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ON THE MODULUS OF CONTINUITY
OF ANALYTIC FUNCTIONS

A. HINKKANEN YV

1. Introduction and results

We shall assume throughout the paper that G is an open set in the plane such
that dG, the boundary of G, contains at least two (finite) points and that f'is a func-
tion continuous in G, the closure of G, and analytic in G.

We shall call a non-decreasing continuous function u: [0, «)—[0, =) a majorant.
The function p must always satisfy some extra conditions, but these vary.

We consider the following problem. Suppose that

(1.1) [f(z)=f(z)| = p(|z1— 22)

for all z,, z,60G. When does (1.1) remain valid for all z;, z,6 G? We prove the
following result.

Theorem 1. Let G and f be as above, and let y be a majorant such that
log pu(€') is a concave function of t for real t and that

(1.2) B = lim 20840 _,
t~0+ logt

We set

(1.3) A= lim 20240 _ p
t- logt

and assume that

(1.4) f(2) = o(lz])

if A<], and that

(1.5) f(2)=o(z])

if A=1, as z— < inany unbounded component of G. If (1.1) holds for all z,, z,€0G,
then (1.1) remains valid for all z,, z,€G. If (1.1) holds for a fixed z,€0G and all
2,€0G, then (1.1) remains valid for this z, and all z,€G.
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If instead of (1.4) or (1.5) we only have
(1.6) f(2) =o(z]9)

for some q=0, and if the conclusion of the theorem fails, then G contains a neigh-
bourhood of infinity, and f has a pole at infinity.

We may allow the case u=0. For if Theorem 1 has been proved in all other
cases, we may apply it with p=¢ for an arbitrary positive ¢ to deduce that it re-
mains valid if p=0. From now on we assume that u does not vanish identically.
Hence A=0.

The condition (1.2) is natural, for u(f)=t5+°® as ¢t-0, and if B>1, then
(1.1) cannot be true for all z,, z,€G unless fis constant.

Tamrazov [2, Theorem 9.3, p. 167] showed that if yu is a majorant satisfying
a growth condition, e.g.

(1.7) u0) =2u@, t=0,

and if the conclusion of Theorem 1 for a fixed z,€0G is correct for all bounded
Jordan domains G, then log u(ef) is concave. Hence this condition is necessary.
The reason behind it is that we want the functions —log u(|z—z,|) to be subhar-
monic for z€G, for any z,€0G.

Gehring, Hayman and the author [1, Theorem 1] proved Theorem 1 for u(f)=
Mr*, M=0, O=a=1. In this case log u(e)=at+log M is concave, and A=B=o.
For 0=A<1, our Theorem 1 applies to other functions that u(f)=M1r*. However,
as we shall show in Section 3, for 4=1 we get only the functions u(t)=Mz.

Our growth conditions (1.4) and (1.5) and their dependence on A are the same
as [1, (1.2), (1.3)] in the case dealt with in [1]. As remarked in [1, p. 243], the func-
tions z and z2, respectively, with G={|z|>1}, show that o cannot be replaced by
O in (1.4) and (1.5).

Results like Theorem 1 were obtained by Tamrazov [2] for special open sets
and for majorants p satisfying a growth condition which we take to be (1.7). This
is satisfied, for example, by any subadditive u. Let cap E denote the logarithmic
capacity of the compact set E. Then Tamrazov’s results [2, Theorems 4.1., 6.1, 9.1] can
be summarized in a slightly simplified form as follows. Suppose that G is bounded
or that G contains a neighborhood of infinity, in which case f is required to remain
analytic at <. Hence dG is bounded, and f is also bounded. If (1.1) holds for
2z, 2,€0G, and if z,€0G, z,€G, then

(1.8) | f(z) —f(22)] = 2701z, — 22]) |21 — 25| (2 cap E(zy, 22)) T,
where
E(zy,2) = {IZ —z| = % |z, — Zz|}\G-

If, in addition, G is simply connected, then

1.9) f(z)—f(2z5)] = Cu(lzy—2z|), zi, 2266,
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where C=108. If G is suitable, one can use (1.8) together with [2, Lemma 4.1] to
deduce that (1.9) holds for some C depending on G but not on z; and z,. If
log u(€*) is concave, we can take C=1 in (1.9) if (1.7) holds and dG satisfies certain
capacity density conditions. Moreover, if (1.1) holds for a fixed z,€0G and all
2,€0G, if f is bounded and if log u(e’) is concave, then (1.9) holds for this z; and
all z,¢G with C=1, provided that dG is thick enough. In this case G need not
be bounded.

Theorem 1 generalizes Tamrazov’s results when log u(é’) is concave, since we
need no assumption on the capacity density of 0G.

References to other earlier works related to this subject can be found in [1, p. 244]
and in [2, p. 141—143].

2. Lemmas

Let u be a subharmonic function in the plane. We set
M(r, u) = sup {u(2)||z] = r}.
For all functions u that we shall consider, we have
2.1) M(r, u) = O(logr)

as r—oo.
To prove Theorem 1, we need two lemmas. The first lemma follows from [1,

Theorem 2].

Lemma 1. Suppose that u is subharmonic, non-negative and not constant in
the plane, that (2.1) holds as r—<, and that u(z)=0 for some z. Then the limit

(2.2) B =lim M(r, u)/logr
exists and O<p<eoo. Suppose further that there is a component D of the set

{z|lu(z) =0} such that u is harmonic in D and possesses there a local conjugate v,
and that for some o, O<a=1, and some positive R, the function

F(z) = 227 exp (u+iv)
remains single-valued in D {|z|=R}. Then D contains the set {|z|>R,} for some

Ry, and F has a pole of order f+1—a at infinity.

Note that any such component D is unbounded.
Our second lemma is a generalization of Tamrazov’s result [2, Lemma 4.1, p.

156].

Lemma 2. Let G be an open set with at least one ( finite) boundary point, and
suppose that

(23) f(@)=0(zP)
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as z—<> in any unbounded component of G. Then for every positive t we have

249 sup {|/(z)—f(2)|||z1—z2| = 1, z,, 2,€G}
= SuP{]f(Zl)_f(Zz)[]|Z1_22[ =1, z€0G, 22€G}~

Tamrazov proved Lemma 2 with the additional hypothesis that dG is bounded
and f'is bounded (cf. Section 1).

To prove Lemma 2, we consider a fixed positive ¢, denote the left and right
hand sides of (2.4) by L and R, respectively, and note that R=L. To prove that
L=R, we may assume that L=0, R<<, so that fis not constant.

Pick z;,z,€G such that with h=z,—z; we have |h|=¢. It suffices to show

that with

g(2) =f(2)—f(z+h)
we have |g(z,)|=R. The function g is defined and continuous in the closure of the
non-empty open set
(2.5) G, = {z]z€G, z+heG}C G
and analytic in G;. Further, g is bounded in any compact subset of G,, and z,€G,.
If z€0G;, then z€dG or z+h€dG, so that |g(z)|=R. If g is bounded in G,
it follows from the maximum principle that |g(z;)|=R.

Suppose that g is unbounded, and let D be a component of the open cct

{z€Gi|lg(2)|=R}, so that D is unbounded. We set
u(z) =log |g(z)|—log R, z€D,
©.6)
u(z)=0, z¢D,

and note that u is subharmonic and non-constant in the plane, and harmonic and
positive in D, and possesses a local conjugate in D, namely, argg(z). By (2.3),
the condition (2.1) holds, and we may apply Lemma 1 to u with a=1. It follows
that D and thus G contains a neighborhood of <, so that by (2.3), f remains analytic
or has a pole of order one at . But in both cases g remains bounded at oo, which
is against our assumption. Hence L=R, and Lemma 2 is proved.

3. Proof of Theorem 1

Suppose that the assumptions of Theorem 1 are satisfied and take a fixed z,€0G.
The function

(3.1 uy (2) = log | f(2)—f(z))| —log u(|z—z)
is subharmonic in G and satisfies by (1.2),

lim sgup m(2)=0
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for all ¢{€dG, {z,. Further, u, is bounded above in any compact subset of G not
containing z,.

First we show that u, is bounded above in a neighbourhood of z, in G. Suppose
that this is not true, and let D; be a component of the open set {z| lz—zy|<1, z€QG,
u,(2)=M)}, where M=max (0,sup {(2)]z€G, |z—z|=1}). Hence z€dD;.

We set @(2)=(z—z)"% @(G)=G;, ¢(D;)=D,, and note that ¢(z;)=-c°,
and 0¢G,. We set

u(z) = w(¢~1(2))— M, z€D,,

U(Z) =Oa ZQDZ,

so that  is non-negative, non-constant and subharmonic in the plane and positive
in D,. Also,

u(z) = log | f(z,+1/2)—flz))| —log u(l/|z) =M, zED,.
By (1.2),
(3.2) —log p(1/|z]) = (B+o(1)log 2| = (1+0(1)) log ||

as z—oo. Hence (2.1) holds. Now we apply Lemma 1 to u to obtain 0<f=B=1.
In particular, B=0.
Choose ¢ such that 0<e<f=B. Consider the function

uy(2) = log | f(z;+1/2)—f(z)|+(B—¢) log |z| =M, z€D,.
Since M(r, u)~p logr, since —log u(1/|z])~Blogr, r=|z|, and since
u(2)—uy(2) = —log p(1/|z))—(B—#) log |2, z€Dy,
we have M (r, u,) ~(B—e)log r—~ as r—eo. Further,
(B—#) log |2| < —log u(1/|2)

when |z| is large enough, so that u,(z)<0 if z€dD, and |z|>=R. We have u,(z2)=M,
for |z|=R, for some positive M;, so that

lim sup uy(2)— M, =0

for every finite boundary point { of Dy=D,n {|z|>R}. Since u, is unbounded in
D;, we can find an unbounded component D, of the set {z€ Ds|uy(z)>M,}. Hence
the function

uz(z) = us(2)—M,, z€Dy,

uz(z) =0, z¢ Dy,

is non-negative, non-constant and subharmonic in the plane. In D,, us is positive
and harmonic, and possesses there a local conjugate v such that with a=p—e¢, the

function
F(z) = 2% exp (uz+iv)

is single-valued in D,. Hence we can apply Lemma 1 to u, to deduce that D, contains
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a neighbourhood of infinity. But since D,CG,, it follows that G contains a punc-
tured neighbourhood of z;, so that z; is a regular point of f and so there exists a
positive integer k and g, unequal to zero such that

fO-f(z)~a(—2z)* as (- z,
f(zi+1/2)—f(z))~a,z™* as z —»oo.

This together with (1.2) and (3.2) implies that
u(z) =—klog |z|—log u(1/|z)+0O(1) = o(log |z])

as z-—-oo, which contradicts the result f=0. So in any case 1, is bounded above
in a neighbourhood of z, in G.

We want to show that #;(z)=0 in G, since in view of Lemma 2 this clearly
completes the proof of Theorem 1. If u, is bounded above in G, this follows from
the maximum principle. Suppose then that u; is not bounded above in G, and let D
be a component of {z|u,;(z)=0}. Since u; is bounded above in any compact subset
of G, as we proved above, the set D must be unbounded.

We set u(z)=u;(z) in D, u(z)=0 outside D. To make u subharmonic, we may
have to redefine u at z;, cf. [1, p. 248]. Then we apply Lemma 1 to . We assume
that (1.4) or (1.5) holds. Without loss of generality we may assume that z,=0.
Thus we obtain

sup log|f(z)—f(0)| ~(B+4)logr

|z|=r,z€D

as r—oo. Suppose now that 4<1. We choose ¢ such that 0<e<p and A+e<l,
and R such that

log u(lz]) < (4+¢) log |2|, |z| = R,
and set

us(z) = log | f(2)—f(0)—(A+¢) log |z| —M,, z€D,

where M;=0 and M, is so large that u,(z)=0 if zéD and |z|=R. Hence u,
has negative boundary values in Dn {|z|=R}, but u, is unbounded above in
D~ {|z|]>R}. Therefore we can find an unbounded component D; of the set
{z€D|z|>R, uy(z)=0}, and we define u3(z)=u,(z) in D;, u3(z)=0 outside D,.

The function u; is subharmonic in the plane, harmonic in D;, and possesses there
a local conjugate. We may apply Lemma 1 to u; with a=1—4—¢ to deduce that
D, and so G contains a neighbourhood of <. Hence by (1.4), f remains bounded at
=, 80 that u, is bounded above, which is contrary to our assumption. This proves
Theorem 1 if 4<1.

Suppose that 4=1. We shall soon show that then u(f)=Mr, M=0. Since
(1.5) holds, Theorem 1 follows now from [1, Theorem 1].

If A=1, then B=1. Since

n(?) = log p(e)—log u(1)
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is concave with #(0)=0, we have
0=270) =n(®)+n(—1, t=0,
n@/t =n(=0/(—10, t=0.

Further #(z)/t decreases to 1 and n(—1t)/(—t) increases to 1 as ¢ increases from 0
to . Hence #n(t)=t, u(t)=tu(1). This proves Theorem 1 if A=1.

Suppose finally that (1.6) holds for some ¢=0 but that the conclusion of
Theorem 1 fails. Suppose that (1.1) fails for some z,€0G, z,€G. We can still deduce
that u,, given by (3.1), is bounded above in a neighbourhood of z; in G and that
(2.1) is satisfied with uw=uw,;. Since u; must be unbounded above in G, we obtain
as before from Lemma 1 that G contains a neighbourhood of infinity. Now (1.6)
implies that £ has a pole at infinity.

If (1.1) fails for some z;, z,6 G but not for any z,€dG, z,€G, then we take
these z;, z,€G, set h=z,—z, and g(z)=f(z)—f(z+h). If R is defined as in the
proof of Lemma 2 for ¢=|k|, then the function u given by (2.6) must be unbounded
in G,, given by (2.5). Since u satisfies (2.1), we deduce from Lemma 1 that G contains
a neighbourhood of infinity. Now (1.6) implies that f has a pole at infinity. Theorem
1 is proved.

Remark. After this paper had been written, I was informed that there is a
recent preprint of Tamrazov containing results similar to those in this paper.
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