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1. Introduction

Let f be a Jordan curve in the extended plane i and let D and D* beits com-
plementary domains. We say that f is a K-quasicircle if it is the image curve of a
circle under a K-quasiconformal (abbreviated: K-qc) mapping of i onto itself.

A sense-reversing K-qc mapping iD of D onto D* whose extension on the clo-

sure D keeps the points of f fixed, is called a K-qc reflection in f' Obviously @

can be extended to a sense-reversing K-qc selfmapping of i which is defined as

@-r in D*. A Jordan curve .f admits a K-qc reflection if and only if it is a quasi-

circle; cf. [10], [9].-- 
Various definitions and many interesting properties of quasicircles and quasi-

disks (i.e., Jordan domains bounded by a quasicircle) are presented in [3].
For a fixed K>l sufficiently large all K-qc reflections in a quasicircle l- form

a non-empty normal family. Consequently, there exists an extremal qc reflection g
in i-, i.e., a reflection whose maximal dilatation is a minimum.

In Section 2 we introduce (Definition 1) the notion of conjugate holomorphic

eigenfunctions (abbreviated: CHE), which leads to a generalization of the Fredholm

eigenvalues of a Jordan curve f (Definition 2). An additional assumption of the

local univalence of CHE permits us to construct in Section 3 explici:ly in terms of
CHE and the associated eigenvalue )">l a K'qc reffection E in f with K:
( +l)lQ,-l) which is unique extremal, and the eigenvalue l shows to be the smallest

one. In case of classical Fredholm eigenvalues and univalent CHE our construction

implies Theorem 7 in [8].
The results of this paper were presented at a Colloquium in Halle (GDR) on

September 29,1983 and also at the Oberwolfach Conference on February 15, 1984.
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2. Conjugate holomorphic eigenfunctions

In what follows we assume that f is a Jordan curve in the finite plane C and

-€D*. Many important problems in conformal mappings and the potential theory
can be reduced to the solution of a linear integral equation of the Fredholm type
with the Neumann kernel (or its transposition):

where 010n, denotes the derivative along the interior normal of I at the point (.
For details see e.g. [2], [5], [2].

If i-€CB and x(t) denotes the curvature of f, then putting 2nk(t,t):x(y)
we obtain a kernel continuously differentiable w.r.t. the arc length s on l-. The
eigenvalues of k, i.e., the real numbers 1 such that the homogeneous equation

(2.2) p(t)

has a non-trivial real-valued solution p, are called Fredholm eigenvalues of f.
If z(0 is real-valued and continuously differentiable w.r.t. s on ,l-€C3, then the

integral

k((, t):-1ålos l(- tl, C, t€tr,
7T Onf

(2.r)

(2.4)

(2.3)

represents in D and D* holomorphic functions / and F, respectively, which for ob-
vious reasons may be called conjugate holomorphic potentials of double layer with
density t. The principal value p.v. 1(r) of (2.3) at t€i- is then a continuous function
a(t)+iBQ) of t on f , and by the well-known Privalov theorem on Cauchy type
integrals (cf. ta) holomorphic potentials/ -F of double layer have continuous exten-
sions on D and D-, respectively, which satisfy on l-

"f(o - d,(0+ r(o+ip(o, F(o - a(o- r(o+ip(o.
Following Schiffer [4] we may consider holomorphic potentials of double layer

with density r:lp, where p is an eigenfunction associated with the eigenvalue,l.
In our case I is continuously differentiable w.r.t. s. This follows from the fact that
#((G)) is a finite linear combination of D(s, to; ),"\, wherc D is Fredholm's first
minor; cf. [ 1], p. 43, and l5l, p. 235. Since for l€l- we have

Re /(r) -
and consequently

(2.s)

r(Ok((, t) ds - t) ds - p(t)

p.v. I(0 - p(o+ iv(o, ((r,
the equations (2.4) take the form

1I , pT)k((,,f,

(2.6) f(O - (1 +^)p(O*iv(0, F(0 - (1 -1)p(O*iv(O,
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where trr, v are real-valued and continuous on i-. The relations (2.6) can be written
in the following concise form:

(2.7)

where

(2.8)

If (2.6) holds,

(2.e)

"f6 - L" F(O, F(O - l".f{O,

L(w) - (1 -1)-'(w+1w), l(w) - (1 +1)-'(w-^w) - L-'(w).

then

tfg- F(OlllF(O+J gtr - 1_ coilst., Kr.

Conversely, tf f, F are holomorphic in D and D*, respectively, F(-):0 and (2.6)

holds for some real .[, l),1>1, then ). is a Fredholm eigenvalue of a sufficiently

smooth f .In fact, both p and v can be recovered from the boundary values by means

of (2.6) and then the formula (2.3) determines / and F. This also results from Theo-
rem 5 in [6].

In [a] Schiffer was concerned with the derivatives of holomorphic potentials

of double layer rather than the potentials themselves. This resulied in the absence

of the condition F(-):6 and in dropping ,t:1 as an eigenvalue; cf. p. ll91
in Ia].

The facts just mentioned may serve as a justification for the following definitions.

Definition l. We call (.f, F) a pair of conjugate holomorphic eigenfmctions
(abbreviated: CHE) ofa Jordan curue I inC iff and F are non-constant functions
holomorphic in the domains D and D* u {-}, respectiuely, that satisfy the Jbllowing
condilions:

(i) f and F haue extensions to the closures of the respecth;e domains which

are continuous in the spherical metric and statisfy the boundary condition (2.7) on f ;

(ii) If h and h* map conformally the unit disk / onto D and D*, respectiuely,

then for any w€0/ there exists a neighborhood Nn of w such that both f oh and Foh*

are uniualent in Nna/. Moreouer, f oh and Foh* belong to HL(/\.

Definition 2. If the functions f, F satisfy the conditians of Definitian l,
then the real constant L determined by Q.9) and the real-ualued function

p(o-+lf@+F1611, C€r,(2.1,0)

are called a Fredholm eigenualue and a Fredholm eigenfunction of f associated

with )., respectiuely.
Note that no regularity condiiions are imposed on i- in the above-stated defini-

tions. In what follows we shall use the term classical Fredholm eigenvalue, whenever

Fredholm eigenvalues in the usual sense appear. If F(-):g and I is sufficiently
smooth, then ,1 satisfying the assumptions of Definition 2 is, as mentioned above,

a classical eigenvalue of f.
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The assumption (ii) in the Definition 1 implies finite valence of the same order
for both/and F. Moreover, due to the boundary relation (2.7) the Riemann surfaces
of both CHE can be welded to a punctured sphere.

Most properties of Fredholm eigenvalues in the sense of Definition 2 arc the
same as in the classical case and the proofs are even much simpler in many cases.

Here we list some of these properties whose proofs will be published in a separate
paper to appear in the Arnales Polonici Mathematici. The references that follow
a property are related to the classical case.

(i) There is no Jordan curve with Fredholm eigenvalue 1, or - 1.

(iD If ,t is a Fredholm eigenvalue of f, so is -1.
(iii) All Fredholm eigenvalues of i- satisfy l,tl=1.
(iv) If å is a Möbius transformation and the Jordan curves f , f ,:h14 6o

not contain *, then the sets of eigenvalues of f and .f, coincide; cf. [l4], p. 1195.

(v) If ,t=1 and one of the Dirichlet integral" II"lf'lr, IIr.lF'12 is finite,
the other. one is also finite and we have

(2.11) ( +D II,.(),-D I I "
lf'12 - lF'lr;

cf. formula (25), p. II93 in [ 4].
(ui) If f admits K-qc reflection, then Ahlfors's inequality

(2.r2) 1> (K+L)|(JK- t)

holds for all positive eigenvalues 1
integral (cf. tll).

There ate relatively few Jordan
known. We give two examples.

corresponding to cHE with finite Dirichlet

curves for which Fredholm eigenvalues are

Example 1. Let E be the ellipse (:ete+ke-io, O=0=2n, 0<k<1. Any
eigenvalue of Z'has the form 'Tk-", n:1,2,... (cf.[4]). It is easily seen that

f(z) : (k - l)-12, F (Z) : (2k)-tlz - (22 - 4k)Lt 2l are CHE associated with )"r: 1 ps.

Let P,(z) be the sequence of polynomials defined as follows:

Pt(z): z, P2(z): z2-2k, P,+t(z): zPn(z\-kP,-t(z).

One can verify that f,(z):(k'-l)-,P,(z), F"(Q:(F(Z))' are CHE associated

with ),,:75-o.

Example 2. Let I be a circular wedge symmetric w.r.t. the real axis with
vertices - 1, 1 and interior angles &n, 0=a= 1. The functions f(z):
(l/a) log (l+z)lT-z), F(z):(UQ-a))log (z-l\l@+t\ are cHE associated
with the eigenvalue ,1:(l -a;-t.
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3. Construction of the extremal quasiconformal reflection

We shall now prove the following

Theorem. Let f be a Jordan curue in the finite plane C. Suppose conjugate

holomorphic eigenfunctions, .f, F associated with a Fredholm eigenualue )">I of I
are locally uniualent in D and D*, respectiuely. Then f admits a K'qc reflection

ep with y:(),*Dl(1-l) which satisfies the relation

(3.1) FoE - lo.f in D, -foE - LoF in D*,

where I and L are defined by (2.8). If I I "lf'l'=*, 
then E is unique extremal qnd

)" is the smallest eigenoalue carresponding to CHE with finite Dirichlet integrals.

Proof. By out assumptions the functions f, F map conformally simply connect-

ed domains D, D* onto simply connected Riemann surfaces S, S* over the w-plane,

with no branch points. The relation (2.7) induces a homeomorphic correspondence

between their boundary curves. The affine mapping / carries S onto a homeomorphic
Riemann surface 

^9 
whose projection on the w-plane as well as the boundary curve

are the sanre as those of S* in view of Q.7). By the property (ii) of Definition 1 and

the argument principle each point u of the projection has the same number of pre-

images in both ,5 and S*. We now establish a correspondence between the points of
,9 and S* with the same projection p so as to obtain a resulting lifted mapping g
of D onto D* which is injective and satisfies FoE:167 in D. To this end take

an arbitrary path y in D joining rcf b zQD. lf w1:fQ) and w:l(wt), then

i:l"fb) is a path joining in the common projection of ^9 and S* the points

F($:l"f(O and W:F(Q, Z:E@\ to be determined. Due to the local uni-
valence of F there exists a unique analytic continuation of F-1 along ! with the

initial value ( which determines F-L(w):/:Ek) n a unique manner. In fact,
if the end-points 6, z of y are fixed and 7 varies in D in a continuous mannero the
resulting branch of .F-I at w remains unchanged, and is thus independent of a partic-

ular choice of y. The same argriment is applied if now ( is changing on -f while z is

fixed. Therefore Z does not depend on ( either.
The mapping E: D*D* is well-defined and satisfies E:F-rolof locally

in D, so it is continuous. Since E has a continuous extension on ,f that satisfies

E(A:L (€f , ft must be a homeomorphism by the argument principle. Thus g is
a K-qc reflection in f with y:().*L)l[-l), which means that.l' is a K-quasi-
circle. The K-qc reflection E can be extended to a sense-reversing K-qc selfmapping

of i which has the form f-LoLoF locally in D*. Thus g is the homeomorphic
solution of the Beltrami type equation

(3.2) q? :[-011V'@ET'' z€D'

ez I 1t1t;r'p)lrk), z€D*,

that keeps the points off fixed.



We now prove that E is the unique extremal qc reflection in f as soon as I I ,lf'l'
is finite. Let g be a conformal mapping of D onto the unit disk / and let G be a
conformal mapping of D* onto AZ: /*. Let o denote the reflection n AÅ. ff
@ is any reflection in .f and h:oocoEoe-l, then H:ooGo<Dog-l belongs

to the class Qu of qc selfmappings of / with fixed boundary values determined by

å and studied by Reich and Strebel; cf. e.g. [3]. Obviously the maximal dilatations

of @ and H arc equaL Complex dilatation q(w) of å satisfies

q(w) : -+(#)l(#), Z :g-'(w)
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Putting {r (w):lif' (z)lg' Q)l', z:g-t(w), we obtain p(w):(UDT! @)lbL @)l so

å is a Teichmtiller mapping for which LI ^lrttl: I I "lf 
'l'=-' Therefore, according

to Strebel U51, h and also g are unique extremal.

Suppose now that there exists an eigenvalue Ir with l<).r<1, whete f, F arc
CHE associated with,1 and satisfy our assumptions. Since .f admits the K-qc reflec-

tion g just deqcribed with y:()"-lDl?'- 1), we have 1:(K+l)1(,K- l) and hence

1t=1 by Q.l2), which is a contradiction. This ends the proof.

Corollary l. There is an obuious connection between qc reflections @ in f
(with transfinite didmetq d(f):l) andJ'tmctions of thefamiliar class Z(x); cf.l8l.
If h(Z(x), then hoooh-L is a qc reflection in f :h(0Å). Conuersely, giuen

conformal mapptng h of / onto the inside of a Jordan curae I and a qc reflection

itr in f , a qc extension of h on /* is gium by itrohoo.

Corolla ry 2. If one of the CHE f, F is unioalent, the other one is alsa uniaalent

and the corresponding eigenualue )u>l is the smallest one. Moreouer, E- F-7olof
in D, E:f-LoLoF in D*.

This result is essentially equivalent to Theorem 7 in [8], in view of Corollary l.
We end by giving the following

Example 3. Consider the analytic Jordan curve

l: ( : eie(l+ke-si\21s, 0 = 0 < 2n,

where 0<k<1. Ktitrnau has shown in [7] that ).>llk, where I is the smallest

eigenvalue of f. However by Corollary I and [7], the extremal reflection in .f has

maximal dilatation equal to (l+k)10-k)>()'-ll\l[-l). Hence by the Theorem,
locally univalent CHE associated with i- do not exist. Thus even for an analytic
Jordan curve with smallest eigenvalue )'>1, it is not always possible to construct
a K-quasiconformal reflection in i- with K:Q'+l\lQ,-l).
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