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1. According to the classical theorem of C. Carathdodory [] and of W. F.
Osgood and E. H. Taylor [6], a conformal mapping f: D*D' between two Jordan

domains D and D' i! the complex plane C always llras a boundary extension, i.e.

there is a homeomorphism f*:DtD' of the respective closed domains suchthat

f *lo:f. As it is well known, the theorem holds for planar quasiconformal mappings

as well. ln fact, G. Faber's proof for conformal mappings carries over to the quasi-

conformal case with minor modifications only ([3], cf. also R. Courant [2]; Lehto-
Virtanen [5], pp. 44-46} J. Väisälä proved in [7] the existence of a boundary exten-

sion for all quasiconformal mappings f:D*D' between n-dimensional Jordan

domains D,D'cR" quasiconformally equivalent to the unit ball B"cx,, n>2
(also in Väisälä [8], pp. 5l-67). But unlike the planar case, even a Jordan domain
DcR" homeomorphic to the unit ball .Bn is notnecessarilyquasiconformallyequiv-
alent to ,Bo when n>3 (Gehring-Väisälä [4]). Wp shall give below an example

which shows thatfor arbitrary Jordan domains D,D'cRn, n-3, a quasiconformal

mapptng f: D-D' does not always haue a boundary extension.
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2. Let f be the spiral curve in the closed unit disc B2cC described by

f (r) : re(dl2)(t-r-r)

for 0<r<1, c>0 a constant. If g:q(z): ee,O) is the hyperbolic distance of
z(Ez ftom the origin with respect to the hyperbolic length element

do : 2(l-lzlz)-tldzl,

and 0:arg(z) the argument of z,thetrace of f can also be given as

(_r - lzcBz:0 --#m, 0=s=+..) .
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The curve l- has hyperbolic curuature

x@) -
L + a-z tanh* (s)

tanh (e) [1 t a-2 tanh' (g)]t/'

at the parameter value r =tanh (el2). Now the bound aty of the domain

G - {rec:0 < lzl - t, lr*"#Crl=+l
consists of a circular arc together with two spirals f x: Xif (cf. Figure 1; here as

well as in all subsequent drawinSs u:2). Because the closed domain G lies to the
right of the boundary arc I *, and the hyperbolic curvature of f * is positive, we
can define n G ahyperbolic orthogonalprojection p:G*l* suchthat for all z(G
the hyperbolic arc zp(z)cG is perpendicular to f* and that p(2, p(z)) is the
hyperbolic distance of z from f *,

e(", p(")): Q(r,I*) : p1ip.eQ, z').

The projection p is easily seen to be infinitely differentiable in G. Furthermore, the
positive curvature of f * implies that p is locally strictly contractiue in G,

s(pk), pk)) = Q(r, zo)

for all z*zs in a sufficiently small neighbourhood of zo(G.
If Z(p) is a primitive of

(t+u2 tanh-2(g))r/2,

we can define by IQ):T(SQ)), z€f *, a hyperbolic length scale on f* such that

e * (4, zr) : lt (zr) - t (22)l

gives the hyperbolic length of the subarc of f* with endpoints zr, z2€f *. As
r(0): - -, t(i): a -, the spiral ,l- * is infinitely long in both directions. We extend
z to a function z: G*.8 by setting

r(z) : 
"(P("))for arbitrary z(G.

3. With respect to the (quasi) hyperbolic length element

-dsfl6 _ Z, r: (xlaxz)uz

in E:Ruu{-} the xr-axis forms the circle at infinity, and a hyperbolic
isometry identifying the closed unit disc BzcC with the closed half-plane

{xeF: xz:o,xr=0} can be defined by
l- z

x1* ixs _ h(r)

lf we rotate the image h(G) of G around the

l+ z
xB -axis, we get a closed Jordan domain
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(a sectorial cross cut in Figure 2)

D -{".R8: l**;i"rc)-l= t, o = 6< +--} ,

where:

and

is the

{x€R3:

tl':t@):*t(ffi),
o : o(x): o(x, 51)

hyperbotic distance of x€Rs from the unit circle 51 of the plane R2:
xa:0). The boundary of D consists of two topological discs

(r* : {x€n': /+ ri#(o) : t+, o=o=+-}

Figure 1
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glued together along the circle ,Sr:E+ nE-. The function z extends by rotation to
a parameter function r : D *F such that r -1( - -) : S1 and z-1( * -) : {(0, 0, - l)}.
As in the preceding paragraph, we can define in the whole domain D outside the
xr-axis a locally contractiue hyperbolic orthogonal projection p into the lower half-
boundary -E* such that r(x):r(p(x)) for all x in D outside the xr-axis.

If we let SrcE* collapse to a point and set

for x€ R3, we see that
q(x) - arg (xt+ ixr)

0 (x) : gt(x)+itP(x\

defines an isometry and thus a conformal mapptng of .E* onto the Riemann sphere

d witn respect to the hyperbolic length element do in E* andthe logarithmic length

element
4p: lzl-Lldzl

in e,sothat g(S1):0 and 0(0,0, -l):-.

Figure 2
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Using the complex notation

x: ((, xr) : (xtlixz,4)€R3,

ax: (a(,lalxg)€Rg

for x€.R3, a(C, we define for any real,t the mapping /r: D\.St*D\.St ty

f^(x): exp(ih(x))x.

The restriction /^: -E*\St*E+\St is quasiconformal for all L€R, its symmetrized

deriuatiue having the eigenvalues

cr(t) : (l+ 1rl2+()"2+ 14f 4)u2)1t2,

cr()') : ct(,1)-t

at all nonsingular points of E*. Nowfi preserves the equidistance surfaces Sr:
{x€D: o(x, E1):t}, t>0, in D, and because the projection p is locally contrqctiue,

we see, using appropriate local coordinates, that the eigenvalues c1(x, )')> c2(x, 1)>
ca(x, 1)>Q of the swmetrized deriuative of /, satisfy

q(x, )') : cs(x,1)-L = c'(1)'

c2(x, )') : t
at all points x of D outside the xr-axis. Thus /r: D*D is quasiconformal with
dilatations

K(f^\ : K"(fe): Kt(f) : cr(1)3'

Because t(x)*-€ as x*Sl, wehave

c(f^, b) : 5t

for the cluster set at any boundary point å€SrcåD when ,t+0' Thus in this case

the quasiconformal mapping f7: D-D does not haue any boundary extmsion. To

visualize the situation we have depicted in Figure 3 the image of f':h(f)nD when

)u:0.25.
We could also choose a function ,t(c) with a uniformly bounded derivative

i'(z) converging to 0 when r+-@ but such that )'(t)*-- at the same time,

and define f: D*D bY setting

f(x) : exP [i(,i oc)(x)x

for all x€D. Then also f: D*D would be a quasiconformal mapping having

C(f,b):3t as cluster set at all å€Sr but with thelocal maximaldilatation K(x,f)
approaching one when x approaches Sr.

4. Remarks. (i) The example above was chosen because it allows a fairly
simple and explicit representation. The Jordan domain D has also quite nice symmetry

properties, e.g. the Möbius transformation generated by the successive reflections

in the plane R2 and in the unit sphere SzcRs maps D conformally onto its exterior.

The boundary \D:E*u,E- is quasiconformally collared with the exception of the
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Figure 3

circle 51: E+r.E-. In fact, the mapping

e'@) C

l(l cosh o(x, E*)

for x:((, x)<D maps D homeomorphically onto a domain D* in the lower half-
space xr<0 bounded by the plane fi':Y(E*) and by the quasiconfo)mal sphere

E!:Y(E-), the singular part Sl:E+nE- of the boundary collapsing onto the
origin, y(,Sr):{0} (cf. Figure 4). The mapping Y preserves E(x):arg($, and
o(v(x),R\:o(x,E*) for all x(D. In the direction of the line E(x):E(xs\,
o(x,Ea):o(xo,E+) the mapping Y has at xr(D the contraction coefrcient

x (xo) : ll + y(o Qt (xo))) tanh o (xo, E *)f-t .

Because we have o(x,E-)-q,-Lnoz for the width of D and X@)-o-L for the
hyperbolic curvature when x approaches 

^S1 
on E*, we see,that x is uniformly bound-

ed away from 0 in D, so that also the mapping V:D*D* is quasiconformal.
When a:2, x(x)>ll3 in the whole domain D, so that in this case K(Y)=9.

Y (x): (

V defined by

, - e'(*) tanh o (x,t.))€ RB
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Y(E*)

E:

Figure 4

(ii) We can make the same construction in Rn, n>.3, usmg the (qudsi)hyper-

bolic length elemmt

: (xf * ...-lxi,-S-rrz 4t

and defining as above an n-dimensional Jordan domain

a : {xen"' l**nnfo-l- +, o= o=+-}

suchthattheboundary of Docontainstheunit sphere So-2 of the hyperplane Rn-r:
{x€Ro: rn:O}cR". Only the rotations require a somewhat more careful consider-

ation than before. To this purpose we choose antisymmetric linear endomorphisms

Ar, ..., An of R"-L such that the orbit of

o(t): II!=re*oQAj)€So(n- 1) c So(n)

for t*t- is dense in the orthogonal group SO(n-l) of -Rn-l. Let r:Dn-R
be the parameter ftmction for Dn, For all real ), we can now define by

f^(x) - o(tr1x))x
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a quasiconformal mapping ft"i Dn*Dn with

K(f^) € ct(La)',
where

a - Z:=rllAjll.
Furthermore, for all b€}"-zc|Dn

c(ft,b) -,sn-z
when only A*0.
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