Annales Academiz Scientiarum Fennica Commentationes in honorem
Series A. I. Mathematica Olli Lehto
Volumen 10, 1985, 339—348 LX annos nato

INTRODUCTION TO
A QUASI-LINEAR POTENTIAL THEORY

ILPO LAINE

1. Introduction

The axiomatic theory of harmonic spaces is an important area of the linear
potential theory investigated actively during the last decades. We may refer to Brelot
[6], Bauer [1] and Constantinescu and Cornea [9] as standard references. Recently,
considerable interest has been attracted by some non-linear questions reflecting
ideas from the linear potential theory. We recall here Bertin [3]—[5], Bedford
and Taylor [2] and the two articles of Constantinescu [7], [8] devoted to the non-
linear Dirichlet problem.

Granlund, Lindqvist and Martio recently investigated ([10], [11]) quite a general
class of variational integrals in R" from a potential theoretic point of view. Re-
markably, their presentation is, in some sense, quite close to the usual linear theory.
Lehtola [12] also developed a related axiomatic system, essentially corresponding to
the linear theory of Brelot spaces.

This article was inspired by the work of Granlund, Lindqvist and Martio. Our
aim has been to develop non-linear axioms describing the behavior of variational
super-F-extremals, but in the spirit of Constantinescu and Cornea [9]. In Section 2,
we give the axioms and state basic topological properties. Some examples will be also
included in Section 2. In Section 3, we develop the elementary quasi-linear theory.
Perhaps we should point out here the essential problem remaining open in this article,
namely the counterpart to the Poisson modification. This carries through in the
regular case, but remains open in general. Our final Section 4 is devoted to the basic
theory of quasi-linear superharmonic functions and potentials. Evidently, the quasi-
linear theory developed in this article may be pursued further. Specially, the open
problem about the Poisson modification should be resolved. This plan of research is
under preparation and a more complete presentation of the quasi-linear theory will
appear elsewhere.

Finally, I wish to express my gratitude to Olli Martio for many valuable dis-
cussions directed to non-linear phenomena in potential theory.

This research has been done in the frame of a research project supported in part by the Academy
of Finland.
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2. Quasi-linear axioms and basic examples

Let X be a locally compact topological space and let a sheaf % on X of lower
semicontinuous, hence lower finite numerical functions called a hyperharmonic sheaf
be given. If u€ % (U), it is called hyperharmonic on U. The map U—~%(U) n (—%(U))
also defines a sheaf of functions on X called the harmonic sheaf #,, defined by the
hyperharmonic sheaf %. We say that u€-%(U) is hypoharmonic on U and h€ #,,(U)
is harmonic on U. We assume the following

Axiom of quasi-linearity: The hyperharmonic sheaf % contains a non-empty
subsheaf ¥ C 3, such that for every open set UCX,

(1) awe¥ (U) for every vy (U) and every o€R,

(2) u+veuU) for every ucU(U) and every ve¥ (U).

Before proceeding, we remark that the axiom of quasi-linearity trivially implies
that the constant function O is harmonic on any open set UcCX and, in fact,
0|Ue¥ (U).

An open set UcX is now called an MP-set (relative to %), if u=v holds for
any lower bounded hyperharmonic function u€%(U) and any upper bounded hy-
poharmonic function v€-%(U) as soon as

(1) lim infy ., u(x)=lim supy, -, v(x) for every y€oU and

(2) there exists a compact set K(u, v) in X such that u=v holds on UN\K(u, v).

Let now U be an MP-set and let f: ¢U —~R be a given boundary function. We
consider the family % (U)c % (U) of functions defined by the following conditions:

(1) every function u€%,(U) is lower bounded,

(2) for every function u€%,(U) there corresponds a compact set K(u) in X such
that u is positive in UN\K(w),

(3) for every function u€%,(U) and every point y€dU we have
liminfy, ., u(x)=1(y). B

We also consider the family #,(U)=—%_;(U). Of course, uc#,;(U) if and
only if u€—a (U) and (1) u is upper bounded, (2) there exists a compact set K(u) in
X such that u is negative in UN\K(u) and (3) for every point y€dU we have
lim supy, ., u(x)=f(y). Defining

HP := inf %,(U), HY :=sup %, (U)
we easily verify the following elementary

Lemma 2.1. Let U be an MP-set and let f: AU—~R, g: OU~R be given bound-
ary functions. Then

1) —-Hf =HY,,
2 Hf = Hf,
(3) f=g implies HY =HY and H} = HY.
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Moreover, if U is relatively compact in VCX and ve¥ (V), then
(4) H}]+v = H}]"f'v’ ﬂ}]+u = E}]‘i‘l)

Proof. The first three assertions are trivial. To prove the last one, take u€%;(U).
Then u+(v|U) is lower bounded and

lli]nalxillyf(u(x)—kv(x)) = lli]rarlxiflyfu(x)+v(y) = () +v().

Hence u+v€%,,,(U) and therefore HY, ,=Hj+v. Since —ve¥ (V), we also
get HY=H{,, ,=H{,,—v. The last assertion now follows.

A numerical boundary function f: QU—~R is called resolutive (relative to %),
if HY€#,(U), Hj€#,(U) and H}=H] (=: Hy). Determining H{ for a given
boundary function f is called the quasi-linear Dirichlet problem (in the Perron-
Wiener-Brelot sense). An MP-set UcX is called resolutive (relative to %), if

every function f€X#(QU) is resolutive.

Remark. If f: oU —~R is resolutive, U is relatively compact in V<X and
ve¥ (V), then clearly f+v is resolutive. However, the functional f—~H }’ (x) is not
necessarily a linear functional. This implies that in the quasi-linear theory there
does not exist a harmonic measure in the usual sense of the linear theory.

Lemma 2.2. Let U be a relatively compact, resolutive set. If h is harmonic on
an open set V containing cl U, then HY'=H/=h on U. Moreover, if u is hyperhar-
monic on V, then H!=u.

Proof. To prove the first assertion, observe that A|U is bounded and that
limy, .., h(x)=h(y) holds for every boundary point y€QU. Hence heZ,(U)
and h€,(U). Therefore h=H =H}=h.

If now u is hyperharmonic on ¥, then u€%,(U) and therefore H!=H.=u.

We now proceed to the remaining axioms:

Axiom of resolutivity: The open sets resolutive relative to the hyperhar-
monic sheaf U form a base for the topology of X.

We recall that a sheaf & is degenerated at x, if every function €% (U), U
open and contains x, satisfies ¢(x)=0. Otherwise & is non-degenerated at x.

Axiom of quasi-linear positivity: The quasi-linear subsheaf v~ determined
by the axiom of quasi-linearity is non-degenerated at every point x€X.

Axiom of completeness: A lower semicontinuous function u: U—(—oo, + o]
on an open set U is hyperharmonic on U, if for every relatively compact, resolutive set
V such that cl VCU, the inequality H) =u holds.

Clearly, the axiom of completeness contains an if and only if-condition. This
follows immediately from Lemma 2.2.
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Axiom of convergence: The harmonic sheaf #, defined by the hyperhar-
monic sheaf 9 possesses the Bauer convergence property; see [9], p. 9.

Definition 2.3. 4 locally compact space X together with a hyperharmonic
sheaf U is called a quasi-linear harmonic space, if the axioms of quasi-linearity,
quasi-linear positivity, convergence, resolutivity and completeness hold. Quasi-linear
harmonic spaces induced into open sets U of X may be called quasi-linear harmonic
subspaces.

Remark 2.4. Some btasic topological properties of harmonic spaces will be
derived without appealing to linearity. Hence we may apply the usual proofs given
in the linear theory to see that a quasi-linear harmonic space X is completely regular
and locally connected. Also, all points of X are non-isolated. Moreover, the following
proposition follows by the same reasoning as in the standard linear theory:

Proposition 2.5. Let & be an upper directed family of harmonic functions on
an open set UcX. If sup & is locally bounded, it is harmonic on U. Similarly, if
the Doob convergence property, see [9], p. 9, holds for 3, and sup & is finite on a
dense subset of U, then sup & is harmonic on U.

Example 2.6. This example deals with the variational integrals mentioned
in the introduction. Consider the euclidean space R"” and the sheaf % on R" defined
by the super-F-extremals in the sense of [10]. The variational kernel F: R"XR"—~R
has to satisfy the conditions (a), (b"), (¢) and (d) in [10], p. 48. We also recall that u
is a super-F-extremal, i.e., u€ % (U), if h=u on 0D implies ~=u on D for every
function A€ #,(U)n%(cl D) and every regular domain D relatively compact in U,
regular meaning here a bounded domain with no boundary components consisting
of one point only. By [10], Lemma 5.23, % is, in fact, a sheaf. Taking now as ¥ the
subsheaf of constant functions, the axiom of quasi-linearity is satisfied by [10],
Lemma 5.2. A regular domain is an MP-set by [11], Lemma 2.3, and resolutive (in
fact, regular in the Dirichlet problem sense) by [13], Theorem 3.10. The axiom of
quasi-linear positivity holds trivially and the axiom of Bauer convergence by [10],
Theorem 4.22. To verify the axiom of completeness, let u: U—(— oo, + o] satisfy
H! =u for every regular set D relatively compact in U, and let A€ #,,(U) N %(cl D)
satisfy h=u on dD. Then h=H)=H}=H,=u holds on D and the axiom of
completeness follows.

Example 2.7. This example is due to Martio [a private communication]. Con-
sider X={(x, y)€ R?|xy=0, y=0}. The open intervals I=(a, b)X {0} and I={0}X
(a, b) for a, bER, a<b, 04 (a, b), and the neighbourhoods T=(—¢, 1) X[0, ¢) of the
origin for O<f¢<+ o together form a base for the topology of X. We now define
H#(U) for open sets UcX as follows:

(i) & is linear on U whenever U is of the form 7;
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(i) 2(0)=(max 2(QU)+min h(U))/2 and / is linear on the intervals from
the origin to the boundary points of U whenever U is of the form T;

(iii) h|Te€ #(T) for T=(—t,t)X[0,?), t=min(—a,b,c,1), and h is linear
on the intervals (respectively half-lines) from the origin to the boundary points (re-
spectively natural ideal boundary points) of U whenever U=(a, b)X[0,c) for
—o=g<0<b=+ and O<c=+o;

(iv) h|U€# (U,) for every component U, of U whenever U is non-connected.

Defining now u€%(U) by the comparison principle given in Example 2.6,

e., h=u on 9V implies h=u on V for every domain V relatively compact in U,
we get a sheaf % on X. It is easily verified that (X, %) is a quasi-linear harmonic space
in the sense of Definition 2.3.

3. Elementary properties of quasi-linear harmonic spaces

Lemma 3.1. Let V be an open set such that there exists a strictly positive func-
tion vo€¥ (V). If U is an MP-set relatively compact in V and ( fDecr IS an upper
directed family of lower semicontinuous functions on U, then

H L sup r, = SUP E}I
a€cl a€l *

Proof. It suffices to prove the inequality Hsup 7, =sup HU . Take an arbitrary
€%y, ;. and extend v into cl U by the upper limit. The extended function will be
also denoted by v. Consider first a point y€QU such that supf, (y)<+oo. Then

v(y) = limsup v(x) = sup £,(») < g ev0(») +sup £, (»)-

Udx—y

Choosing now a,€/ such that supfa(y)<ﬂy(y)+%svo(y) we get

(3.1 v(»)—fo, () —eve(y) < 0.
If now y€QU satisfies sup f,(y) =+, we again find «,€7 such that the inequal-
ity (3.1) holds, since v is upper bounded. Since v—f, —&v, is upper semicontinuous

on oU, the set
(260U [v(2) 1, (2)—e00(2) = 0}

is open. Since AU is compact and (f;),¢; is upper directed, we may apply a standard
compactness argument to find an o€/ such that v<f, +ev, holds on the whole
boundary oU. Therefore vE%}’a +ev, and by Lemma 2.1(4) we obtain

— %

U
v= H?%ero = E}f%+sv0 =supH; +éevg.
Hence
U U
Hgpy, = sup Hy +eévy,

and the assertion follows by &—0.
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Remark. The preceding lemma seems to be an important device to overcome
some difficulties which come from the fact that the functional f— H[(x) is not linear
in general. It is reasonable to shorten the notation by saying that an open set U
is sufficiently small, if ¢l U is contained in an open set V such that there exists a
strictly positive function v€¥ (V), see also [8], p. 58.

Proposition 3.2. Let u,, u, be hyperharmonic on an open set U and let (u,),¢;
be an upper directed family of hyperharmonic functions on U. Then inf (uy, u,) and
sup u, are hyperharmonic on U.

Proof. The first assertion follows immediately from the axiom of completeness.
To prove the second assertion, let ¥ be a resolutive set sufficiently small and
relatively compact in U. If W is a resolutive set relatively compact in ¥, then

w w
Hgpu, = supH, =supu,

by Lemma 3.1. Hence sup , is hyperharmonic on ¥ by the axiom of completeness.
By the sheaf property of hyperharmonic functions (and the axiom of quasi-linear
positivity), supu, is hyperharmonic on U.

Proposition 3.3. Let V be a relatively compact, resolutive and sufficiently
small set and let f: 0V—~R be a bounded lower semicontinuous boundary function.
Then HY is harmonic on V. If f: OV —R is lower semicontinuous, then HY is hyper-
harmonic on V. Finally, if W is resolutive and relatively compact in V, then

Hyr = (HP)W.

Proof. (1) Let f be a bounded lower semicontinuous boundary function and
denote
F={H]|g=f g€V}

Clearly & is an upper directed family of harmonic functions on ¥ and
supF = sup H) = H},,, = HY

by Lemma 3.1. Since f=oa for some real number «, H}=H, is locally upper
bounded, since H) is a harmonic function on ¥ by the axiom of resolutivity. By
Proposition 2.5, HY is harmonic on V.

(2) Let f be a lower semicontinuous boundary function. Since f is lower
bounded, inf(f, n) is bounded and lower semicontinuous for every n€N. Since
f=sup, inf(f,n) and (inf(f,n)),.y is an increasing sequence, we may apply Lem-
ma 3.1 to obtain

HY = sup, HY¢ (5,n)-

Since (Lli‘;f(f’n))nE y Is an increasing sequence of harmonic functions on V, E_I}’
is hyperharmonic by Proposition 3.2.
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(3) To prove the last assertion, we denote f,:=inf(f,n) for n€N. Then
Hyy = Hj,

holds on W by Lemma 2.2, since I_LI_'f’ is harmonic on ¥ by the first part of this proof.

Applying Lemma 3.1 again, we obtain

v v w W w 4
Hf = Hapy, = supHy, = supHyv = Hgyyv = Hpy = Hyy
—fn =fn =supsp —F

on W.

Proposition 3.4. The components of a resolutive set are resolutive.

Proof. Let U be a resolutive set and V' be a component of U. We have to prove
first that ¥ is an MP-set. Let u (respectively v) be a lower bounded hyperharmonic
(respectively an upper bounded hypoharmonic) function on ¥ such that

liminf u(x) = lim sup v(x)

Vox—y Vox—y
holds for every y€dV and that u=v on V\K(u, v) for some compact set K(u, v)
in X. We define uw'e#(U), respectively v'€¢ —%(U) by setting u'|V=u,
' |(UN\V)=0, respectively v’|V=v, v'|(U\V)=0. Since U is an MP-set, v’ =v’
on U, hence u=u'=v"=v holds on V.

Since X is completely regular, see Remark 2.4, the assertion now follows by the
same reasoning one has to apply in the linear theory of harmonic spaces.

Corollary 3.5. The open connected sets resolutive relative to the hyperharmonic
sheaf U form a base for the topology of X.

4. Superharmonic functions and potentials

Definition 4.1. A hyperharmonic function u on an open set UcCX is called
superharmonic on U, if for every resolutive set V relatively compact in U and suffi-
ciently small, the lower Dirichlet solution H) is harmonic on V.

The family of superharmonic functions on U will be denoted by & (U).

Lemma 4.2. A superharmonic function uc¥(U) is finite on a dense subset
of U.

Proof. Suppose there exists an open set VCU such that ulcl V=+ . We
may assume that cl ¥cU and that V is resolutive and sufficiently small. Let v,
be a strictly positive function in a neighbourhood (cU) of V. Clearly, we have
Avg€ U, (V) for all 1>0. Hence H) =Av, for all A=>0 and we get a contradiction
HY =+ oo,
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Theorem 4.3. A quasi-linear harmonic space admits the Doob convergence
property if and only if every function hyperharmonic on an open set is superharmonic
as soon as it is finite on a dense subset.

, Proof. Let first the Doob convergence property hold on a quasi-linear harmonic
space X, let u€%(U) be finite on a dense set and let ¥ be resolutive, sufficiently
small and relatively compact in U. Denoting

F={fc€@V) f=u on IV}
we have u=sup & on dV. For every fc%, E}’ is harmonic and, by Lemma 3.1,

supHY =HY _=H)=u

—sup ¥

on V. Hence gfzsup gy is finite on a dense subset of V. By Proposition 2.5, Ef"
is harmonic on V.

To prove the converse assertion, let (%,),.y be an increasing sequence of har-
monic functions on an open set U such that sup /4, is finite on a dense set. Let V" be
resolutive, sufficiently small and relatively compact in U. Then

sup h, = supﬁ,‘,’n = HY

—suph,,

holds on ¥ by Lemma 2.2. By assumption, sup 4, is superharmonic on U, hence

E:f,p 5, =SUp h, is harmonic on V. By the sheaf property, sup 4, is harmonic on U.

Lemma 4.4. (1) A locally bounded hyperharmonic function is superharmonic.
(2) A hyperharmonic minorant of a superharmonic function is superharmonic.
(3) If si, s, are superharmonic functions, then inf (s;,s,) is superharmonic.
(4) A locally superharmonic function is superharmonic.

Proof. (1) Let u€ % (U) be locally bounded. If ¥ is resolutive, sufficiently small
and relatively compact in U, then u|@V is bounded. By Proposition 3.3, H} is har-

monic on V.
(2) Let s be superharmonic on U, u be hyperharmonic on U and u=s. Let

further V be resolutive, sufficiently small and relatively compact in U. Denoting again
F={fc€0@V)|f=u on IV}
we have u=sup & on 0V and, by Lemma 3.1,

HY = HY, , =supHY = HY.
Since HY is harmonic, H) is locally bounded, hence harmonic by Proposition 2.5.
(3) This follows immediately by Proposition 3.2 and the preceding part of this
lemma.
(4) Let uc%(U) be locally superharmonic and let ¥ be resolutive, sufficiently
small and relatively compact in U. Given x€V, we may take two neighbourhoods
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W, W’ of x such that cl Wc W’ ccl W/ cV such that W is resolutive and u|W’
is superharmonic on W’. Hence H) is harmonic. Denoting again & as in the proof
of part (2), we get

HJ\W = sup (H7|W) = HY, = HY
res a;

on W by Lemma 3.1 and Proposition 3.2. Since H’ is harmonic on W, the reasoning
of the preceding part (2) results in that H} is harmonic on W. By the sheaf property,
H} is harmonic on V.

Definition 4.5. A superharmonic function p=0 on X is a potential on X,
if the constant function O is the greatest hypoharmonic minorant of p.

Proposition 4.6. Let p be a superharmonic function on X. Then the fol-
lowing properties are equivalent:

(1) p is a potential on X;

() if u is hyperharmonic on X, then u+p=0 implies u=0.

Proof. If u is hyperharmonic on X, p is a potential on X and u+p=0, then
—u=p is a hypoharmonic minorant of p hence —u=0 and u=0.

On the other hand, let u be a hypoharmonic minorant of p on X. Then
—u+p=0 implies —u=0. Hence u=0 and p is a potential on X.
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