Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 331–338 Commentationes in honorem Olli Lehto LX annos nato

QUASICONFORMAL MAPPINGS WITHOUT BOUNDARY EXTENSIONS

T. KUUSALO

1. According to the classical theorem of C. Carathéodory [1] and of W. F. Osgood and E. H. Taylor [6], a conformal mapping $f: D \rightarrow D'$ between two Jordan domains D and D' in the complex plane C always has a boundary extension, i.e. there is a homeomorphism $f^*: \overline{D} \rightarrow \overline{D'}$ of the respective closed domains such that $f^*|_D = f$. As it is well known, the theorem holds for planar quasiconformal mappings as well. In fact, G. Faber's proof for conformal mappings carries over to the quasiconformal case with minor modifications only ([3], cf. also R. Courant [2]; Lehto-Virtanen [5], pp. 44—46). J. Väisälä proved in [7] the existence of a boundary extension for all quasiconformal mappings $f:D \rightarrow D'$ between *n*-dimensional Jordan domains $D, D' \subset \mathbb{R}^n$ quasiconformally equivalent to the unit ball $B^n \subset \mathbb{R}^n$, $n \ge 2$ (also in Väisälä [8], pp. 51—67). But unlike the planar case, even a Jordan domain $D \subset \mathbb{R}^n$ homeomorphic to the unit ball B^n is not necessarily quasiconformally equivalent to B^n when $n \ge 3$ (Gehring-Väisälä [4]). We shall give below an example which shows that for arbitrary Jordan domains $D, D' \subset \mathbb{R}^n$, $n \ge 3$, a quasiconformal mapping $f: D \rightarrow D'$ does not always have a boundary extension.

I wish to express here my gratitude to Vesa Lappalainen, who has made all the excellent drawings below using the computer facilities of the University of Jyväskylä. Furthermore, I would like to thank the Royal Swedish Academy of Sciences for supporting my stay at the Mittag-Leffler Institute during the academic year 1983—1984.

2. Let Γ be the spiral curve in the closed unit disc $\overline{B}^2 \subset C$ described by

$$\Gamma(r) = r e^{(i\alpha/2)(r-r^{-1})}$$

for $0 \le r \le 1$, $\alpha > 0$ a constant. If $\varrho = \varrho(z) = \varrho(z, 0)$ is the hyperbolic distance of $z \in \overline{B}^2$ from the origin with respect to the hyperbolic length element

$$d\varrho = 2(1 - |z|^2)^{-1} |dz|,$$

and $\theta = \arg(z)$ the argument of z, the trace of Γ can also be given as

$$\Gamma = \left\{ z \in \overline{B}^2 \colon \theta = -\frac{\alpha}{\sinh(\varrho)}, \quad 0 \leq \varrho \leq +\infty \right\}.$$

doi:10.5186/aasfm.1985.1036

The curve Γ has hyperbolic curvature

$$\chi(\varrho) = \frac{1 + \alpha^{-2} \tanh^4(\varrho)}{\tanh(\varrho) [1 + \alpha^{-2} \tanh^2(\varrho)]^{3/2}}$$

at the parameter value $r = \tanh(\varrho/2)$. Now the boundary of the domain

$$G = \left\{ z \in \boldsymbol{C} \colon 0 < |z| < 1, \ \left| \theta + \frac{\alpha}{\sinh(\varrho)} \right| < \frac{\pi}{2} \right\}$$

consists of a circular arc together with two spirals $\Gamma_{\pm} = \pm i\Gamma$ (cf. Figure 1; here as well as in all subsequent drawings $\alpha = 2$). Because the closed domain \overline{G} lies to the right of the boundary arc Γ_+ , and the hyperbolic curvature of Γ_+ is positive, we can define in \overline{G} a hyperbolic orthogonal projection $p: \overline{G} \to \Gamma_+$ such that for all $z \in \overline{G}$ the hyperbolic arc $zp(z) \subset \overline{G}$ is perpendicular to Γ_+ and that $\varrho(z, p(z))$ is the hyperbolic distance of z from Γ_+ ,

$$\varrho(z, p(z)) = \varrho(z, \Gamma_+) = \min_{z' \in \Gamma_+} \varrho(z, z').$$

The projection p is easily seen to be infinitely differentiable in G. Furthermore, the positive curvature of Γ_+ implies that p is *locally strictly contractive* in G,

$$\varrho(p(z), p(z_0)) < \varrho(z, z_0)$$

for all $z \neq z_0$ in a sufficiently small neighbourhood of $z_0 \in G$.

If $T(\varrho)$ is a primitive of

 $(1+\alpha^2 \tanh^{-2}(\varrho))^{1/2},$

we can define by $\tau(z) = T(\varrho(z))$, $z \in \Gamma_+$, a hyperbolic length scale on Γ_+ such that

 $\varrho_+(z_1, z_2) = |\tau(z_1) - \tau(z_2)|$

gives the hyperbolic length of the subarc of Γ_+ with endpoints $z_1, z_2 \in \Gamma_+$. As $\tau(0) = -\infty, \tau(i) = +\infty$, the spiral Γ_+ is infinitely long in both directions. We extend τ to a function $\tau: \overline{G} \to \overline{R}$ by setting

 $\tau(z) = \tau(p(z))$

for arbitrary $z \in \overline{G}$.

3. With respect to the (quasi) hyperbolic length element

$$d\sigma = rac{ds}{r}, \quad r = (x_1^2 + x_2^2)^{1/2}$$

in $\overline{R}^3 = R^3 \cup \{\infty\}$ the x_3 -axis forms the circle at infinity, and a hyperbolic isometry identifying the closed unit disc $\overline{B}^2 \subset C$ with the closed half-plane $\{x \in \overline{R}^3 : x_2 = 0, x_1 \ge 0\}$ can be defined by

$$x_1 + ix_3 = h(z) = \frac{1-z}{1+z}$$
.

If we rotate the image $h(\overline{G})$ of \overline{G} around the x_3 -axis, we get a closed Jordan domain

(a sectorial cross cut in Figure 2)

$$\overline{D} = \left\{ x \in \mathbf{R}^3 \colon \left| \psi + \frac{\alpha}{\sinh(\sigma)} \right| \leq \frac{\pi}{2}, \quad 0 \leq \sigma \leq +\infty \right\},$$

where

and

$$\psi = \psi(x) = \arg\left(\frac{1 - r - ix_3}{1 + r + ix_3}\right),$$
$$\sigma = \sigma(x) = \sigma(x, S^1)$$

is the hyperbolic distance of $x \in \mathbb{R}^3$ from the unit circle S^1 of the plane $\mathbb{R}^2 = \{x \in \mathbb{R}^3 : x_3 = 0\}$. The boundary of \overline{D} consists of two topological discs

 $E_{\pm} = \left\{ x \in \mathbf{R}^3 \colon \psi + \frac{\alpha}{\sinh(\sigma)} = \pm \frac{\pi}{2}, \quad 0 \leq \sigma \leq +\infty \right\}$

Figure 1

glued together along the circle $S^1 = E_+ \cap E_-$. The function τ extends by rotation to a parameter function $\tau: \overline{D} \to \overline{R}$ such that $\tau^{-1}(-\infty) = S^1$ and $\tau^{-1}(+\infty) = \{(0, 0, -1)\}$. As in the preceding paragraph, we can define in the whole domain \overline{D} outside the x_3 -axis a locally contractive hyperbolic orthogonal projection p into the lower halfboundary E_+ such that $\tau(x) = \tau(p(x))$ for all x in \overline{D} outside the x_3 -axis.

If we let $S^1 \subset E_+$ collapse to a point and set

$$\varphi(x) = \arg(x_1 + ix_2)$$
$$\theta(x) = e^{\tau(x) + i\varphi(x)}$$

for $x \in \mathbf{R}^3$, we see that

defines an *isometry* and thus a *conformal mapping* of E_+ onto the Riemann sphere \overline{C} with respect to the *hyperbolic length element* $d\sigma$ in E_+ and the *logarithmic length element*

$$dv = |z|^{-1}|dz|$$

in \overline{C} , so that $\theta(S^1)=0$ and $\theta(0, 0, -1)=\infty$.

Figure 2

Using the complex notation

$$x = (\zeta, x_3) = (x_1 + ix_2, x_3) \in \mathbb{R}^3,$$
$$ax = (a\zeta, |a| x_3) \in \mathbb{R}^3$$

for $x \in \mathbb{R}^3$, $a \in \mathbb{C}$, we define for any real λ the mapping $f_{\lambda} : \overline{D} \setminus S^1 \to \overline{D} \setminus S^1$ by

$$f_{\lambda}(x) = \exp(i\lambda\tau(x))x.$$

The restriction $f_{\lambda}: E_{+} \setminus S^{1} \rightarrow E_{+} \setminus S^{1}$ is quasiconformal for all $\lambda \in \mathbb{R}$, its symmetrized derivative having the eigenvalues

$$c_1(\lambda) = (1 + \lambda^2/2 + (\lambda^2 + \lambda^4/4)^{1/2})^{1/2},$$

 $c_2(\lambda) = c_1(\lambda)^{-1}$

at all nonsingular points of E_+ . Now f_{λ} preserves the equidistance surfaces $S_t = \{x \in D : \sigma(x, E_+) = t\}, t > 0$, in D, and because the projection p is *locally contractive*, we see, using appropriate local coordinates, that the eigenvalues $c_1(x, \lambda) \ge c_2(x, \lambda) \ge c_3(x, \lambda) > 0$ of the symmetrized derivative of f_{λ} satisfy

$$c_1(x, \lambda) = c_3(x, \lambda)^{-1} \leq c_1(\lambda),$$
$$c_2(x, \lambda) = 1$$

at all points x of D outside the x_3 -axis. Thus $f_{\lambda}: D \rightarrow D$ is quasiconformal with dilatations

$$K(f_{\lambda}) = K_o(f_{\lambda}) = K_I(f_{\lambda}) = c_1(\lambda)^3.$$

Because $\tau(x) \rightarrow -\infty$ as $x \rightarrow S^1$, we have

$$C(f_{\lambda}, b) = S^1$$

for the cluster set at any boundary point $b \in S^1 \subset \partial D$ when $\lambda \neq 0$. Thus in this case the quasiconformal mapping $f_{\lambda}: D \rightarrow D$ does not have any boundary extension. To visualize the situation we have depicted in Figure 3 the image of $\Gamma' = h(\Gamma) \cap D$ when $\lambda = 0.25$.

We could also choose a function $\lambda(\tau)$ with a uniformly bounded derivative $\lambda'(\tau)$ converging to 0 when $\tau \to -\infty$ but such that $\lambda(\tau) \to -\infty$ at the same time, and define $f: D \to D$ by setting

$$f(x) = \exp\left[i(\lambda \circ \tau)(x)\right]x$$

for all $x \in D$. Then also $f: D \to D$ would be a quasiconformal mapping having $C(f, b) = S^1$ as cluster set at all $b \in S^1$ but with the local maximal dilatation K(x, f) approaching one when x approaches S^1 .

4. Remarks. (i) The example above was chosen because it allows a fairly simple and explicit representation. The Jordan domain D has also quite nice symmetry properties, e.g. the Möbius transformation generated by the successive reflections in the plane \mathbb{R}^2 and in the unit sphere $S^2 \subset \mathbb{R}^3$ maps D conformally onto its exterior. The boundary $\partial D = E_+ \cup E_-$ is quasiconformally collared with the exception of the

circle $S^1 = E_+ \cap E_-$. In fact, the mapping Ψ defined by

$$\Psi(x) = \left(\frac{e^{\tau(x)}\zeta}{|\zeta|\cosh\sigma(x, E_+)}, -e^{\tau(x)}\tanh\sigma(x, E_+)\right) \in \mathbb{R}^3$$

for $x = (\zeta, x_3) \in \overline{D}$ maps D homeomorphically onto a domain D^* in the lower halfspace $x_3 < 0$ bounded by the plane $\overline{R}^2 = \Psi(E_+)$ and by the quasiconformal sphere $E_{-}^{*} = \Psi(E_{-})$, the singular part $S^{1} = E_{+} \cap E_{-}$ of the boundary collapsing onto the origin, $\Psi(S^1) = \{0\}$ (cf. Figure 4). The mapping Ψ preserves $\varphi(x) = \arg(\zeta)$, and $\sigma(\Psi(x), \mathbb{R}^2) = \sigma(x, E_+)$ for all $x \in D$. In the direction of the line $\varphi(x) = \varphi(x_0)$, $\sigma(x, E_+) = \sigma(x_0, E_+)$ the mapping Ψ has at $x_0 \in D$ the contraction coefficient

$$\kappa(x_0) = [1 + \chi(\sigma(p(x_0))) \tanh \sigma(x_0, E_+)]^{-1}.$$

Because we have $\sigma(x, E_{-}) \sim \alpha^{-1} \pi \sigma^{2}$ for the width of D and $\chi(\sigma) \sim \sigma^{-1}$ for the hyperbolic curvature when x approaches S^1 on E_+ , we see that \varkappa is uniformly bounded away from 0 in D, so that also the mapping $\Psi: D \rightarrow D^*$ is quasiconformal. When $\alpha = 2$, $\kappa(x) > 1/3$ in the whole domain D, so that in this case $K(\Psi) < 9$. Quasiconformal mappings without boundary extensions

(ii) We can make the same construction in \mathbb{R}^n , n>3, using the (quasi)hyperbolic length element

$$d\sigma = (x_1^2 + \ldots + x_{n-1}^2)^{-1/2} ds$$

and defining as above an n-dimensional Jordan domain

$$D_n = \left\{ x \in \mathbf{R}^n \colon \left| \psi + \frac{\alpha}{\sinh(\sigma)} \right| < \frac{\pi}{2}, \quad 0 < \sigma \ge +\infty \right\}$$

such that the boundary of D_n contains the *unit sphere* S^{n-2} of the hyperplane $\mathbb{R}^{n-1} = \{x \in \mathbb{R}^n : x_n = 0\} \subset \mathbb{R}^n$. Only the rotations require a somewhat more careful consideration than before. To this purpose we choose antisymmetric linear endomorphisms A_1, \ldots, A_q of \mathbb{R}^{n-1} such that the orbit of

$$O(t) = \prod_{i=1}^{q} \exp(tA_i) \in SO(n-1) \subset SO(n)$$

for $t \to \pm \infty$ is dense in the orthogonal group SO(n-1) of \mathbb{R}^{n-1} . Let $\tau: D_n \to \mathbb{R}$ be the *parameter function* for D_n . For all real λ we can now define by

$$f_{\lambda}(x) = O(\lambda \tau(x))x$$

a quasiconformal mapping $f_{\lambda}: D_n \rightarrow D_n$ with

$$K(f_{\lambda}) \leq c_1(\lambda a)^n,$$

where

$$a = \sum_{j=1}^{q} \|A_j\|.$$

Furthermore, for all $b \in S^{n-2} \subset \partial D_n$

$$C(f_{\lambda}, b) = S^{n-2}$$

when only $\lambda \neq 0$.

References

- [1] CARATHÉODORY, C.: Konforme Abbildung Jordanscher Gebiete. Math. Ann. 73, 1913, 305–320.
- [2] COURANT, R.: Über eine Eigenschaft der Abbildungsfunktionen bei konformer Abbildung. -Nachr. Königl. Gesellsch. Wiss. Göttingen Math.-Phys. Kl. 1914, 101–109.
- [3] FABER, G.: Über den Hauptsatz aus der Theorie der konformen Abbildungen. Sitzungsber. Math.-Phys. Kl. Bayer. Akad. Wiss. München, 1922, 91–100.
- [4] GEHRING, F. W., and J. VÄISÄLÄ: The coefficients of quasiconformality of domains in space. -Acta Math. 114, 1965, 1-70.
- [5] LEHTO, O., und K. I. VIRTANEN: Quasikonforme Abbildungen. Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [6] OSGCOD, W. F., and E. H. TAYLOR: Conformal transformations on the boundaries of their regions of definition. Trans. Amer. Math. Soc. 14, 1913, 277–298.
- [7] VÄISÄLÄ, J.: On quasiconformal mappings of a ball. Ann. Acad. Sci. Fenn. Ser. A I Math. 304, 1961, 1-7.
- [8] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229. Springer-Verlag, Berlin—Heidelberg—New York, 1971.

Institut Mittag-Leffler Auravägen 17 S—182 62 Djursholm Sweden University of Jyväskylä Department of Mathematics SF—40100 Jyväskylä Finland

Received 16 December 1983