Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 247-253

ON THE MODULUS OF CONTINUITY OF ANALYTIC FUNCTIONS

A. HINKKANEN¹⁾

1. Introduction and results

We shall assume throughout the paper that G is an open set in the plane such that ∂G , the boundary of G, contains at least two (finite) points and that f is a function continuous in \overline{G} , the closure of G, and analytic in G.

We shall call a non-decreasing continuous function $\mu: [0, \infty) \rightarrow [0, \infty)$ a majorant. The function μ must always satisfy some extra conditions, but these vary.

We consider the following problem. Suppose that

(1.1)
$$|f(z_1) - f(z_2)| \le \mu(|z_1 - z_2|)$$

for all $z_1, z_2 \in \partial G$. When does (1.1) remain valid for all $z_1, z_2 \in \overline{G}$? We prove the following result.

Theorem 1. Let G and f be as above, and let μ be a majorant such that $\log \mu(e^t)$ is a concave function of t for real t and that

(1.2)
$$B = \lim_{t \to 0+} \frac{\log \mu(t)}{\log t} \le 1.$$

We set

(1.3)
$$A = \lim_{t \to \infty} \frac{\log \mu(t)}{\log t} \le B$$

and assume that

(1 A)

(1.4)
$$f(z) = o(|z|)$$

if A < 1, and that

(1.5)
$$f(z) = o(|z|^2)$$

if A=1, as $z \to \infty$ in any unbounded component of G. If (1.1) holds for all $z_1, z_2 \in \partial G$, then (1.1) remains valid for all $z_1, z_2 \in \overline{G}$. If (1.1) holds for a fixed $z_1 \in \partial G$ and all $z_2 \in \partial G$, then (1.1) remains valid for this z_1 and all $z_2 \in \overline{G}$.

C()

¹) Research supported by the Osk. Huttunen Foundation, Helsinki.

If instead of (1.4) or (1.5) we only have

(1.6)
$$f(z) = o(|z|^q)$$

for some q>0, and if the conclusion of the theorem fails, then G contains a neighbourhood of infinity, and f has a pole at infinity.

We may allow the case $\mu \equiv 0$. For if Theorem 1 has been proved in all other cases, we may apply it with $\mu \equiv \varepsilon$ for an arbitrary positive ε to deduce that it remains valid if $\mu \equiv 0$. From now on we assume that μ does not vanish identically. Hence $A \ge 0$.

The condition (1.2) is natural, for $\mu(t) = t^{B+o(1)}$ as $t \to 0$, and if B>1, then (1.1) cannot be true for all $z_1, z_2 \in G$ unless f is constant.

Tamrazov [2, Theorem 9.3, p. 167] showed that if μ is a majorant satisfying a growth condition, e.g.

(1.7)
$$\mu(2t) \leq 2\mu(t), \quad t > 0,$$

and if the conclusion of Theorem 1 for a fixed $z_1 \in \partial G$ is correct for all bounded Jordan domains G, then $\log \mu(e^t)$ is concave. Hence this condition is necessary. The reason behind it is that we want the functions $-\log \mu(|z-z_0|)$ to be subharmonic for $z \in G$, for any $z_0 \in \partial G$.

Gehring, Hayman and the author [1, Theorem 1] proved Theorem 1 for $\mu(t) = Mt^{\alpha}$, M > 0, $0 \le \alpha \le 1$. In this case $\log \mu(e^t) = \alpha t + \log M$ is concave, and $A = B = \alpha$. For $0 \le A < 1$, our Theorem 1 applies to other functions that $\mu(t) = Mt^{\alpha}$. However, as we shall show in Section 3, for A = 1 we get only the functions $\mu(t) = Mt$.

Our growth conditions (1.4) and (1.5) and their dependence on A are the same as [1, (1.2), (1.3)] in the case dealt with in [1]. As remarked in [1, p. 243], the functions z and z^2 , respectively, with $G = \{|z| > 1\}$, show that o cannot be replaced by O in (1.4) and (1.5).

Results like Theorem 1 were obtained by Tamrazov [2] for special open sets and for majorants μ satisfying a growth condition which we take to be (1.7). This is satisfied, for example, by any subadditive μ . Let cap *E* denote the logarithmic capacity of the compact set *E*. Then Tamrazov's results [2, Theorems 4.1., 6.1, 9.1] can be summarized in a slightly simplified form as follows. Suppose that *G* is bounded or that *G* contains a neighborhood of infinity, in which case *f* is required to remain analytic at ∞ . Hence ∂G is bounded, and *f* is also bounded. If (1.1) holds for $z_1, z_2 \in \partial G$, and if $z_1 \in \partial G, z_2 \in G$, then

(1.8)
$$|f(z_1) - f(z_2)| \le 27\mu(|z_1 - z_2|)|z_1 - z_2|(2 \operatorname{cap} E(z_1, z_2))^{-1},$$

where

$$E(z_1, z_2) = \left\{ |z - z_1| \le \frac{1}{2} |z_1 - z_2| \right\} \setminus G.$$

If, in addition, G is simply connected, then

(1.9)
$$|f(z_1) - f(z_2)| \le C\mu(|z_1 - z_2|), \quad z_1, \, z_2 \in \overline{G},$$

where C=108. If G is suitable, one can use (1.8) together with [2, Lemma 4.1] to deduce that (1.9) holds for some C depending on G but not on z_1 and z_2 . If $\log \mu(e^t)$ is concave, we can take C=1 in (1.9) if (1.7) holds and ∂G satisfies certain capacity density conditions. Moreover, if (1.1) holds for a fixed $z_1 \in \partial G$ and all $z_2 \in \partial G$, if f is bounded and if $\log \mu(e^t)$ is concave, then (1.9) holds for this z_1 and all $z_2 \in \overline{G}$ with C=1, provided that ∂G is thick enough. In this case ∂G need not be bounded.

Theorem 1 generalizes Tamrazov's results when $\log \mu(e^t)$ is concave, since we need no assumption on the capacity density of ∂G .

References to other earlier works related to this subject can be found in [1, p. 244] and in [2, p. 141–143].

2. Lemmas

Let *u* be a subharmonic function in the plane. We set

$$M(r, u) = \sup \{ u(z) | |z| = r \}.$$

For all functions u that we shall consider, we have

$$(2.1) M(r, u) = O(\log r)$$

as $r \to \infty$.

To prove Theorem 1, we need two lemmas. The first lemma follows from [1, Theorem 2].

Lemma 1. Suppose that u is subharmonic, non-negative and not constant in the plane, that (2.1) holds as $r \rightarrow \infty$, and that u(z)=0 for some z. Then the limit

(2.2)
$$\beta = \lim_{n \to \infty} M(r, u) / \log r$$

exists and $0 < \beta < \infty$. Suppose further that there is a component D of the set $\{z|u(z)>0\}$ such that u is harmonic in D and possesses there a local conjugate v, and that for some α , $0 < \alpha \le 1$, and some positive R, the function

$$F(z) = z^{1-\alpha} \exp\left(u + iv\right)$$

remains single-valued in $D \cap \{|z| > R\}$. Then D contains the set $\{|z| > R_0\}$ for some R_0 , and F has a pole of order $\beta + 1 - \alpha$ at infinity.

Note that any such component D is unbounded.

Our second lemma is a generalization of Tamrazov's result [2, Lemma 4.1, p. 156].

Lemma 2. Let G be an open set with at least one (finite) boundary point, and suppose that

(2.3)
$$f(z) = o(|z|^2)$$

A. HINKKANEN

as $z \rightarrow \infty$ in any unbounded component of G. Then for every positive t we have

(2.4)
$$\sup \left\{ |f(z_1) - f(z_2)| \left| |z_1 - z_2| \le t, \ z_1, \ z_2 \in \overline{G} \right\} \right. \\ = \sup \left\{ |f(z_1) - f(z_2)| \left| |z_1 - z_2| \le t, \ z_1 \in \partial G, \ z_2 \in \overline{G} \right\}.$$

Tamrazov proved Lemma 2 with the additional hypothesis that ∂G is bounded and f is bounded (cf. Section 1).

To prove Lemma 2, we consider a fixed positive t, denote the left and right hand sides of (2.4) by L and R, respectively, and note that $R \leq L$. To prove that $L \leq R$, we may assume that L > 0, $R < \infty$, so that f is not constant.

Pick $z_1, z_2 \in G$ such that with $h = z_2 - z_1$ we have $|h| \le t$. It suffices to show that with

$$g(z) = f(z) - f(z+h)$$

we have $|g(z_1)| \leq R$. The function g is defined and continuous in the closure of the non-empty open set

$$(2.5) G_1 = \{z \mid z \in G, \ z+h \in G\} \subset G$$

and analytic in G_1 . Further, g is bounded in any compact subset of \overline{G}_1 , and $z_1 \in G_1$. If $z \in \partial G_1$, then $z \in \partial G$ or $z + h \in \partial G$, so that $|g(z)| \leq R$. If g is bounded in G_1 , it follows from the maximum principle that $|g(z_1)| \leq R$.

Suppose that g is unbounded, and let D be a component of the open set $\{z \in G_1 | |g(z)| > R\}$, so that D is unbounded. We set

(2.6)
$$u(z) = \log |g(z)| - \log R, \quad z \in D,$$
$$u(z) = 0, \quad z \notin D,$$

and note that u is subharmonic and non-constant in the plane, and harmonic and positive in D, and possesses a local conjugate in D, namely, $\arg g(z)$. By (2.3), the condition (2.1) holds, and we may apply Lemma 1 to u with $\alpha = 1$. It follows that D and thus G contains a neighborhood of ∞ , so that by (2.3), f remains analytic or has a pole of order one at ∞ . But in both cases g remains bounded at ∞ , which is against our assumption. Hence $L \leq R$, and Lemma 2 is proved.

3. Proof of Theorem 1

Suppose that the assumptions of Theorem 1 are satisfied and take a fixed $z_1 \in \partial G$. The function

(3.1)
$$u_1(z) = \log |f(z) - f(z_1)| - \log \mu(|z - z_1|)$$

is subharmonic in G and satisfies by (1.2),

 $\limsup_{z\to\zeta}u_1(z)\leq 0$

for all $\zeta \in \partial G$, $\zeta \neq z_1$. Further, u_1 is bounded above in any compact subset of \overline{G} not containing z_1 .

First we show that u_1 is bounded above in a neighbourhood of z_1 in \overline{G} . Suppose that this is not true, and let D_1 be a component of the open set $\{z \mid |z-z_1| < 1, z \in G, u_1(z) > M\}$, where $M = \max(0, \sup\{u_1(z) \mid z \in \overline{G}, |z-z_1| = 1\})$. Hence $z_1 \in \partial D_1$.

We set $\varphi(z) = (z - z_1)^{-1}$, $\varphi(G) = G_1$, $\varphi(D_1) = D_2$, and note that $\varphi(z_1) = \infty$, and $0 \notin G_1$. We set

$$u(z) = u_1(\varphi^{-1}(z)) - M, \ z \in D_2,$$

$$u(z) = 0, \qquad z \notin D_2,$$

so that u is non-negative, non-constant and subharmonic in the plane and positive in D_2 . Also,

$$u(z) = \log |f(z_1+1/z)-f(z_1)| - \log \mu(1/|z|) - M, \quad z \in D_2.$$

By (1.2),

(3.2)
$$-\log \mu(1/|z|) \le (B+o(1))\log |z| \le (1+o(1))\log |z|$$

as $z \to \infty$. Hence (2.1) holds. Now we apply Lemma 1 to u to obtain $0 < \beta \le B \le 1$. In particular, B > 0.

Choose ε such that $0 < \varepsilon < \beta \leq B$. Consider the function

$$u_2(z) = \log |f(z_1+1/z)-f(z_1)| + (B-\varepsilon) \log |z| - M, \quad z \in D_2.$$

Since $M(r, u) \sim \beta \log r$, since $-\log \mu(1/|z|) \sim B \log r$, r = |z|, and since

$$u(z) - u_2(z) = -\log \mu(1/|z|) - (B - \varepsilon) \log |z|, \quad z \in D_2,$$

we have $M(r, u_2) \sim (\beta - \varepsilon) \log r \rightarrow \infty$ as $r \rightarrow \infty$. Further,

$$(B-\varepsilon)\log|z| < -\log\mu(1/|z|)$$

when |z| is large enough, so that $u_2(z) < 0$ if $z \in \partial D_2$ and |z| > R. We have $u_2(z) \le M_2$ for |z| = R, for some positive M_2 , so that

$$\limsup_{z \to \zeta} u_2(z) - M_2 \leq 0$$

for every finite boundary point ζ of $D_3 = D_2 \cap \{|z| > R\}$. Since u_2 is unbounded in D_3 , we can find an unbounded component D_4 of the set $\{z \in D_3 | u_2(z) > M_2\}$. Hence the function

$$u_3(z) = u_2(z) - M_2, \quad z \in D_4,$$

 $u_3(z) = 0, \qquad z \notin D_4,$

is non-negative, non-constant and subharmonic in the plane. In D_4 , u_3 is positive and harmonic, and possesses there a local conjugate v such that with $\alpha = \beta - \varepsilon$, the function

$$F(z) = z^{1-\alpha} \exp\left(u_3 + iv\right)$$

is single-valued in D_4 . Hence we can apply Lemma 1 to u_3 to deduce that D_4 contains

a neighbourhood of infinity. But since $D_4 \subset G_1$, it follows that G contains a punctured neighbourhood of z_1 , so that z_1 is a regular point of f and so there exists a positive integer k and a_k unequal to zero such that

$$f(\zeta) - f(z_1) \sim a_k (\zeta - z_1)^k \quad \text{as} \quad \zeta \to z_1,$$

$$f(z_1 + 1/z) - f(z_1) \sim a_k z^{-k} \quad \text{as} \quad z \to \infty.$$

This together with (1.2) and (3.2) implies that

$$u(z) = -k \log |z| - \log \mu(1/|z|) + O(1) \le o(\log |z|)$$

as $z \to \infty$, which contradicts the result $\beta > 0$. So in any case u_1 is bounded above in a neighbourhood of z_1 in \overline{G} .

We want to show that $u_1(z) \leq 0$ in G, since in view of Lemma 2 this clearly completes the proof of Theorem 1. If u_1 is bounded above in G, this follows from the maximum principle. Suppose then that u_1 is not bounded above in G, and let D be a component of $\{z|u_1(z)>0\}$. Since u_1 is bounded above in any compact subset of \overline{G} , as we proved above, the set D must be unbounded.

We set $u(z)=u_1(z)$ in *D*, u(z)=0 outside *D*. To make *u* subharmonic, we may have to redefine *u* at z_1 , cf. [1, p. 248]. Then we apply Lemma 1 to *u*. We assume that (1.4) or (1.5) holds. Without loss of generality we may assume that $z_1=0$. Thus we obtain

$$\sup_{|z|=r, z \in D} \log |f(z)-f(0)| \sim (\beta+A) \log r$$

as $r \to \infty$. Suppose now that A < 1. We choose ε such that $0 < \varepsilon < \beta$ and $A + \varepsilon < 1$, and R such that

$$\log \mu(|z|) < (A + \varepsilon) \log |z|, \ |z| \ge R,$$

and set

$$u_2(z) = \log |f(z) - f(0) - (A + \varepsilon) \log |z| - M_3, \quad z \in D,$$

where $M_3 \ge 0$ and M_3 is so large that $u_2(z) \le 0$ if $z \in D$ and |z| = R. Hence u_2 has negative boundary values in $D \cap \{|z| > R\}$, but u_2 is unbounded above in $D \cap \{|z| > R\}$. Therefore we can find an unbounded component D_1 of the set $\{z \in D | z | > R, u_2(z) > 0\}$, and we define $u_3(z) = u_2(z)$ in $D_1, u_3(z) = 0$ outside D_1 .

The function u_3 is subharmonic in the plane, harmonic in D_1 , and possesses there a local conjugate. We may apply Lemma 1 to u_3 with $\alpha = 1 - A - \varepsilon$ to deduce that D_1 and so G contains a neighbourhood of ∞ . Hence by (1.4), f remains bounded at ∞ , so that u_1 is bounded above, which is contrary to our assumption. This proves Theorem 1 if A < 1.

Suppose that A=1. We shall soon show that then $\mu(t)=Mt$, M>0. Since (1.5) holds, Theorem 1 follows now from [1, Theorem 1].

If A=1, then B=1. Since

$$\eta(t) = \log \mu(e^t) - \log \mu(1)$$

is concave with $\eta(0)=0$, we have

$$0 = 2\eta(0) \ge \eta(t) + \eta(-t), \quad t > 0,$$

$$\eta(t)/t \le \eta(-t)/(-t), \quad t > 0.$$

Further $\eta(t)/t$ decreases to 1 and $\eta(-t)/(-t)$ increases to 1 as t increases from 0 to ∞ . Hence $\eta(t) \equiv t$, $\mu(t) \equiv t\mu(1)$. This proves Theorem 1 if A=1.

Suppose finally that (1.6) holds for some q>0 but that the conclusion of Theorem 1 fails. Suppose that (1.1) fails for some $z_1 \in \partial G$, $z_2 \in G$. We can still deduce that u_1 , given by (3.1), is bounded above in a neighbourhood of z_1 in \overline{G} and that (2.1) is satisfied with $u=u_1$. Since u_1 must be unbounded above in G, we obtain as before from Lemma 1 that G contains a neighbourhood of infinity. Now (1.6) implies that f has a pole at infinity.

If (1.1) fails for some $z_1, z_2 \in G$ but not for any $z_1 \in \partial G$, $z_2 \in \overline{G}$, then we take these $z_1, z_2 \in G$, set $h = z_2 - z_1$ and g(z) = f(z) - f(z+h). If R is defined as in the proof of Lemma 2 for t = |h|, then the function u given by (2.6) must be unbounded in G_1 , given by (2.5). Since u satisfies (2.1), we deduce from Lemma 1 that G contains a neighbourhood of infinity. Now (1.6) implies that f has a pole at infinity. Theorem 1 is proved.

Remark. After this paper had been written, I was informed that there is a recent preprint of Tamrazov containing results similar to those in this paper.

References

 GEHRING, F. W., W. K. HAYMAN, and A. HINKKANEN: Analytic functions satisfying Hölder conditions on the boundary. - J. Approx. Theory 35, 1982, 243-249.

[2] TAMRAZOV, P. M.: Contour and solid structure properties of holomorphic functions of a complex variable. - Russian Math. Surveys 28:1, 1973, 141–173.

Imperial College Department of Mathematics London SW7 2BZ England Current address: University of Michigan Department of Mathematics Ann Arbor, Michigan 48109 USA

Received 13 February 1984