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HARDY-LITTLEWOOD INEQUALITY FOR

QUASIREGULAR MAPPINGS IN CERTAIN DOMAINS IN .R"

T. IWANIEC and C. A. NOLDER

1. Introduction

In their paper "Some properties of conjugate functions" [7] Hardy and

Littlewood proved the following

Theorem l. If f:vtriu is analytic in a disk DcRz cmtered at zo, thm

for O=p=.-, where. C, does not depend on f.
Genenlizations of this theorem to solutions of elliptic systems of P.D.E.'s in

several variables as well as to more general domains were treated in a recent paper

by J. Boman [2] for l<p<.-; they can be extended to hold for 0<p<-.
We will establish similar estimates for the components of a quasiregular mapping

in domains in R'which satisfy certain geometric conditions (see Theorem 4 and
Corollaries 1-5). The main idea we use is based on two geometric results. The
first, Theorem 2, states that the exponent can be improved in a weak type reverse

Hölder inequality. This should be considered as complementary to Gehring's well
known Lemma [5]. The second, Theorem 3, allows us to obtain global estimates

from the local inequalities over the cubes in the domain. Both Theorem 2 and Theo-
rem 3 illustrate a self-improving property of some local estimates and theyiseem

to be interesting in their own right. The local estimates (Propositions 1, 2, 3\ are

obJained from the classical embedding inequalities. We do not appeal to any non-
standard or difrcult result from quasiconformal theory and differential equations.

The weighted inequalities as an application give us a version of Theorem 1

over a quasiball (see Corollary 5).

Proposition 4 explains the behaviour at infinity and near the boundary of the

upper-half space K of a quasiregular mapping from Z'(IQ.

This research was supported in part by the U.S. National Science Foundation, Grant MCS
82-Ot607.
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2. Notation and definitions

We let ,Rn denote the real z-dimeriSional Euclidean space and Q any open
cubes with diameter diam Q and volume lQl.lf o>1, then oQ will be the cube
with the same center as Q but expanded by the factor o. The symbol dx willbe
Lebesgue measure on .Rn, l,El will be the measure of the set ,Ec.Ro and 1" the
characteristic function of .8. We also work with absolutely continuous sigma additive
measures pr on N, dp(x):yt1*1dx, wtth the positive density w from Zl,"(,R') and
other classes. If 0=p=-, we denote by U(E,p) the space of all measurable
functions / with

llfllo,",r : (l 
"lf@)V 

ap@))Lto = -.
The Minkowski type inequality

(2.0) llf* sllo.",, =- 2'to (llfllo,n,,-tllgll p.n,o\

will be frequently used for f,g(Le(E,p) with p>0. We also introduce the sharp
Z?-"norms"

\f n[,r, r : jål llf- all p,E, t, I *.
Erc.E, then llfll[,u,r,= ll fll[,E2,rr and the infimums are attained. If

0< p(E)< oo, we have

Clearly, if
p=I and

(2.r)
ll J' ll [, u, p = ll "f - "fu, ull o, E, r, 1 2 ll /' ll [, 

", 
u,

wherc f",, is the p-average of f on E

f",r : # I 
" 

f@) dpr(x) : .f" fau,

The following Fatou type lemma holds for the sharp norms.

Lemma l. Giuen an ascending sequmce of measurable sets ErcErc....,
suppose f€Le1Et, p7, 0<p<- and supi ll.fllfir,,r=- for i:|,2, .... Then

f€Le(E,1t), where E:U\rEr, and the sequence {llfll|",,rl7, increases to the
timit llfllf,",,.

Proof. We may assume that 0=/r(EJ=-. For each i>l we can find a
number a;€R such that

Hence 
llf-alln.r,,u: llfllt,",,r.

: (f 
",lo,l' 

d p)t'' = 2L/ 
p 

lt f- atll p, Ei, tt* 2Lt 
p 

ll -f ll o, Er, tr

= 2r t p ryp ll J'll[, r,, r, t 2rt p 
ll f ll p, Et, tr .

lo'lQr(E'1)tro
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Now, as a bounded sequence, {a;}[, has a convergent subsequence, say limn-- aiu:
By Fatou's lemma we get

llf-allo,a,, = j13 llf-ailp,n,",,: JIT llfllt.",",u,

which shows that f-a(Lp(E,1). Since the sequence {llfll!,",,r}7, increases,

we also conclude that llfllf;,e,r:limt--llflf.,r,,r. Hereafter, for notational

simplicity, the symbol p will be omitted from the formulas when dp(x):dv.
The set O will always be an open set in .R'. We will deal with the following

spaces of functions defined on O:

C-@) - the class of indefinitely differentiable functions,

C;"(O) - the subclass of C-(O) of functions wilh compact support,
W:@), l=p-€, - Sobolev space which is the completion of C-(o) with

respect to the norm
llU llry1ot : ll Ullp,o f llVullo,o'

11"t" y:(0l0xr,...,010x) is the gradient operator. Wj6.(Q):)s,W](Q'), where

O' is an arbitrary open set compactly contained in O.

We will require the following version of the Poincar6 and Sobolev inequalities.

Lemma
U€LP (O) .for

(2.2)

2. Let O be an open cube in R" and let U<WQ). If s:tt, then

each p=0 and

c,,(n, il (f"lvul')"'

If s>-ns then U€L-(D and

(2.3) llt/ll *,Q O (fnt trl')"']

These inequafities, for example, can be deduced from [6]; see formula (7.45)

and problem 7.11 on page 164.Fot feLe(A, trt), 0=p=-, w€ let Mr(f,p) denote

the Hardy-Littlewood maximal function

MeU, t)(x) -
and MI (f, lD the corresponding sharp maximal function

MI (J, tD(x) -
In both formulas the supremum is taken over all cubes Qc O containing the point x.

Next we introduce the BMO norm for f(Lt(A, p\ by

ll,fllByro : supoMf Qf, 1l@).

Inequality (2.1) shows that lllllf).o is equivalent to the usual BMO norm when

dp(x):ia.

(f"l(t -unlo)u' =

= cr(n, 
') [ (f"l u l')us + diam

sup {,f"1/ l, du)''' t x€Q. n}

sup{;u v;f-ol, dp)'t'; x(Q - n} .
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Finally we say that w is a Muckenhoupt weight, w€AqM(Q), where l<.q<.*
and l =M<*, if w>0 and

(2.4) fo*A)dx< M(fn*(x)rr1r-" itx)L-e

for each atbe QcQ [10]. Such functions w arise in many classical inequalities.

Inequality (2.4) immediately implies the following property of the measure dp(x):
w(x)dx:
(2.5) P(oQ) =- Mo'qtt(Q)

for o>1 and each afte Qwith oqcQ.
Notice that the Jacobian of a K-quasiconformal mapping in .P belongs to

At*(R") for some Q:Q(n,K)=1 and M:M(n,K)>-L This follows from [3]
and [5].

Inequality (2.4) also implies that

fow(iax = *(fov'i{*\ a*)',

which is a reverse Hölder inequality; consequently, we obtain the following

Lemma 3. Let w(AqM(R'), 4>1, M>-L Then there exists an exponmt

f : f (n, M)=l such that

(2.6) (forAy dx)'tq =- ct@, M)fow(x)dx
(see [3], [5]).

3. Improving the exponent in a reverse Hölder inequality

Theorem 2. I*t O=s=p and fCLt^"(A). Suppose that for each cube Q with
2QcQ,
(3.0) (fottt lr, = n (f,ot.fl")'i",

where A is indepmdent of Q, Then for each r=0, o>l and each cube Q with
oQcQ,
(3.1) (foVflu'= B(o)(f"o7'f1''' ,

where B(o) depends only on o, flt pt s, r and A.

Proof. By Hölder's inequality we may assume r < s < P. Set p :p(s - r) | s (p - rY
(0,1) so that lls:Blp+(-Dlr. Hölder's inequality and the assumption (3.0)

imply that

(3.2) (fotfl'1r, = n(f,olfp)Pt'(f,otfy1"-o',

I



Then by

i)

ii)

iii)

iv)

v)
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for each cabe Qwith 2QcQ. Fix a cube RcO, and denote by R":(1-2-\R,
R-:R for v:1,2,.... Next subdivide Ru into 12t+r-2)n nonoverlapping con-

gruentclosedcubes.DenotethefamilyofthesecubesbyFn.Nextfor€v€rlv:1,2, ".
define by induction the collection 9" of cubes from the union Uo-tFn as follows:

gr: Fr, F"*1 - ,F"v {Qe Fv+t, a G A"} for v- 1,2, ...

geometry we have:

-Rk_ U Q,
Q( fiu

Äo*1 _ U 2Q,
Q€ fiu

for k:1,2,3,.... The condition (ii) implies 2QcR for all cubes Q([J*=r%,
while for cubes QQ.fi it follows from v)that l2Ql-t=)n*4lRl-o for q:(l-B)plr.
Hence by (3.2)

I ovr = cp Ap2nk4 laP-p (l,arfl )P (f.lfr)' ,

Xnu*,. = Z a€ er"Xzg 5 4n XRu*r,

lÄo*,1 - (1 -2-k-,)'lnl : (+)" lÄol,

l7l > 2-n(k+1) lÄl for Q<go,
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where C depends onlyon il,p,t, s. Summing overthe ctbes Q€4 and usingi)
through iv) we obtain

| *. if F = c p Ap 2rkr (f 
^ 

vf)' Z a, o n @f - P (l,al f l')8

< c p Ap z'k, (f ; t f)' (Z o, n u lel)' - F ( Z o, o * I,o I t P1u

< cpAp2nk, (f^Vf), lRolL-04u (l 
^..,1f 

p)u

= c p Ap 2nk4 6f lRkl (f;rr)' (f*.,,1 f v)p .

Next we iterate these inequalities to get

f ̂
_ 

I f P = fc 
o to 6 a 

( f - v r)'J"' l2'1" 
I f ̂

 
u,,,,1 

f l'lu' 
*'

for each l:0, 1,2,... and k:1,2,3, ..., where

and 
a, : )i=o fli - ll1- f)

tt: Zl=,&+i)Pi * (k(1-f)+ f)lT-il'.
Letting /+o, ws obtain the inequality

"::":::,':':,"";,"::;':'T;.;!,,'u"-'

for every cube .RcO and k:1,2,.... Finally, if o>l and Q is a cube with
oQcQ, we apply the last inequality with R:oQ, and k such that t-2r-k-.
o-r=!-2-k Then QcRr, 2"kt'=(2ol(o-l))'/' and

(f 
" 

I f ln)'' 
n = c (n, p' r, s) A@ - t)s/(p - s)r (*)" " (f 

"o 
I f f1''''

This proves Theorem'2.

Remark. Thetheorembecomesverysimple in thecase when a "strong" reverse

Hölder inequality is assumed, i.e., when the double afte 2Q is replaced by Q in
(3.0). In this case Hölder's inequality leads to an inequality like (3.2) but with the

a;öe Q in place of 2Q rcstiling in the following conclusion:

(f"lf ln)''o = A@-'l)st@-'' (fovf)'t''
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4. Domains with a chain condition

Definition 1. An open set QcR" is said to be amember of fr(o' N), o>1,
N>1, if there exists a couering { of A consisling of open cubes such that:

i) Z aev' xoe(x) = I'{xo(x)' x€Rn'

ii) There is a distinguished cube QoQ{ (called the central cube) which can be

connected with euery cube QC"//' by a chain of cubes Qo, Qr, ..., Q":Q from "/' such

that for each v:0, 1, ..., s-l
Q c NQ".

There is a cube Rnc.Rn (this cube does not needbe amember of {) such that

Rn c QniQn+r and QvvQy+t c NRn

(compare with [2]).

The classes F(o, N) contain many important types of domains in -Rn, for example,

cubes, balls and John domains [2]. 4-domains have no external cusps but they

1...:t', ,
- 1-l

I
--l

' l--
I

- e-.! -^'1. !
r '-l'l I

. -r- -J
I

I
-.1 /
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may have certain internal cusps. Clearly,if Q€F(o, N), then Qc.NQo is bounded.
We will also be concerned with some unbounded domains. We say lhat Q(9(o, N)
if O:U-ar g; where Qi(9(o,N), o>1, N=l and Qrc.Qr*, for r:1,2,3,....
The half space

K : (rt, ... x); xn= 0)

belongs to 9(o,N) for some o:o(n)>l and N:N(n)=1.
The fundamental property of a domain QQF(o, N) is that certain local esti-

mates which are valid in cubes contained in O automalically also hold in O. The
following theorem illustrates this phenomenon.

Theorem 3. Let 6>lo N>-1,0<.p<.-, Q(fr(o,N), w(A!*(R\, q>1, M>l
and let u and o be measurablefunctions defined on Q. Suppose that for each cube

Q with oQcQ wehaue

(4.0) llullt,a,p= Allollp,oa,p,

where dp(x):w(x)dx and A is a constant independent of Q. Then

(4.1) llull|a,, = Bllullo,e,u,

where B depends only on ft,p,6, N, Q, M and A.'

The proof is very similar to that in ihe paper by J. Boman [2]. We give this
argument for the sake of completeness.

Proof. We
We begin with
wQAXn(R',),

(4.2)

use the notation and the covering f described in Definition 1.

the following properties of the measure dp(x)-w(x)dx; since

p(ND =- MNnup(O)

for each cube QcR" by (2.5) and

max (p(Q), p(Q,+J) = MNnop(Q"^Qn+r)

for the sequence of cubes Qv, Qu+y v:0, 1, ..., ^s-1 described in ii).
Now inequality (4.0) says that for each Q€{ there is a real number ao

such that
(4.4) llu-aellna,u = Allullr,"o,o.

Hereafter we will use the following elementary inequality la*blp=2e(laln+lbl\
for all p>0. In particular we have

loao- aelo dp.

(4.3)

(4.5)

The first sum is estimated by (4.4) and the condition i)

[ ,lu- aaol, dp = 2o Z aer I alu- aal, dp*Zo Zaer I a

Ao Zaer I "alrlo 
dp = NAp I rlulo 

dtt.(4.6) Zar, I alu-oalo 
dp =
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The second sum in (4.5) requires deeper arguments to estimate in terms of the inte-
gral I olul, dp.

Fix a cube g:Q"(/' and let {Q"}, v:0, 1,...,J, be the chain referred to
in ii) and write a":ao". We have

(4.7) laeo-ael = ZJ=-ot lon-on*rl.

Now by (4.3) and (4.4) we have

lon-on*rl, : f lan-a"*rln dp = )o:",n+r2e MN'a f lu-a,lp dp
J euneurl r Q.

< 2p Ap M N'e ),:",,+tfu r,o.lrl' d r.

Since QcNQ, for d:v, vf l, O<v<s-l (see ii)),

lan - a 
" 
* rlp xo (x) = ze Ae M Nnc Z,-,, 

" 
*, !* I "o.lop 

au

and by (4.7)

lao"- aslxsr;) = 2 . 2 . 2ttp AMLtp Nnntn Z ^ro(# I ,-lup ap)''o xn^@')

for every x€.P. Hence

(4.S) Zaro tolaso-aele itp

< 2zp + t Ap M Nno*' f *^lz ^r"(# /". rulo dr)''' rn. (')l' d rt(x).

If 0=p=1 weusethe inequality lEntolP=E,V"ln, (4.2) and the condition i) to get

Zaro {olaeo-asle d.p <,2ze+rAPMNnt+r }ner#/". .lrl'dp

< zzp+t Ap Mz Nzaq+L Z ^r, f "^lrl, 
dp = 2zp+L Ap Mz Nznq+z t obf au.

This, (4.5) and (4.6) give the result for 0=p31. In the case I -p<.*, we use the

following lemma, similar to one of the Strömberg-Torchinsky ll2l, to estimate

the right hand side of (4.8).

L emma 4. If { is an arbitrary collection of cubes in Rn and Ag are non-negatiue

numbers associated with the cubes QQ{ and w(AqM(P), dp(x):w(x)dx, then for
l=p<.- and N>l we haue

(4.9) 112or"r A6tuallp,n,p= B,ll2aro Asysllo,n,r,

where Bn also depends on n,q,N and M but this is independent of the collection

{ utd the numbers Ag.

This lemma is proved as in [2] by use of the weighted maximal theorem [3].
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Now, returning from this lemma to (4.8) we get

Z rro I aloao- 
aelo dp

=2,o+1ApMN,q+,Bg[*,|z-,,(#I,^l,l,dl,)',n,*(")l,dl,@).
Since

with the elemen tary,"ä;;r:.(x) 
= z"<{ xon(x) = NN'o(x)'

Ity= ,tnlo 1 NP-lty= ,lt"lo
we get

Z au I aloao- 
aelo ttp = 22p+r Ap MNp*"n B'o Z ^ro .[ ,^irlo ttp

f 2zp+L Ap MNp+nq+t Bro [ ,trl, dp

by the condition i). This completes the proof of Theotem 3.

5. Basic local estimates for quasiregular mappings

Definition 2. Suppose f: Q-Ro is in the Soboleo space lli!6.(A). Thm f is

said to be K-quasiregular (K-qr), l=l{<.-, if
(s.0) 1o7@)l = Kr|@)

for almost ersery x(Q; here Df(x):.tr1n*Rn is the linear tangmt map (or the Jacobian

matrix) withnorm lOf (x)l andJacobiandeterminant tr(x).

Quasiregular mappings were introduced by Ju. ReSetnjak [11] and O. Martio,
S. Rickman and J. Väisälä [8], [9] in the 1960's. They serve as generalizations of
both holomorphic functions of one complex variable and quasiconformal mappings

in ,R'. When n:2, f is K-qr if and only if it is a holomorphic function. The defini-

tion above originates from an analytic characterizalion of K-quasiconformal maps

due to F. W. Gehring [a].
The components f, f',...,f of a K-qr map are related by some algebraic

inequalities. One of them is the inequality

(5.1) lvf'(il = Klvfi(x)l

foralmosteveryx€O andi,i:1,2,...,n. lnfact,forevery k:1,2,...,n, lYfk(x)l=
lof(x)l and by Hadamard inequality lvl'l I V/'1... 

I 
Y fl=J r. Hence

lYf'l : YW lvfil = ry lvfil =- Klvfi 
I

for i,j:1,2,...,tx.
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If f:11tr;, is analytic, then a and u satisfy the Cauchy-Riemann system u*:urt
u*: -uy and the gradients Yu and Ya are perpendicular vectors of equal length.
The above gradient estimates partially explain the result of Hardy and Littlewood.
To eliminate the first derivatives in the estimates of the comporients of a quasiregular

mapping we will use the following general estimation of the Jacobian determinant:

(5.2)

This holds for every mapping f:(ft,...,f") fromthe spa@ 141rc.(O), for each
j:1,2,...,n and for each test function E<C;(A), g>0. We sketch the proof of
(5.2) below. lf fec-@), then by Stokes' formula and Hölder's inequality we have

E"Jtdx - d.ft A .. . Ad.fi-l A E" dfi ndfi+l A ... A df'

- d(E"fj df' A .. . 
^ 

dfj-1 A d7i+1 A ... A df")

-fi d'ft A .. - Adfi-l A dE" ndfi+1 A ... A df".
Hence

pJr-1 -

The general case then follows by an approximation argument.
Now if/is K-qr, then for each A€C; (P), E=0, we have

for j:1,2,...,fl.
Next we apply this inequality to a test function V€Cf,@A), E>0, E(x)=l

on Q and

V ,E" (x) rr@) dxl = " (f ,lfivEl")''" U 
"lEDfl")* 

-L)tn

" I olfivEllqofln-Llf,q"rrl= InlfillYE"l

< n([ rlfiyEl")"" (l rlEDfy){n-r)tn

U rlEDfl')" = nK (f 
"lfi 

vEl")"

c(n)
lvE(x)l = (o -I) diam Q 

)

and Q is a cube with oQc. Q; clearly such a function exists. We thenwhere o >l
get

(5.3)

(5.4) (f"

for j:1,2, ..., tl. Finally by the Poincard-Sobolev inequality (2.2)

lf'-"föl')"' =

p>0 and the cube Qwith oQcQ. This inequality with p>n,
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o:2 and i:Jr reduces to the "weak" reverse Hölder inequality

(5.5) (foVtf1" = 4c(n, DK(f,oVtf)"

for j:1,2,...,n and each gube Qwith 2QcA.
Now we are ready to prove the following local results.

Proposition l. Let.f:(f',f',...,.f\ beK-qr in Q and let o>1,0<.p<-,
0<r=*. Then(5.6) (f;r'f1" = B,(.f,"V,r)"
and

(5.2) (foV,-ti,t)''o = t,(f"nv,f)"

for i,j:1,2,...,n and cubes O with oQcQ, Here the constants B1:B{o)
and Br:Br1o) dePend onlY on 6, n, P, r, and K.

Proof. We may assume without loss of generality that p>n. Inequality (5.6)

follows from (5.5) and Theorem 2. To get (5.7) we apply (5.4) with the faaor li
in place of o and after this we apply (5.6) with p:n,y'G in place of o and with
the cube loQ i"place of Q.We then obtain

( fotr' - råt')'' 
o 

= 
*# 

( f* 
" 

v, r)''"

=%tr:-(1ov'r1,,,.
This proves (5.7).

The weighted version of (5.7) reads as follows.

Proposition2. If .f:(ft,f',...,f) isK-qr inQandif w(Afu(R"), I>1,
M=1, dp(x):v12s1dx, then

(s.s) llftllf,o.u = BB@)llfille.,a.t"

for i,j-1,2,...,n, 0<p<.-, 6>l andeach cube Q with oQcQ. Here Bs(o)
depends also on fl,p,Q,M and K.

Proof. Since w(AqM(R"), we have the reverse Hölder inequality (2.6) with
some f =1. By (5.7) we get

( f ; r' - råt' r)''' = ( f a 
w P)' I e' 

Lf o 
vi - rålt 

p 
1 1 B -t1){3 - t) t F o

= clto p,(for1u' (-f"oVtP,'1ste - cltp B2lel-trr rlg)',o (f,olfiletc)cte.
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On the other hand, by Hölder's inequality and the AqM-condition Q.4) we have

(f ,nlf 
tP''1o'o=-(f 

"olf 
ilo')'to(.f 

"o"'"-nt){e-rtrn
< Mrtp (f"nr1-''' (f";f f rlttt < l4rtol6Qlue p(Q)-Ltpllfllp,"a,p.

Thus we obtain (5.8) with B":CltrBrMrtp6'tp.
As solutions of certain equations of elliptic type, the components of a K-qr

map have many properties similar to those of harmonic functions. We conclude

this seclion with one such result.

Propositio n 3. Let f be K-qr in a cube Q centered at xo. Thm for each r>O

(5.e) [f(xu)l =- Bo(n, r, g(folfl'J'h.

Proof. We will use the following form of Gehring's well-known ZP -result (see

[], Theorem 5.1, p. 285): There exists an exponent s:s(n, K)=n such that

(5.10) llDf llr," = c(n,s, K) (dist(4 aa1\"t"'-ryo711o,,

for euery compact Fco. Now by Sobolev's inequality (2.3), (5.10) and (5.3), for
every cube R centered at xo with 4RcQ we have

l"f(xJ I = r,lLf 
_l,f l")'/" 

+ aiu- 
^ 
(f _lDlF)'oJ

= C(n,r, /O [[4 l/1")'/"+ {1. lDl|")'/']

= c,(n,r, & [[I Lfl')'/"+ (f"^lfy)'hl.
Finally, by (5.6),

(f *l t r1'' " = B, (.f n*l"rr)'/'
and

(f,* vr1" = t, (f,^lfl')u''

All together these inequalities imply (5.9) v/ith Q:4R.

6. Global estimates and their cons€quences

If we apply Proposition 2 and Theorem 3 to f-a we obtain

Theorem 4. Let QQF(o,N), 0=p=- and w€Afu(N). If f:(f',f',...,f\
is K-qr in Q, thm
(6.0) llftllt.n.r = ,t,llfillf.a,,,
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for i,j:1,2,...,n, where dp(x):ytpt\dx and A, depends also on n.K,o,N,q
and M.

K-qr

(6.1)

Since cubes are in 9(o, N), this theorem implies

Corollary l. Let Q be an arbitrary open set in R". I.f f:(f,,...,f") is
in Q and w€AXn(R'), then

fo, all x€Q, 0=p< oo

(6.0) when O is a cube.

Corollary 2. With

Mf (f', tD@) s AoMf (fi, tD@)

and ir.i:|r2,...en. Ae is the constant that appeors in
Thus Ap depends on n, S, Q and M but not on d2.

the same assumptions as in Corollary 1 we haue

ll,f' llryr" 5 Arll fj il85'(6.2)

for i, j:1,2,...,rt, where At:1r(n,K,q,M) is independent of the domain Q.
As concerns unbounded domains, we have the following extension of Theorem 4

which follows from Lemma 1.

Corollary 3. Let Q(9(o,N) and weAfu(R\. If "f:(.ft,.f',...,f") rb

K-qr in Q such that fiell(Q, p), 0<p-.-, for some l=-j=n, then for each
i:7,2,...,n
(6.3) ll-f'llt.o,* =- Aollf'llt,a,u.

In contrast to this result we have

Example. Let QcRz bethehalf strip:

Q: {z: x+iy;1<; <-, 0 -<y= 1}.

Consider the analytic function f(z):lsg2:loglzl+i0 in O. For p>l

I ooo 
dx dy = [ r(tan o)e dx dy - ;-

while

=- [- (log t)o ctt - q,.

Corollary 4. Let O:g(K) or g(8") where Bn is the unit ball in R" and
g: R"*P is a quasiconformal mapping. If f:(f,...,f\ is K-qr in Q, thm

(6.4) llf'llt,o = Aollfllt,o

for O=p=.*, i,j:1,2,...,n, where An depends on n,K and the dilatationof g.

This corollary is a direct consequence of the previous weighted estimates by
change of variables x:g(x'). Recall that Jo(x') belongs to the Muckenhoupt
class Afu(R") for some 4>l and M>l depending only on n and the dilatation
of g. As a consequence of the study of the weighted inequalities for general quasi-
regular mappings we also get the following generalization of Theorem l.

I nlros l'llo dx dv
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Corollary 5. If f:sliu is analytic in a quasidisk DcRz then

(6.5) llullt,"= Ao(D)llol$,"

for euery 0<p<.*.

Final$, we return to inequality (6.3) with g the upper-half space K and
dp(x):4xx. Then it is easy to see that the constants at,dz,...n an for which

(6.6) llft-a,lln,^= Ao(n, K)llfjllr.x

are uniquely determined. Indeed, the vector d:(ar, dz, ..., a,) is the non-tangential
limit of / at infinity. More precisely,

Proposition 4. Let f:(.f',.f',...,.f\ be K-qr in R. Assume that one of
the components, say fi,l=i=r, belongs to Le(K), O<p<*. Thm there is a
constant uector a:f(-) such that f-f(-)CLe(K) and

(6.7) llf-f@)ll,,x< A,(n, K)llfillo,rc.
Moreouero

(6.8) 
::R "X" lf@)-f@)l = co(n, K)llf llo,x.

Proof.The statement (6.7) follows from (6.6). To prove (6.8) fix a point'
x:(xr,x2,...,x,)€K and consider the cube QcK centered at x and with
sidelength 2xn>Q. Then by Proposition 3 applied to the map f-f(*) we get

lf (x)-f @71=t,(f 
olf -f @)P)'tn=8n12x,7-"tollf --.f @)llo,*

= 2-"tP BeAo@, K)llfjllc,xxintP.
This proves (6.8).
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