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QUASICONFORMAL MAPPINGS
WITHOUT BOUNDARY EXTENSIONS

T. KUUSALO

1. According to the classical theorem of C. Carathéodory [1] and of W. F.
Osgood and E. H. Taylor [6], a conformal mapping f: D—~D’" between two Jordan
domains D and D’ in the complex plane C always has a boundary extension, i.e.
there is a homeomorphism f*: D—~D’ of the respective closed domains such that
f*|p=f Asit is well known, the theorem holds for planar quasiconformal mappings
as well. In fact, G. Faber’s proof for conformal mappings carries over to the quasi-
conformal case with minor modifications only ([3], cf. also R. Courant [2]; Lehto-
Virtanen [5], pp. 44—46). J. Viisild proved in [7] the existence of a boundary exten-
sion for all quasiconformal mappings f:D—D’ between n-dimensional Jordan
domains D, D’CR" quasiconformally equivalent to the unit ball B"CR", n=2
(also in Viisild [8], pp. 51—67). But unlike the planar case, even a Jordan domain
DcR" homeomorphic to the unit ball B” is not necessarily quasiconformally equiv-
alent to B" when n=3 (Gehring-V4iisild [4]). We shall give below an example
which shows that for arbitrary Jordan domains D, D’CR", n=3, a quasiconformal
mapping f: D—~D’ does not always have a boundary extension.
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2. Let I be the spiral curve in the closed unit disc B2 C described by
F(V) — re(ioz/Z)(r—r-l)

for 0=r=1, a=0 a constant. If g=0(z)=0(z, 0) is the hyperbolic distance of
z€ B? from the origin with respect to the hyperbolic length element

do=2(1—|z[»7]dz|,

and O=arg (z) the argument of z, the trace of I' can also be given as

F={z€1§2:0=— Oégé—l—w}.
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The curve I' has Ayperbolic curvature
(0) = 14+a~2tanh*(p)
2@ = tanh (o)[1+a *tanh® ()2

at the parameter value r=tanh (¢/2). Now the boundary of the domain

o T
G= {ZEC. 0<|z|<1, |9+m‘ < -2—}

consists of a circular arc together with two spirals I, = £iI" (cf. Figure 1; here as
well as in all subsequent drawings «=2). Because the closed domain G lies to the
right of the boundary arc I',, and the hyperbolic curvature of I' | is positive, we
can define in G a hyperbolic orthogonal projection p: G—I', such that for all z€G
the hyperbolic arc zp(z)cG is perpendicular to I', and that o(z, p(2)) is the
hyperbolic distance of z from I,

o(5 p(?) = 0z ) = min oz ).
The projection p is easily seen to be infinitely differentiable in G. Furthermore, the
positive curvature of I', implies that p is locally strictly contractive in G,

e(p(2), p(20) < e(z, zo)
for all z5z, in a sufficiently small neighbourhood of z,€G.
If T (o) is a primitive of
(1+02 tanh—2(p))"2,

we can define by t(z)=T(¢(2)), z€T',, a hyperbolic length scale on T, such that

0+ (215 2) = |1(z) —1(2)]
gives the hyperbolic length of the subarc of I', with endpoints z;,z,€I,. As
7(0)= — o, 7(i)=+ o, the spiral I', is infinitely long in both directions. We extend
7 to a function 7: G—~R by setting

) 2(2) = 1(p(2))
for arbitrary z€G.

3. With respect to the (quasi) hyperbolic length element
do = ?—, r = (xE+x2)1/2

in R3=R3U{e} the x;-axis forms the circle at infinity, and a hyperbolic
isometry identifying the closed unit disc B2cC with the closed half-plane
{x€R®: x,=0, x,=0} can be defined by

1—-2z

xX1+ixs = h(z) = R

If we rotate the image /#(G) of G around the x;-axis, we get a closed Jordan domain
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(a sectorial cross cut in Figure 2)

_: 3. - « ‘ﬁl = = oo}
b {xER‘I'/“’sinh(a) =5, 0=o=+ey,
where 1 o
= = T X
l/’_l/’(x)_"“lrg[1+r+ix3)’
and

g=o0(x)=o0(x, SY
is the hyperbolic distance of x€R® from the unit circle S* of the plane R*=
{x€R3: x;=0}. The boundary of D consists of two topological discs

o

_— = O=0=+-
sinh (o) ’ o=+ }

E:t = {XER3: w—l—

Figure 1
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glued together along the circle S'=FE, nE_. The function 7 extends by rotation to
a parameter function t: D—~R suchthat t~1(—e)=S" and t~(+)={(0, 0, —1)}.
As in the preceding paragraph, we can define in the whole domain D outside the
Xg-axis a locally contractive hyperbolic orthogonal projection p into the lower half-
boundary E such that t(x)=t(p(x)) for all x in D outside the x;-axis.

If we let S'CE, collapse to a point and set

@ (x) = arg (x; +ix,)
for x€R3, we see that
e(x) — et(x)+i(p(x)

defines an isometry and thus a conformal mapping of E, onto the Riemann sphere
C with respect to the hyperbolic length element do in E_ and the logarithmic length
element

dv = |z|71|dz|

in C, so that 8(5)=0 and 6(0,0, —1)=oe.

Figure 2
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Using the complex notation
x = ({, x3) = (x;+ixs, X3)€E R,
ax = (al, |a| x;)€ R®
for x€R®, acC, we define for any real 1 the mapping f;: D\S*—~D\S* by

f1(x) = exp (idt(x))x.

The restriction f,: E,N\S*~E,\S" is quasiconformal for all J€R, its symmetrized
derivative having the eigenvalues

¢ ().) — (1 +12/2+(/12+l4/4)1/2)1/2,
(M) = @)™
at all nonsingular points of E, . Now f, preserves the equidistance surfaces S,=
{x€D:o(x, E,)=t}, t=0, in D, and because the projection p is locally contractive,
we see, using appropriate local coordinates, that the eigenvalues ¢;(x, )=c,(x, )=
cg(x, 2)=0 of the symmetrized derivative of f, satisfy

e (x, ) = cs(x, )7 = i (D),
co(x, M) =1
at all points x of D outside the x;-axis. Thus f;: D—~D is quasiconformal with
dilatations

K(f) = K,(f) = Ki(f) = a(W)*

Because t(x)—~—< as x-S, we have

C(f, b) =5

for the cluster set at any boundary point 5€ S'cdD when A70. Thus in this case
the quasiconformal mapping f,: D—~D does not have any boundary extension. To
visualize the situation we have depicted in Figure 3 the image of I'’=A(I')n D when
2=0.25.

We could also choose a function A(zr) with a uniformly bounded derivative
X' (7) converging to 0 when t——<o but such that A(t)——e at the same time,
and define f: D—~D by setting

f(x) = exp[i(Ao7)(x)]x

for all x€D. Then also f:D-D would be a quasiconformal mapping having
C(f,b)=S" as cluster set at all b€ S* but with the local maximal dilatation K(x, f)
approaching one when x approaches S*.

4. Remarks. (i) The example above was chosen because it allows a fairly
simple and explicit representation. The Jordan domain D has also quite nice symmetry
properties, e.g. the Mdbius transformation generated by the successive reflections
in the plane R? and in the unit sphere S2CR* maps D conformally onto its exterior.
The boundary dD=E, UE_ is quasiconformally collared with the exception of the
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Figure 3

circle S'=E, nE_. In fact, the mapping ¥ defined by

_ et(x)c
Fn) = (m cosho(x, E5)’

—e™tanho(x, E +)] €R®

for x=(¢, x;)¢D maps D homeomorphically onto a domain D* in the lower half-
space x;<0 bounded by the plane R2=W(E,) and by the quasiconformal sphere
E*=Y(E_), the singular part S'=E,nE_ of the boundary collapsing onto the
origin, ¥ (SY)={0} (cf. Figure 4). The mapping ¥ preserves ¢(x)=arg({), and
o(¥(x), R®)=0(x, E,) for all xéD. In the direction of the line @(x)=¢(xy),
o(x, E,)=0(xy, E,) the mapping ¥ has at x,€D the contraction coefficient

%(X0) = [1 +X(0'(P (xo))) tanh o (x,, E+)] o

Because we have o(x, E_)~a~'no® for the width of D and x(s)~oc~ for the
hyperbolic curvature when x approaches S* on E , we see that x is uniformly bound-
ed away from O in D, so that also the mapping ¥:D-—D* is quasiconformal.
When a=2, x(x)=>1/3 in the whole domain D, so that in this case K(¥)<09.
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R = y(E,)

Figure 4

(ii) We can make the same construction in R", n>3, using the (quasi)hyper-
bolic length element

do = (x3+...+x2_))"Y2ds

and defining as above an n-dimensional Jordan domain

<%, 0<a§+°o}

o

= R": —_—

D {xe ’l/, + sinh (o)

such that the boundary of D, contains the unit sphere S™~* of the hyperplane R"~'=

{xcR": x,=0}CR". Only the rotations require a somewhat more careful consider-

ation than before. To this purpose we choose antisymmetric linear endomorphisms
A;, ..., A, of R"~' such that the orbit of

o = Jf’=1 exp (t4,)€SO(n—1) < SO(n)

for t—+o is dense in the orthogonal group SO(n—1) of R"~. Let t: D,~R
be the parameter function for D,. For all real A we can now define by

fix) =001 (x)x
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a quasiconformal mapping f,: D,—~D, with
K(f) = ci(a)',
a= 2;'1—_-1 “Aj”
Furthermore, for all ¢ S"~2coD,
C(f;, b)=8""2

where

when only A50.
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