u)-(p-e)logr+€ as r*-. Further,

(B-e) loglzl <.-los p(tllzl)

when lzl is large enough, so that uzQ\=O if z<|D, and lzl>R. We have ur(z)=M2
for lzl:R, for some positive Mr, so that

limjlp ur(z)-Mr=o

for every finite boundary point ( of D":prn{lzl=Ä}. Since tl2 is unbounded in

Du, we can find an unbounded component Dn of the set {z€Dslu2@)>Mrl. Hencn

the function
ur(z): u2(z)-M2, z(De,

u"(z) : O, zQDa,

is non-negative, non-constant and subharmonic in the plane. In Dn, tt" is positive

and harmonic, and possesses there a local conjugate u such that with a- f -e, lhe
function

F(z) : zL-" exq (us*ia)

is single-valued in De . Hence we can apply Lemma L to urto deduce that Dncontains
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a neighbourhood of infinity. But since DncGt, it follows that G contains a punc-
tured neighbourhood of zr, so that z, is a regular point of/and so there ex.ists a
positive integer k and ao unequal to zero such that

f(O-f(zr)-qk((- z)k as ( * zr,

rhis together with,, {i#i?; ̂
!1.:::-- 

r as z + e

u(z): -k los lzl-los p(llltl)+o(1) = o(loe lzl)

4s 2+6; which contradicts the result B>0. So in any czsa u1 is bounded above
in a neighbourhood of zlin G.

We want to show that ut(z)=0 in G, since in view of Lemma 2 this clearly
completes the proof of Theorem l.If u, is bounded above in G, this follows from
the maximum principle. Suppose then that at is not bounded above in G, and let D
be a component of {zlut(z)=0\. Since a, is bounded above in any compact subset

of G, as we proved above, the set D must be unbounded.
We set u(z):vt1t1 rn D, u(z):O outside D. To make z subharmonic, we may

have to redefine u at zr, cf. [, p. 248]. Then we apply Lemma I to u. We assume

that (1.4) or (1.5) holds. Without loss of generality we may assume that zr:Q.
Thus we obtain

p1 11,9., 
tog lf(z) -f(o)l -ff + l) loe r

as r+6. Supposenowthat l<1. Wechooseesuchthat O=e-f and A*e=I,
and R such that

log rt(lzl) < (A-le)loglzl, lzl = R,
and set

u2(z) : loelf?)-f(O)-(,a+e) loglzl-M", z(D,

where Ms=O and Mr is so large that ur(z)=O if z(D and lzl:R. Hence z,
has negative boundary values in Dn{lrl=R}, but u, is unbounded above in
Da{lzl>R}. Therefore we can find an unbounded component D, of the set

{z(Dlzl>R, u2(z)>0}, and we define u"(z):uz(z) tl Dr, ug(z):g outside Dr.
The function z, is subharmonic in the plane, harmbnic in Dr, and possesses there

a local conjugate. We may apply Lemma I to u, with q:I-A-e to deduce that
D, and so G contains a neighbourhood of -. Hence by (1.4),f remains bounded at

-, so that z, is bounded above, which is contrary to our assumption. This proves

Theorem I if A<1.
Suppose that A:1. We shall soon show that then p(t):Mt, M>0. Since

(1.5) holds, Theorem I follows now from [, Theorem 1].

If A:1, then 3:1. Since

q(t) - log p@')-los p(1)
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is concave with 410;:9, we have

o : 2rt(o) =q(t)+4et), t > o,

q(t)lt = nGt\l(-t), / > 0.

Further q(t)lt decreases to 1 and nGt)l(-t) increases to I as t increases from 0

to -. Hence q(t):t, 1t(t):tp(l). This proves Theorem I if A:1.
Suppose finally that (1.6) holds for some 4>0 but that the conclusion of

Theorem 1 fails. Suppose that (1.1) fails for some zr€ilG, zz(G. We can still deduce

that u1, given by (3.1), is bounded above in a neighbourhood of zrin G and that
(2.1) is satisfied with u:ut. Since rz, must be unbounded above in G, we obtain
as before from Lemma I that G contains a neighbourhood of infinlty. Now (1.6)

implies that/has a pole at infinity.
If (1.1) fails for sofilo 21, z2(G burt not for any zr(\G, zr(G, then we take

these zr,z2QG, set h:zz-zr and g(z):f(z)-f(z+h). If R is defined as in the
proof of Lemma 2 for 1:lhl, then the function u givenby (2.6) must be unbounded
in Gr, given by (2.5). Since a satisfies (2.1), we deduce from Lemma I that G contains

a neighbourhood of infinity. Now (1.6) implies that/has a pole at infinity. Theorem

I is proved.

Remark. After this paper had been written, I was informed that there is a
recent preprint of Tamrazov containing results similar to those in this paper.
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