Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 255–259 Commentationes in honorem Olli Lehto LX annos nato

ON THE NASH—MOSER IMPLICIT FUNCTION THEOREM

LARS HÖRMANDER

In [1] a general implicit function theorem of Moser's type was derived from the methods of Nash [2]. However, it turns out that better results and simpler proofs may be obtained by a simple modification of this approach combined with standard non-linear functional analysis. We shall present this modification here, choosing this time an abstract setting as for example in Zehnder [3].

Let E_a , $a \ge 0$, be a decreasing family of Banach spaces with injections $E_b \subseteq E_a$ of norm ≤ 1 when $b \ge a$. Set $E_{\infty} = \bigcap E_a$ with the weakest topology making the injections $E_{\infty} \subseteq E_a$ continuous, and assume that we have given linear operators $S_{\theta}: E_0 \rightarrow E_{\infty}$ for $\theta \ge 1$, such that with constants C bounded, when a and b are bounded,

(i)
$$\|S_{\theta}u\|_{b} \leq C \|u\|_{a}, \ b \leq a;$$

(ii)
$$\|S_{\theta}u\|_{b} \leq C\theta^{b-a} \|u\|_{a}, \ a < b;$$

(iii)
$$\|u - S_{\theta} u\|_{b} \leq C \theta^{b-a} \|u\|_{a}, \ a > b;$$

(iv)
$$\left\|\frac{d}{d\theta}S_{\theta}u\right\|_{b} \leq C\theta^{b-a-1}\|u\|_{a}.$$

Hölder spaces are classical examples (see [1, appendix]). The property (iv) is the strongest one; integration of (iv) from θ to ∞ gives (iii) and integration from 1 to θ gives (ii) (although the constants may become large as *b* approaches *a*). From (ii) and (iii) we obtain the logarithmic convexity of the norms

(v)
$$\|u\|_{\lambda a+(1-\lambda)b} \leq C \|u\|_a^{\lambda} \|u\|_b^{1-\lambda} \quad \text{if} \quad 0 < \lambda < 1.$$

In fact, if $c = \lambda a + (1 - \lambda)b$ and a < b, we obtain from (ii) and (iii)

$$\|u\|_{c} \leq \|S_{\theta}u\|_{c} + \|u - S_{\theta}u\|_{c} \leq C(\theta^{c-a}\|u\|_{a} + \theta^{c-b}\|u\|_{b}).$$

Since $||u||_b \ge ||u||_a$ the two terms are equal for some $\theta \ge 1$, which gives (v) with the constant 2C.

Condition (iv) provides a convenient way of making a continuous decomposition of an arbitrary $u \in E_a$. However, we prefer to use discrete decompositions in order to have no problems with vector valued integration. We therefore choose a fixed sequence with $1=\theta_0 < \theta_1 < ... \rightarrow \infty$ such that θ_{j+1}/θ_j is bounded, set $\Delta_j=\theta_{j+1}-\theta_j$ and introduce

$$R_{j}u = (S_{\theta_{j+1}}u - S_{\theta_{j}}u)/\Delta_{j} \quad \text{if} \quad j > 0, \quad R_{0}u = S_{\theta_{1}}u/\Delta_{0}.$$

Then we have by (iii)

(1)
$$u = \sum_{0}^{\infty} \Delta_{j} R_{j} u$$

with convergence in E_a , if $u \in E_b$ for some b > a, and (iv) gives for all b

(2)
$$||R_{j}u||_{b} \leq C_{a,b}\theta_{j}^{b-a-1}||u||_{a}.$$

Conversely, assume that $a_1 < a < a_2$, that $u_j \in E_{a_0}$ and that

(3)
$$\|u_j\|_b \leq M\theta_j^{b-a-1} \quad \text{if} \quad b = a_1 \quad \text{or} \quad b = a_2.$$

By (v) this remains true with a constant factor on the right-hand side if $a_1 < b < a_2$ so the sum $u = \sum \Delta_j u_j$ converges in E_b if b < a. Let E'_b be the set of all sums $u = \sum \Delta_j u_j$ with u_j satisfying (3) and introduce as norm $||u||'_a$ the infimum of M over all such sum decompositions. We have then seen that $|| ||'_a$ is stronger than $|| ||_b$ if b < a, while (1) and (2) show that $|| ||'_a$ is weaker than $|| ||_a$. The space E'_b and, up to equivalence, its norm are independent of the choice of a_1 and a_2 . In fact, assume that $u = \sum \Delta_j u_j$ with u_j satisfying (3), and let us estimate $|| R_k u ||_c$. By (3) and (iv)

$$||R_k u_j||_c \leq CM\theta_k^{c-a_v-1}\theta_j^{a_v-a-1}, \quad v=1, 2.$$

We multiply by Δ_j and sum for $j \le k$ taking v=2 and for j>k taking v=1. This gives that

$$\|R_k u\|_c \leq C M \theta_k^{c-a-1}.$$

Thus the decomposition (1) can be used instead, for any interval. Altogether this shows that the space E'_a and its topology are independent of the choice of the numbers a_1 and a_2 ; E'_a is defined by (2) for any two values of b to the left and to the right of a. (It does not depend on the smoothing operators of course.) In the particular case of Hölder spaces we have $E'_a = E_a$ unless a is an integer.

In (iii) we may replace $||u||_a$ by $||u||'_a$ if we take another constant, which may tend to ∞ as b approaches a. In fact, assume we have a decomposition $u = \sum \Delta_j u_j$ with u_j satisfying (3). Then if $b < a_1 < a < a_2$

$$u-S_{\theta}u=\sum \Delta_j(u_j-S_{\theta}u_j), \quad \|(u_j-S_{\theta}u_j)\|_b \leq CM\theta^{b-a_{\nu}}\theta_j^{a_{\nu}-a-1}.$$

We sum for $\theta_i > \theta$ with v=1 and for $\theta_i \leq \theta$ with v=2 and conclude that

$$\|u - S_{\theta} u\|_{b} \leq C_{b} \theta^{b-a} M$$

which proves the strengthened form of (iii).

If u_k is a bounded sequence in E_a for some fixed a > 0 and $u_k \rightarrow u$ in E_0 , it follows from (v) that u_k is a Cauchy sequence in E_b for every fixed b < a so the limit $u \in E_b$. In fact, $u \in E'_a$ for if we apply (2) to u_k and let $k \rightarrow \infty$ it follows that

$$\|R_j u\|_b \leq C_{a,b} \theta_j^{b-a-1} \underline{\lim} \|u_k\|_a.$$

We shall say that a sequence $u_k \in E_a$ is weakly convergent and write $u_k \rightarrow u$ in the preceding situation. Note that the definition of E'_a shows that every element in E'_a is the weak E_a limit of a sequence in E_{∞} .

To state the implicit function theorem we assume that we have another family F_a of decreasing Banach spaces with smoothing operators having the same properties as above; we use the same notation for the smoothing operators also. In addition we assume that the *embedding* $F_b \subset F_a$ is compact when b > a.

Theorem. Let α and β be fixed positive numbers, $[a_1, a_2]$ an interval with $0 \leq a_1 < \alpha < a_2$, V a convex E'_{α} neighborhood of 0 and Φ a map from $V \cap E_{a_2}$ to F_{β} which is twice differentiable and satisfies, for some $\delta > 0$,

(4)
$$\|\Phi''(u; v, w)\|_{\beta+\delta} \leq C \sum (1+\|u\|_{m'_i}) \|v\|_{m''_i} \|w\|_{m'''_i},$$

where the sum is finite. Also assume that $\Phi'(v)$, for $v \in V \cap E_{\infty}$, has a right inverse $\psi(v)$ mapping F_{∞} to E_{a_2} , that $(v, g) \rightarrow \psi(v)g$ is continuous from $E_{\infty} \cap V \times F_{\infty}$ to E_{a_2} and that

(5)
$$\|\psi(v)g\|_{a} \leq C(\|g\|_{\beta+a-a} + \|g\|_{0}\|v\|_{\beta+a}), \quad a_{1} \leq a \leq a_{2}.$$

Let a_2 be at least as large as the subscripts on the right-hand side of (4),

(6)
$$\max(m'_j - \alpha, 0) + \max(m''_j, a_1) + m'''_i < 2\alpha, \text{ for every } j; \alpha - \beta < a_1.$$

For every $f \in F'_{\beta}$ with sufficiently small norm one can then find a sequence $u_j \in V \cap E_{a_2}$ which has a weak limit u in E'_{α} such that $\Phi(u_j)$ converges weakly in F'_{β} to $\Phi(0) + f$.

Proof. Let $g \in F'_{\beta}$ and write $g_j = R_j g$; thus

(7)
$$g = \sum \Delta_j g_j; \quad \|g_j\|_b \leq C_b \theta_j^{b-\beta-1} \|g\|'_{\beta}.$$

We claim that if $||g||_{\beta}'$ is small enough we can define a sequence $u_j \in E_{a_2} \cap V$ with $u_0 = 0$ by the recursion formula

(8)
$$u_{j+1} = u_j + \Delta_j \dot{u}_j, \quad \dot{v}_j = \psi(v_j) g_j, \quad v_j = S_{\theta_j} u_j$$

and that we have the estimates

(9)
$$\|\dot{u}_j\|_a \leq C_1 \|g\|'_{\beta} \theta_j^{a-\alpha-1}, \quad a_1 \leq a \leq a_2,$$

(10)
$$\|v_j\|_a \leq C_2 \|g\|'_\beta \theta_j^{a-\alpha}, \quad \alpha < a \leq a_2,$$

(11)
$$\|u_j - v_j\|_a \leq C_3 \|g\|'_{\beta} \theta_j^{a-\alpha}, \quad a \leq a_2.$$

Indeed, suppose that u_j is already constructed for $j \le k$ and that (10), (11) are proved then as well as (9) for j < k. We prove (9) for j = k by application of (5) to v_k and g_k which gives

$$\|\psi(v_k)g_k\|_{a} \leq C(\theta_k^{a-\alpha-1}\|g\|_{\beta}' + \theta_k^{-\beta-1}\|g\|_{\beta}'C_2\|g\|_{\beta}'\theta_k^{\beta+a-\alpha}).$$

Here we have used the fact that $\beta + a_1 > \alpha$ by (6). This gives (9) for j = k if $C_1 > C$ and $||g||_{\beta}$ is small, no matter what the value of C_2 is. (This point is important to avoid circularity in the choice of constants.) Since $u_{k+1} = \sum_{0}^{k} \Delta_j \dot{u}_j$ we obtain from

(12)
$$\|u_{k+1}\|'_{\alpha} \leq C'C_1 \|g\|'_{\beta}$$

and we conclude from the strengthened version of (iii) discussed above that (11) is valid for $a < \alpha$ not close to α if C_3/C_1 is large enough. When $a=a_2$ the same conclusion is obtained directly by adding (9), and the logarithmic convexity (v) then gives (11) with the same constant in the whole interval. Then we obtain (10) for j=k+1 by just summing (9).

We have now proved that the construction of the infinite sequences u_j , v_j , \dot{u}_j is possible, for (12) and (11), with j=k+1, show that u_{k+1} and v_{k+1} are in V if $\|g\|'_{\beta}$ is sufficiently small. It follows from (9) that u_k has a weak limit u in E'_{α} . What remains is to examine the limit of $\Phi(u_k)$. Write

(13)
$$\Phi(u_{j+1}) - \Phi(u_j)$$

= $(\Phi(u_j + \Delta_j \dot{u}_j) - \Phi(u_j) - \Phi'(u_j)\Delta_j \dot{u}_j) + (\Phi'(u_j) - \Phi'(v_j))\Delta_j \dot{u}_j + \Delta_j g_j$
= $\Delta_j (e'_j + e''_j + g_j).$

First we estimate

$$e_j'' = \int_0^1 \Phi'' (v_j + t(u_j - v_j); \ \dot{u}_j, \ u_j - v_j) dt$$

by means of (4); our purpose is of course to show that e'_j, e''_j are so small that $\Phi(u_k) - \Phi(u_0)$ will have a limit close to $\sum \Delta_j g_j = g$. If we combine (5) with (9), (10), (11) and recall (6), we obtain, if $\varepsilon > 0$ is so small that (6) remains valid if ε is added in the left-hand side,

(14)
$$\|e_j''\|_{\beta+\delta} \leq C\theta_j^{-1-\varepsilon} \|g\|_{\beta}^{\prime 2}.$$

For any N>0 we can choose θ_j so that $\Delta_j = O(\theta_j^{-N})$. For large N we obtain in the same way from Taylor's formula

(15)
$$\|e_j'\|_{\beta+\delta} \leq C\theta_j^{-1-\varepsilon} \|g\|_{\beta}^{\prime 2}.$$

It follows that $\Phi(u_k)$ converges weakly to $\Phi(0) + T(g) + g$ where

(16)
$$T(g) = \sum \Delta_j (e'_j + e''_j).$$

This sum is uniformly convergent in $F_{\beta+\delta}$ norm when $||g||_{\beta}'$ is small enough. Hence T(g) is a continuous map from a neighborhood of 0 in F_{β}' to a compact subset of F_{β}' , and

$$\|Tg\|_{\beta}^{\prime} \leq C \|g\|_{\beta}^{\prime 2}.$$

By the Leray-Schauder theorem it follows that g+T(g) takes on all values in a neighborhood of 0, and this proves the theorem.

References

 HÖRMANDER, L.: The boundary problems of physical geodesy. - Arch. Rational Mech. Anal. 62, 1976, 1—52.

[2] NASH, J.: The imbedding problem for Riemannian manifolds. - Ann. of Math. (2)63, 1956, 20—63.
[3] ZEHNDER, E.: Generalized implicit function theorems with applications to some small divisor

problems, I. - Comm. Pure Appl. Math. 28, 1975, 91-140.

University of Lund Institute of Mathematics S-220 07 Lund Sweden

Received 30 March 1984