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HARDY-LITTLEWOOD INEQUALITY FOR
QUASIREGULAR MAPPINGS IN CERTAIN DOMAINS IN R"

T. IWANIEC and C. A. NOLDER

1. Introduction

In their paper “Some properties of conjugate functions” [7] Hardy and
Littlewood proved the following

Theorem 1. If f=u+iv is analytic in a disk DCR? centered at z,, then
[y P@—v@)Pdxdy = C, [ |u(2)—u(z)? dxdy
for O<p<eo, where C, does not depend on f.

Generalizations of this theorem to solutions of elliptic systems of P.D.E.’s in
several variables as well as to more general domains were treated in a recent paper
by J. Boman [2] for 1=p<oo; they can be extended to hold for 0<p<ece.

We will establish similar estimates for the components of a quasiregular mapping
in domains in R" which satisfy certain geometric conditions (see Theorem 4 and
Corollaries 1—5). The main idea we use is based on two geometric results. The
first, Theorem 2, states that the exponent can be improved in a weak type reverse
Holder inequality. This should be considered as complementary to Gehring’s well
known Lemma [5]. The second, Theorem 3, allows us to obtain global estimates
from the local inequalities over the cubes in the domain. Both Theorem 2 and Theo-
rem 3 illustrate a self-improving property of some local estimates and they seem
to be interesting in their own right. The local estimates (Propositions 1, 2, 3) are
obtained from the classical embedding inequalities. We do not appeal to any non-
standard or difficult result from quasiconformal theory and differential equations.

The weighted inequalities as an application give us a version of Theorem 1
over a quasiball (see Corollary 5).

Proposition 4 explains the behaviour at infinity and near the boundary of the
upper-half space K of a quasiregular mapping from LP ().
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2. Notation and definitions

We let R" denote the real n-dimensional Euclidean space and Q any open
cubes with diameter diam Q and volume |Q|. If 6=1, then ¢Q will be the cube
with the same center as Q but expanded by the factor ¢. The symbol dx will be
Lebesgue measure on R", |E| will be the measure of the set ECR" and yx; the
characteristic function of E. We also work with absolutely continuous sigma additive
measures u on R", du(x)=w(x)dx, with the positive density w from L (R") and

other classes. If O<p<e, we denote by LP(E, u) the space of all measurable
functions f with

1,2 = (f, S du(0))"? < .
The Minkowski type inequality

(20) ”f+ g”p,E,p = 21/P(||f.”p,E,u + ”g”p,E,u)

will be frequently used for f, g€ LP(E, ) with p=0. We also introduce the sharp
LP-“norms”

”f”f,E,p = aiIElIfi: ”f—a”p,E,u = .

Clearly, if E;CE, then |f|¥ Epu=Ilf I £, and the infimums are attained. If

p=1 and O<pu(E)<<, we have
2.1 1A 5w = 1 ~Seullpbu = 21LF 1 56 s

where fg , is the u-average of fon E

1 .
Jeu = me J(x) du(x) =fE fdu.

The following Fatou type lemma holds for the sharp norms.

Lemma 1. Given an ascending sequence of measurable sets E,CE,C...,
suppose fELP(E;, ), O<p<eo and sup;|flfy ,<e for i=1,2,... Then
SELP(E, p), where E=\J;_, E;, and the sequence {|f|¥, }2, increases to the

) P E;,n
limit |},

Proof. We may assume that O<u(E;)<e. For each i=1 we can find a
number g;¢R such that

”f—ai”p,Ei,u = ”f”r,Ei,u'

Hence
@il (u(ED)? = ([, ladl” du )™ = 221 f=al g+ 27711 o

= 27 sup | F15 g ut 21 -
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Now, as a bounded sequence, {g;}; ; has a convergent subsequence, say lim, .. @, =a.
By Fatou’s lemma we get

If=all,,5,, = lim | f=alpe, 0 = Em 117,

which shows that f—a€L?(E, u). Since the sequence {|flz .}z, increases,
we also conclude that |f|¥ o E, L=lmy e || f | * P Epu Hereafter, for notational
simplicity, the symbol p will be omitted from the formulas when du(x)=dx.

The set Q will always be an open set in R". We will deal with the following
spaces of functions defined on Q:

C=(Q) — the class of indefinitely differentiable functions,
Cy (Q) — the subclass of C= () of functions with compact support,
W'(Q), 1=p<e, — Sobolev space which is the completion of C=(Q) with
respect to the norm
“U“W},(n) = ”U|Ip,ﬂ+||VU||p,D'

Here V=(9/0x, ..., 0/dx,) is the gradient operator. W}, (2)= g W,'(Q"), where
€’ is an arbitrary open set compactly contained in Q.
We will require the following version of the Poincaré and Sobolev inequalities.

Lemma 2. Let Q be an open cube in R" and let UcW*(Q). If s=n, then
UeL?(Q) for each p=0 and

2.2 ( fQ |U—UQ|P]”” = Cy(n, p) [ fQ |VU|"]1’".
If s=n, then UEL=(Q) and
(2.3) U], = Cy(n, s) [[ fQ |U[s]1/s+diamQ [ fQ |VU|S]1’S].

These inequalities, for example, can be deduced from [6]; see formula (7.45)
and problem 7.11 on page 164. For fe€L?(, u), 0<p<-<o, we let M,(f, 1) denote
the Hardy-Littlewood maximal function

M,y (f, () = sup{( f. 1f 1 du)": x€Q < 2
and M} (f,n) the corresponding sharp maximal function
#0L _ : - 1/p,
M (f; 1) (x) = sup {;g[fg |f~alr du)""; x€Q < .

In both formulas the supremum is taken over all cubes QC Q containing the point x.
Next we introduce the BMO norm for feL'(Q, ) by

IA12% = sup ME(f, ().

Inequality (2.1) shows that | f|g%°> is equivalent to the usual BMO norm when
du(x)=dx.
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Finally we say that w is a Muckenhoupt weight, w€ A% (£2), where 1<g<e<
and 1=M<o, if w=0 and

2.4 f;z wx)dx=M []{Q w(x)/A-9D dx]l_q

for each cube QcQ [10]. Such functions w arise in many classical inequalities.
Inequality (2.4) immediately implies the following property of the measure du(x)=
w(x)dx:

2.5 1(6Q) = Ma"1p(Q)

for 6=>1 and each cube Q with cQcC Q.
Notice that the Jacobian of a K-quasiconformal mapping in R" belongs to
A% (R") for some g=q(n,K)>1 and M=M(n,K)=1. This follows from [3]
and [5].
Inequality (2.4) also implies that

f;zw(x)dxéM(f;Z VWJ;)—dX]z,

which is a reverse Holder inequality; consequently, we obtain the following

Lemma 3. Let w€AL(R"), g>1, M=1. Then there exists an exponent
B=B(n, M)>1 such that

U
(2.6) ( fQ w(x)P dx] = Cy(n, M) fQ w(x) dx
(see [3], [5D).

3. Improving the exponent in a reverse Holder inequality

Theorem 2. Let O<s<p and feLZ (). Suppose that for each cube Q with
20c Q,

(3.0) (f 7Py =a(f, 1)

where A is independent of Q. Then for each r=0,0>1 and each cube Q with
cQC Q,

3. ?)V? = B(o T,
(f 17r)" =B (f, T)
where B(c) depends only on o, n, p, s, r and A.

Proof. By Holder’s inequality we may assume r<s<p. Set B=p(s—r)/s(p—r)€
(0,1) so that 1/s=p/p+(1—p)/r. Holder’s inequality and the assumption (3.0)
imply that

3.2 [ f; | f|p]1/1’ =4 [ f;Q | f|p)ﬂ/p [ sz l flr](l—ﬂ)/r
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for each cube Q with 20c Q. Fix a cube RcCQ, and denote by R,=(1—-27")R,
R.=R for v=1,2,.... Next subdivide R, into (2'*'—2)" nonoverlapping con-
gruent closed cubes. Denote the family of these cubes by F,. Next for every v=1, 2, ...
define by induction the collection &, of cubes from the union (J,., F, as follows:

F=F, F,=%U{Q¢F,.1;0c R} for v=1,2,..

Then by geometry we have:

1) Rk = U Q7
QeF,
ii) Revi= U 20,
QEF,
111) XRy 11 = ZQ'E?,‘ X2Q =4" ARy
3 n
. —k— _
) Rewsl = =275 18] = (5] R4,
\%) |Q| = 27 "*+D|R| for Q€F,
R
o= === - -adAanAnAROaAnAnaRnnn
' (GRS RUNEAININININEIRAREGI S0 SEREAVES 1
, AVEEREENENEERE ERENE! !
=1
| B f
' '
1 R2 ) H'
f 1!
. [
i R —45.'
1 1 _:
: =t
! Hefl
H1
! mh
1 5!
' | -—E:
]
| ,// Hi
] "E:
li -
:-‘1 L‘::
.= afl
H =
1H meh
1R= =]
B "‘E:
L
] ‘!I \!l I!I [1 11T IHESBED '!I AREURSIESEL !!l 11 11 l"l

for k=1,2,3,.... The condition (ii) implies 2QcR for all cubes Q€ J,=; %
while for cubes Q€% it follows from v)that [2Q|™"=2""R|~" for n=(1—p)p/r.
Hence by (3.2)
P < ponkn 1— ﬂ p r
S\ =crarziigp=e (fife) (f 17T)"s
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where C depends only on n, p, r, s. Summing over the cubes Q€% and using i)
through iv) we obtain

[o P = crarzin( £ 1) Soes, 10 ([, 117)
=crarrin (£ 1) (Soes, 10 (Zocs, [, /1)
= CP AP0 [](1’z |f|r]'l R, |1—#4ms (ka+1 |f|p)”

= CP 4?26 |R,| [f; Ifl']" (fR

Next we iterate these inequalities to get

£ it =[eraree (f )T [ f 11

k+1+1

I717)"

k

for each 1=0,1,2, ... and k=1,2,3, ..., where

o =23 B ~1/(1—p)
and

N =S kNP~ (k(1=B)+B)/(1—B)*.

Letting /-, we obtain the inequality

ka [f1? = (CPAP6") =D [f; lf |']p/r onkpjr Ynppr(1—p)
R
R

for every cube RCQ and k=1,2,.... Finally, if 6>1 and Q is a cube with
6Qc Q, we apply the last inequality with R=0¢Q and k such that 1-2'"*<
6-1<1—2-% Then QCR,, 2" =(20/(c—1))"" and

I£12)7 = C(n, p, 1, 5) 40— Ds10=9r | T "’ )
o o—1 aQ

This proves Theorem 2.

R emark. The theorem becomes very simple in the case when a “strong” reverse
Holder inequality is assumed, i.e., when the double cube 2Q is replaced by Q in
(3.0). In this case Holder’s inequality leads to an inequality like (3.2) but with the
cube Q in place of 2Q resulting in the following conclusion:

[f‘Q |f|p]1/P = A@-D)s/(p—s)r [J(;Z |f|,}1/r‘
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4. Domains with a chain condition

Definition 1. An open set QCR" is said to be a member of ¥ (o, N), o>1,
N=1, if there exists a covering ¥~ of Q consisting of open cubes such that:

i) Doer Xoo(X¥) = Nyo(x), X€ER™

ii) There is a distinguished cube Q.€¥ (called the central cube) which can be

connected with every cube Q€¥" by a chain of cubes Qy, Qy, ..., Q;=Q from ¥ such
that for each v=0,1, ...,s—1

Q0 C NQ,.

There is a cube R,CR" (this cube does not need be a member of ¥") such that

‘Rv = Qv nQv-i—l and QvUQv+1 = NRv

(compare with [2]).

The classes (¢, N) contain many important types of domains in R", for example,
cubes, balls and John domains [2]. #-domains have no external cusps but they
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may have certain internal cusps. Clearly, if Q€% (g, N), then QCNQ, is bounded.
We will also be concerned with some unbounded domains. We say that Q€%(a, N)
if Q=UJ;2, 2 where Q€% (o, N), 0=1, N=1 and Q,CQ for i=1,2,3,....
The half space

i+1
K= {(x, ... x,); x,< 0}

belongs to %(o, N) for some c=06(n)>1 and N=N(n)=1.

The fundamental property of a domain Q€% (o, N) is that certain local esti-
mates which are valid in cubes contained in @ automatically also hold in Q. The
following theorem illustrates this phenomenon.

Theorem 3. Let 6>1, N=1, O<p<oo, QEF (0, N), wEAL(R"), q=1, M=1
and let u and v be measurable functions defined on Q. Suppose that for each cube
Q with 6QC Q we have

(4.0) Il 0,u = Allvl 5,00,

where du(x)=w(x)dx and A is a constant independent of Q. Then

(4‘1) ”u”:.{),u = B”U”p,ﬂ,y’
where B depends only on n,p, o, N, q, M and A.

The proof is very similar to that in the paper by J. Boman [2]. We give this
argument for the sake of completeness.

Proof. We use the notation and the covering ¥~ described in Definition 1.
We begin with the following properties of the measure du(x)=w(x)dx; since
weAL (R,

4.2 n(NQ) = MN™pu(Q)

for each cube QcR" by (2.5) and
(4.3) max (ﬂ Q., ,U(Qv+1)) = MN"pu(Q,n0,+1)

for the sequence of cubes Q,, Q,,,,v=0,1,...,s—1 described in ii).
Now inequality (4.0) says that for each Q€7" there is a real number a,
such that

“4) lu=aqlly, 0, = Allvlly,00,u-

Hereafter we will use the following elementary inequality |a+b|?=27(|a|?+ |b|?)
for all p=>0. In particular we have

4.5) fQ lu—ag,|” du = 2° ZQE“VfQ lu—aol?du+2" 2gey fQ lag, —aol” du.
The first sum is estimated by (4.4) and the condition i)

@6)  Soer [, lu—aoltdu=4? ey [ lol?du= NA [ olrdp
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The second sum in (4.5) requires deeper arguments to estimate in terms of the inte-

gral [g [v]? dp.
Fix a cube 9=07 and let {Q,}, v=0,1,...,s, be the chain referred to
in ii) and write a,=aqy . We have

(47) |aQo_aQ| = 2::1} 'av_av+1l'
Now by (4.3) and (4.4) we have
_ P — _ r = _ j4 nq —alP
!av av+1| f;vﬂQv+1|av av+ll dﬂ—Za—v,v+12 MN ‘f(‘zu lll aa| d:u
1
=2PAPMN™ Dy vi1—~~ v|?du.
2 ,v+1 ,u(Qa) fo‘Qal I H
Since QcNQ, for a=v, v+1, 0=v=s—1 (see ii)),

' ine. (%)
@y =yl 2o () = 22 AP MN™ Famsivia=55= [ IolPd

and by (4.7)
1 1/p
lag,—aglap(x) =2:2- 2P AMYPN"/? Spcy [me ll’l"dﬂ] xR (X)

for every x€R". Hence
8) Soer [, lag,~aol" du

p
= 22p+1 4P pr NPa+1 ./'R'l du(x).

1 ilp
DReV (mfak [v]”d,u] xR (X)

If 0<p=1 we use the inequality |Z,7,|?’=Z,|t,|?, (4.2) and the condition i) to get

_ P 2p+1 g4p ng+1 #(NR) 4
ZQEVfQ lag,—aql’ dp = 2°P+1 AP MN"*? Jrey ) [ lolPdp

= 22p+1ApM2N2nq+1 ZRe“V/ i ‘vIP dﬂ = 22p+1ApM2N2nq+2 fg vlp dﬂ.

This, (4.5) and (4.6) give the result for O0<p=1. In the case 1=p<-o-o, we use the
following lemma, similar to one of the Stromberg-Torchinsky [12], to estimate
the right hand side of (4.8).

Lemma 4. If ¥ is an arbitrary collection of cubesin R" and A, are non-negative
numbers associated with the cubes Q€¥" and wé€ A5 (R"), du(x)=w(x)dx, then for
l=p<o and N=1 we have

4.9) | Zoer AQXNQ”m R =B, |2 2ev Ao Xollp, k7, >

where B, also depends on n,q, N and M but this is independent of the collection
" and the numbers Ag.

This lemma is proved as in [2] by use of the weighted maximal theorem [3].



276 : T. IwanNiec and C. A. NOLDER

Now, returning from this lemma to (4.8) we get

ey fQ |ag,—aol” du

dp(x).

1 1/p
= 22"+1A”MN”‘1+IB§_/ 2 Rev (W)_‘f“’* |U|pdﬂ] xr(X)

n

Since
2Zrev IR(X) = Drev Aor(X) = Nyo(x),

with the elementary inequality
|ZVoatP = NI | P
we get
Z'Qeyffg lag,—aglP du = 2°2*1 AP MNP?*+"BF ZRE"’/./;R [v|P du
= 2+ 4P MNP+ 1L [ Jo]P dy

by the condition i). This completes the proof of Theorem 3.

5. Basic local estimates for quasiregular mappings

Definition 2. Suppose f: Q—~R" is in the Sobolev space W', (Q). Then f is
said to be K-quasiregular (K-qr), 1=K<oo, if

(3.0) IDfF ()" = KJ;(x)

for almost every x€Q; here Df(x): R"—~R" is the linear tangent map (or the Jacobian
matrix) with norm |Df (x)| and Jacobian determinant J ;(x).

Quasiregular mappings were introduced by Ju. ReSetnjak [11] and O. Martio,
S. Rickman and J. Viisild [8], [9] in the 1960’s. They serve as generalizations of
both holomorphic functions of one complex variable and quasiconformal mappings
in R". When n=2, f is K-qr if and only if it is a holomorphic function. The defini-
tion above originates from an analytic characterization of K-quasiconformal maps
due to F. W. Gehring [4].

The components f1, f2 ..., f* of a K-qr map are related by some algebraic
inequalities. One of them is the inequality

5.D IVFi(x)| = K|V (%)

for almost every x€ Q and 7, j=1, 2, ..., n. Infact, forevery k=1, 2, ..., n, |Vf*(x)|=
IDf(x)| and by Hadamard inequality [V/"||V/?|...|Vf"|=J,. Hence

IV IT gren IS

VFi =
V= =

for 7,j=1,2,...,n.

. Df|" . .
v =2 v = k1w
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If f=u+iv isanalytic, then u and v satisfy the Cauchy-Riemann system u,=v,,
v,=—u, and the gradients Vu and Vv are perpendicular vectors of equal length.
The above gradient estimates partially explain the result of Hardy and Littlewood.
To eliminate the first derivatives in the estimates of the components of a quasiregular
mapping we will use the following general estimation of the Jacobian determinant:

(5.2 [, 0" I ) dx| = n ([ 17Vl )" ([, loDrIm)" 0.

This holds for every mapping f=(f%, ..., f") from the space W', (Q), for each
Jj=1,2, ..., n and for each test function @€C; (), ¢=0. We sketch the proof of
(5.2) below. If f€C=(Q), then by Stokes’ formula and Hélder’s inequality we have

O"Jrdx = df A . AdfITIAQ AT AT A LA S
=d(@"fIdf* A ... AAfFTIAAITEA L AdS™)

—fIAfr A o AdfITIAd AT A LA™
Hence

[, e = [ 1F1IVe" DI = n [ 1/7VellpDf "

=n(f 177Vol )" ([, loDsI")" "

The general case then follows by an approximation argument.
Now if fis K-qr, then for each ¢€C;° (), ¢=0, we have

n)l/in _ i n)l/n
(f, loDrr )" = nk ([, 1/ Vol")
for j=1,2,...,n.
Next we apply this inequality to a test function @€C;’(6Q), ¢=0, @(x)=1
on Q and
_ C(n)
|V(p(x)| = (O'_].)dlamQ )

where 6=>1 and Q is a cube with dQC Q; clearly such a function exists. We then
get

53) (f, sy = SRS (f L)

o—1
for j=1,2, ..., n. Finally by the Poincaré-Sobolev inequality (2.2)

G4 (f 1) = alf, e "l)ll"éng#[f,g )

for i,j=1,2,...,n, p=0 and the cube Q with ¢QC Q. This inequality with p>n,
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o=2 and i=j reduces to the “weak” reverse Holder inequality
5.5 iPP)? = 4C(n, ) K i
(55 (S, 7F) (DK (f, 17T)

for j=1,2,...,n and each cube Q with 2Q0c Q.
Now we are ready to prove the following local results.

Proposition 1. Let f=(f1, f% ...,f") beK-gr in Q and let 6>1, O0<p<oo,
O<r<oo. Then

(5.6) [f;z |fj|p]1/17 = B, [‘f;Q |fj|,-]1/r

and
5.7 {f‘Q Ifi_félplllp =B, []iQ |fj|,]1/r

for i,j=1,2,....,n and cubes Q with cQCQ. Here the constants B,=B,(0)
and B,=B,(c) depend only on o, n,p,r,and K.

Proof. We may assume without loss of generality that p>n. Inequality (5.6)
follows from (5.5) and Theorem 2. To get (5.7) we apply (5.4) with the factor Vo
in place of ¢ and after this we apply (5.6) with p=n, Vo in place of ¢ and with
the cube VoQ in place of Q. We then obtain

(f, I —ser)™ = ———C(”V’;”TK (fz, 7)™

c(n,p)B,(Vo)Vo K iy
Vo—1 [f;Q |f|]l'

=

This proves (5.7).
The weighted version of (5.7) reads as follows.

Proposition 2. If f=(f%, f2 ..., f") is K-qr in Q and if we A% (R"), g=>1,
M=1, du(x)=w(x)dx, then

(58 1704 = Bs(@)| fllp,00,

for i,j=1,2,...,n, O<p<woo, 0=1 and each cube Q with 6QC Q. Here B,(0)
depends also on n,p,q, M and K.

Proof. Since w€A% (R"), we have the reverse Holder inequality (2.6) with
some f=>1. By (5.7) we get

[f‘Q Ifi_fQilpw]l/P = [f‘Q Wp]llﬂp [f; Ifi_fQilpp/(p_n](ﬁ—l)/ﬁp

=GB (f W) (f 17 = G BIQIT P R@YP (f1F P
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On the other hand, by Holder’s inequality and the A4-condition (2.4) we have

{f;Q |fj|p/q]q/p = (f;c |fi|? w)llp [f;Q wl/(l—q))(q—l)lp

=M (f w) T (f 1) = M 0P @) a0,

Thus we obtain (5.8) with B,=CLY?B, M*/Pg"".

As solutions of certain equations of elliptic type, the components of a K-qr
map have many properties similar to those of harmonic functions. We conclude
this section with one such result.

Proposition 3. Let f be K-qr in a cube Q centered at x,. Then for each r=0
(5.9) x))| = By(n, 1, K .
Gl = Ba(n,rs K) ( f 11T)

Proof. We will use the following form of Gehring’s well-known L? -result (see
[1], Theorem 5.1, p. 285): There exists an exponent s=s(n, K)=>n such that

(5.10) IDf lr,s = C(n, s, K) (dist (F, 9Q))"*~ | Df llq,n

for every compact Fc Q. Now by Sobolev’s inequality (2.3), (5.10) and (5.3), for
every cube R centered at x, with 4RCQ we have

Gl = G, [[ fR \f I“]l’s+diam R [ fR |Df|$]1/s]
= COous O [( f ) +( [, 121)"]
s, ) [( f 1P+ (171"
(fR Ifls]”s =B, [fm mr]l/'
(f )" =B(f )

All together these inequalities imply (5.9) with Q=4R.

[IA

Finally, by (5.6),

and

6. Global estimates and their consequences

If we apply Proposition 2 and Theorem 3 to f—a we obtain

Theorem 4. Let Q€F (o, N), 0<p<oo and weAYR"). If f=(f% f2 ... ™)
is K-qr in Q, then

(6.0) 1F1% 2.n = 4p1F 13 000
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SJor i,j=1,2,...,n, where du(x)=w(x)dx and A, depends also on n,K, o, N,q
and M.
Since cubes are in (g, N), this theorem implies

Corollary 1. Let Q be an arbitrary open set in R". If f=(fY,...,f") is
K-gr in Q and w€ A} (R"), then
(6.1 M (f (X)) = 4,MF(f7, w)(x)
Sor all x€Q, O<p<e and i,j=1,2,...,n. A, is the constant that appears in
(6.0) when Q is a cube. Thus A, depends on n,K,q and M but not on Q.

Corollary 2. With the same assumptions as in Corollary 1 we have

(6.2) /1Y = Aall RN

for i,j=1,2,...,n, where A;=A,(n, K, q, M) is independent of the domain Q.
As concerns unbounded domains, we have the following extension of Theorem 4
which follows from Lemma 1.

Corollary 3. Let Q¢% (o, N) and wecAdAl,(R"). If f=(/%f%....f" is
K-gr in Q such that f'€L?(Q, n), O<p<oo, for some 1=j=n, then for each
i=1,2,...,n
(6.3) 1/ o = 4,1 FlEau

In contrast to this result we have

Example. Let QCR? be the half strip:

Q={z=x+iy; l <x <o, 0<y<1}
Consider the analytic function f(z)=logz=log |z|+i0 in Q. For p=1

fﬂ 0P dxdy = f!2 (tan 0)? dx dy =

p*-1
while
fn |log |z!|" dxdy = ff (log H)P dt = oo,

Corollary 4. Let Q=g() or g(B") where B" is the unit ball in R" and
g: R"—>R" is a quasiconformal mapping. If f=(f%, ...,f") is K-qr in Q, then

6.4) 171 o = A\ FlE v
Jor O<p<eoo, i,j=1,2,...,n, where A, depends on n, K and the dilatation of g.

This corollary is a direct consequence of the previous weighted estimates by
change of variables x=g(x"). Recall that J,(x") belongs to the Muckenhoupt
class A% (R") for some g=1 and M=1 depending only on » and the dilatation
of g. As a consequence of the study of the weighted inequalities for general quasi-
regular mappings we also get the following generalization of Theorem 1.
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Corollary 5. If f=u+iv is analytic in a quasidisk DCR?* then
(6.5) lullfp = A,(D)Iv]F b

Jor every O<p<-oo,
Finally, we return to inequality (6.3) with Q the upper-half space K and
du(x)=dx. Then it is easy to see that the constants a,, a,, ..., a, for which
(6.6) 1ff=ail 5,5 = A, (n, K) | 5,5
are uniquely determined. Indeed, the vector a=(a,, a,, ..., a,) is the non-tangential

limit of f at infinity. More precisely,

Proposition 4. Let f=(f f% ..., f") be K-qr in K. Assume that one of
the components, say f’,1=j=n, belongs to L*(K), O<p<oo. Then there is a
constant vector a=f (o) such that f—f(e)eL?(K) and

(6.7) I/ =f()lp,xc = A4, (1, KISl p,xc
Moreover,
(6.8) sup X2 | f(x) =1 ()| = ¢, (n, K) | Flp, ¢

Proof. The statement (6.7) follows from (6.6). To prove (6.8) fix a point
x=(X1, X3, ..., X,)EC and consider the cube QcCH centered at x and with
sidelength 2x,=0. Then by Proposition 3 applied to the map f—f(=) we get

FQ—~f (= B[ f, Lf=f() = Ba@x)™" /(=)

|p,K

= 27"P By A, (n, K)|| f7]lp, x5 "IP.
This proves (6.8).
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