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1. fnfioduction

The axiomatic theory of harmonic spaces is an important area of the linear
potential theory investigated actively during the last decades. We may refer to Brelot

[6], Bauer [] and Constantinescu and Cornea [9] as standard references. Recently,

considerable interest has been attracted by some non-linear questions reflecting

ideas from the linear potential theory. We recall here Bertin [3]*[5], Bedford
and Taylor [2] and the two articles of Constantinescu [7], [8] devoted to the non-
linear Dirichlet problem.

Granlund, Lindqvist and Martio recently investigated ([10], I U) quite a general

class of variational integrals in ff from a potential theoretic point of view. Re-

markably, their presentation is, in some sense, quite close to the usual linear theory.

Lehtola [2] also developed a related axiomatic system, essentially corresponding to
the linear theory of Brelot spaces.

This article was inspired by the work of Granlund, Lindqvist and Martio. Our
aim has been to develop non-linear axioms describing the behavior of variational
super-F-extremals, but in the spirit of Constantinescu and Cornea [9]. In Section 2,

we give the axioms and state basic topological properties. Some examples will be also

included in Section 2. In Section 3, we develop the elementary quasi-linear theory.
Perhaps we should point out here the essential problem remaining open in this article,
namely the counterpart to the Poisson modification. This carries through in the

regular case, but remains open in general. Our final Section 4 is devoted to the basic

theory of quasi-linear superharmonic functions and potentials. Evidently, the quasi-

linear theory developed in this article may be pursued further. Specially, the open

problem about the Poisson modification should be resolved. This plan of research is

under preparation and a more complete presentation of the quasi-linear theory will
appear elsewhere.

Finally, I wish to express my gratitude to Olli Martio for many valuable dis-
cussions directed to non-linear phenomena in potential theory.

This research has been done in the frame ofa research project supported in part by the Academy
ofFinland.
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2. Quasi-linear axioms and basic examples

Let X be a locally compact topological space and let a sheaf % on X of lower

semicontinuous, hence lower finite numerical functions called a hyperharmonic sheaf
begiven.If u€Q/(U),itiscalled hyperharmoniconU. Themap U-a?/(U)^(-q/(U\)
also defines a sheaf of functions on X called the harmonic sheaf sf* defined by the

hyperharmonic sheaf ltt . W e say that u€-U (U) is hypoharmonic on U and h€ /fq(U)
is harmonic on U. We assume the following

Axiom of quasi-linearity: The hyperharmonic sheaf 4/ contains q non-empty

subsheaf {clf,* such that for euery open set- UcX,
(1) au€{(U) for euery u€"|'(U\ and euery u(R,
(2) u*u€at(U) for euery u(lt(U) and every u("//(U)'

Before proceeding we remark that the axiom of quasi-linearity trivially implies

that the constant function 0 is harmonic on any open set UcX and, in fact,
0lu({(u).

An open set UcX is now called an MP-set (relatiue to %), if a>u holds for
any lower bounded hyperharmonic function uQt(U) and any upper bounded hy-
poharmonic function a€-%(U) as soon as

(l) lim infu),-y n(x)=lim supyr"-, u(x) for every y<0U and

(2) therc exists a compact set K(u, u) in X such that u>u holds on U\K(rz, u).

Let now U be an MP-set and let f: A(I-R be a given boundary function. We

consider the family -%r(U)cQt (U) of functions defined by the following conditions:
(l) every function u(4y(U) is lower bounded,
(2) for every function u<Tlty((I\ there corresponds a compact set K(z) in X such

that u is positive in U\K(a),
(3) for every function uQTr(l) and every point y(0U we have

lim infor,*, u(x\=-f (y).
We also consider the family %r(U):-W-r@). Of course, u(%'(U) if and

only if u(-q/ (U) and (1) z is upper bounded, (2) there exists a compact set K(a) in
X such that u is negative in U\K(a) and (3) for every point ye|U we have

lim supor,*, u(x)=f(y). Defining

Ef :: inf q/t(U), Hf :: stp!1(U)

we easily verify the following elementary

Lemma 2.1. Let U be an MP-set and let f: 0U*8, g: DU-R be giuenbomd-

ary functions. Then

-trY : Hu-r'

Hy =- Ff ,

f = s implies try = try and Hy = Hy.

(1)

(2)

(3)
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Moreot)er) if U is

(4)

relatiuely compoct in VcX and u€tr (V), then

trf*o: try *u, Hf*u : Hy *a.

Proof. Thå first three assertions are trivial. To prove the last one, take ue-all/U).
Then uI(ulu) is lower bounded and

[gr,i$(z(x)+u(x)) 
: ljggr,f a1:c; +u(v) =-f(v)+u(v).

Hence ulu€Wt+,(u) and therefore EUt*,=EUr*u. Since -a€"|'(V), we also

get Ey:Eu<t*,1-ulFor*,-u' The last assertion now follows'

A numerical boundary function f: \U*n is calied resolutiue (relatiae to 4/),
ff Ey</fq(U), Eur€//q(u) and E'r:Uy F:Hf). Determining Hf for a given

boundary function / is called the quasiJinear Dirichlet problem (in the Perron-

Wiener-Brelot sense). An MP-set UcX is e.alled resolutiue (relatiue to 4l), if
every function fQ{(|U) is resolutive.

Remark. Tf f: \U*R is resolutive, U is relatively compact in VcX and

ue{'(I/), then clearly f*u is resolutive. However, the functional f*Hf (x) is not
necessarily a linear functional. This implies that in the quasi-linear theory there

does not exist a harmonic measure in the usual sense of the linear theory.

Lemma 2.2. Let U be a relatiuely compact, resolutiue set. If h is harmonic on

qnopenset V containing cl(J, then 4!:gY:h o, (J. Moreoaer,if u is hyperhar'

monic on V, then EX=u.

Proof. To prove the first assertion, observe that hlU is bounded and that

limur"r, h(x):111r1 holds for every boundary point y€AU. Hence h<-oLh(U)

and hQottn(U). Therefore n= 4l =El=h.
If now n is hyperharmonic on V, then u€Tu"(U) and therefore H!=E!=v-
We now proceed to the remaining axioms:

Axiom of resolutivity: The open sets resolutiue relatiue to the hyperhar-

monic sheaf 4t form a base for the topology of X.

We recall that a sheaf F is degenerated at x, if every function E(9(U), U

open and contains x, satisfies a@):0. Otherwise I is non-degenerated at x'

Axio m o f qu as i- lin e ar p o s itivity : The quasiJinear subsheaf ^l' determined

by the axiom of quasi-linearity is non-degenerated 4t euety point x€X.

Axiom of completeness: A lower semicontinuous function u: U-(-*, * -l
on an open set U is hyperharmonic on U, if for euery relatiuely compact, resolutiae set

V such that clVcU, the inequality HI=u hold".

Clearly, the axiom of completeness contains an if and only if-condition. This

follows immediately fuom Lemma 2.2.
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Axiom of convergence: The harmonic sheaf lf,* defined by the hyperhar'
monic sheaf 4l possesses the Bauer conuergence property; see [9], p. 9.

Definition 2.3. A locally compact space X together with a hyperharmonic

sheaf 4l is called a quasi-linear harmonic space, if the axioms of quasi-linearity,

quasi-linear positiuity, conoergence, resolutiuity and completeness hold. Quasi-linear
harmonic spaces induced into open sets (I of X may be called quasi-linear harmonic
subspaces.

Remark 2.4. Some basic topological properties of harmonic spaces will be

derived without appealing to linearity. Hence we may apply the usual proofs given

in the linear theory to see that a quasi-linear harmonic space X is completely regular

and locally connected. Also, all points of X are non-isolated. Moreover, the following
proposition follows by the same reasoning as in the st-andard linear theory:

Proposition 2.5. Let fr be an upper directedfarnily of harmonicfunctions on

an open set UcX. If strp F is locally bounded, it is harmonic on U. Similarly, if
the Doob conuetgence property, see [9], p.9, holdsfor lf,* andstpF isfinite on a
dense subset of U, then sup I is harmonic on U.

Example 2.6. This example deals with the variational integrals mentioned
in the introduction. Consider the euclidean space Rn and the sheaf 1lt on Rn defined

by the super-F-extremals in the sense of [10]. The variational kernel .F: R'XR'*R
has to satisfy the conditions (a), (b), (c) and (d) in [10], p. 48. We also recall that u

is a super-F-extremal, i.e., u€alt(U), tf h=u on 0D implies h<u on D for every

function h€lfqt(U) a6(clD) and every regular domain D relatively compact in U,

regular meaning here a bounded domain with no boundary components consisting

of one point only. By [10], Lemma 5.23, 0ll is, in fact, a sheaf. Taking now as "//' the
subsheaf of constant functions, the axiom of quasi-linearity is satisfied by [0],
Lemma 5.2. A regular domain is an MP-set by Il], Lemma 2.3, and resolutive (in

fact, regular in the Dirichlet problem sense) by [3], Theorem 3.10. The axiom of
quasi-linear positivity holds trivially and the axiom of Bauer convergence by [0],
Theorem 4.22. To verify the axiom of completeness, let u: U-(--, *-] satisfy

Hf,=u for every regular set D relatively compact in U, and let h€/f,*(U) n6(cl D)
satisfy h=u on åD. Then h:HI:$T=Hf,=u holds on D and the axiom of
completeness follows.

Example 2.7. This example is due to Martio [a private communication]. Con-
sider X: {(x,y)eR'lxy:0,/=0}. The open intervals 7:(a,b)x{0} and ;:{0}x
(a,b) for a,b(R, a<b,0{(a, b), and the neighbourhoods T:(-t, t)X[O, l) of the

origin for 0<t= * - together form a base for the topology of X. We now define

*(U) for open sets UcX as follows:
(i) å is linear on U whenever U is of the form 1;
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(ii) å(0): (maxh(0u)+mnh(0u\)12 and h is linear on the intervals from

the origin to the boundary points of U whenever U is of the form ?;
(iiD hlf€lf(I) for T:(-t,r)x[0, t), t:min(-a,b,c, 1), and å is linear

on the intervals (respectively half-lirres) from the origin to the boundary points (re-

spectively natural ideal boundary points) of U whenever (J:(a,å)X[0'c) for

--<a=0=b< ** and 0<c5*-;
(iv\ hlu,€tr(u) for every component (Jo of u whenever u is non-connected.

Defining now u(,tt (u) by the comparison principle given in Example 2.60

i.e., h<u on 0V implies h=u on Z for every domain V telatively compact in 4
we get a sheaf 4t on X.It is easily verified that (X, 4l) is a quasi-linear harmonic space

in the sense of Definition 2.3.

3. Elementary properties of quasi-linear harmonic spaces

Lemma 3.1. Let V be an open set such that there exists a strictly positiuefunc-

tion uo€'f (V). If U is un MP-set relatit:ely compact in V qnd (f)"r, is an upper

directed fmnily of lower semicontinuous functions on 0U, then

HY2o,r, : 1214rl".

proof.It suffices to prove the inequality ä$or,=sup 4j.. fake an arbitrary

oe!!!,or. and extend o into cl U by the upper limit. The extended function will be

atso Aeäotea by u. Consider first a point yQ|U such that supf (7)= * -. Then

u(y) - lim sup u(x) < sup f"(y) = +euo(!)*supf, (y).
U)x*Y

Choosittg now ay(I

(3.1)

such that sup f,(y)=fo"(y) + * uro(i we get

u (y) -f,nj) - euoj) < 0.

If now y€åU satisfies supf(y):f o, w€ again find ocr€I such that the inequal-

ity (3.1) holds, since u is upper bounded. Since u-fn,-euo is upper semicontinuous

on 0U, the set

{z<0A la Q) -f""(z) - eao@)' 0)

is open. Since åU is compact and (f)"E1is upper directed, we may apply a standard

compactness argument to find an uo(I such that a<f^leus holds on the whole

boundary åtl. Therefot" u€Woo*u,o ild by Lemma 2.1(4) we obtain

u = Hfro+euo: Hfno+euo < suPflor*+ruo.

Hence
HYopL=- svpHy"aeus,

and the assertion follows bY e*0.
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Remark. The preceding lemma seems to be an important device to overcome
some difficulties which come from the fact that the functional f;Hl(x) is not linear
in general. It is reasonable to shorten the notation by saying that an open set U
is sfficiently small, tf cl t/ is contained in an open set Z such that there exists a
strictly positive function a€{'(V), see also [8], p. 58.

Proposition 3.2. Let ur, urbe hyperharmonic on an open set U and let (u)"e ,
be an upper directed family of hyperhqrmonic functions on U. Then inf (ur,u2) and
sup uil are hyperharmonic on U.

Proof, The first assertion follows immediately from the axiom of completeness.

To prove the second assertion, let V be a resolutive set sufficiently small and
relatively compact in t/. If Wis a resolutive set relatively compact in V,then

HYoru*: suP EL < sup trc

by Lemma 3.l. Hence sup ao is hyperharmonic on V by the axiom of completeness.

By the sheaf property of hyperharmonic functions (and the axiom of quasi-linear
positivity), sup r/c is hyperharmonic on U,

Proposition 3.3. Let V be a relatiuely compact, resolutiue and sfficiently
small set and let f: |V-R be a bounded lower semicontinuous boundary function.
Then fi is harmonic on V. If f: |V*R is lower semicontinuous, then H', ts hyper-
hqrmonic on V. Finally, if W is resolutive and relatiuely compctct in V, then

4Y:@nl'11
Proof. (1) Let f be a bounded lower semicontinuous boundary function and

denote
s= {H{l g =f, c<s(|m}.

Clearly F is an upper directed family of harmonic functions on Y and,

sapF: stryH[ : E!"oo: E{
by Lemma 3.1. Since f=a for some real number a, HI=HI is locally upper
bounded, snce H! is a harmonic function on V by the axiom of resolutivity. By
Proposition 2.5, 4 is harmonic on Z.

Q) fet f be a lower semicontinuous boundary function. Since / is lower
bounded, inf (f,n) is bounded and lower semicontinuous for every n€N. Since

,f:supn inf Qf,n) and (inf (/ n)),eN is an increasing sequence, we may apply Lem-
ma 3.1 to obtain

S : saPna{n'6',1'

Since (äl"ru.,n))oear is an increasing sequence of harmonic functions on V, 4
is hyperharmonic by Proposition 3.2.



holds on W by Lemma
Applying Lemma 3.1

Hf : H{up r,
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(3) To prove the last assertion, we denote f,=nf U,n) for z€N. Then

4Y,- Hf^

2.2, since fi,is harmonic on Vby the first part of this proof.
again, we obtain

on W.

Proposition 3.4. The components of a resolutiue set are resplutiue.

Proof. Let Ube a resolutive set and Vbe a component of U. We have to prove
first that V is an MP-set. Let a (respectively a) be a lower bounded hyperharmonic
(respectively an upper bounded hypoharmoniQ function on Z such that

tiglTrf u(x) = limsw u(x)

holds for every y(0V and that u>-u on Z\K(z, u) for some compact set K(u, a)

in X. We define u'(?/(U), respectively u'(-4t(U) by setting u'lV:u,
z'l(u1lz;:6, respectively u'lv:u, u'l(u1lz1:6. Since u is an MP-set, u'=u'
on U, hence u:n'=o':o holds on Z.

Since X is completely regular, see Remark 2.4, the assertion now follows by the
same reasoning one has to apply in the linear theory of harmonic spaces.

Corollary 3.5. The open connected sets resolutiue relatiue to the hyperharmonic
sheaf oll form a base for the topology of X.

4. Superharmonic functions and potentials

Definition 4.1. A hyperharmonic function u on an open set UcX is called
superharmonic on U, if for euery resolutiue set V relatiuely compact in U and suffi-
ciently small, the lower Dirichlet solution Hf, ts harmonic on V.

The family of superharmonic functions on U will be denoted by g (U).

Lemma 4.2. A superharmonic function u(9(U) is finite on a dense subset
o.f u.

Proof. Suppose there exists an open set Vc.U wch that ulcl Z: * -. We
may assume that cl VcU and that Y is resolutive and sufrciently small. Let ao

be a strictly positive function in a neighbourhood (c U) of V. Clearly, we have
h:o€41"(V) for all l.>0. Hence 4=1ro for all ,l,>0 and we get a contradiction
Hf,:t*.
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Theorem 4.3. A quasi-linear harmonic space admits the Doob conDergence

Foperty if and only if euery fimction hyperharmonic on an open set is superharmonic

as soon as it is finite on a dense subset.

Proof. Let first the Doob convergence property hold on a quasi-linear harmonic

space X, let u€41(U) be flnite on a dense set and let Vbe resolutive, sufficiently

small and relatively compact in U. Denoting

g:: {f(s(lV\lf = u on 0v\

we have r:sup I on 0V. For every f(9, 4 it harmonic and, by Lemma 3.1,

suqHf:Hkno:HI=u
on Z. Hence HI:rup 4 i" finite on a dense subset of V. By Proposition ,.t, YI
is harmonic on Z.

To prove the converse assertion, let (h,\,r* be an increasing sequence of har-

monic functions on an open set U such that sup å, is finite on a dense set. Let V be

resolutive, sufficiently small and relatively compact in U. Then

supån: supfl.I^: {up6^

holds on V by Lemma 2.2. By assumption, sup ån is superharmonic on U, hence

flloer":sup ån is harmonic on V. By the sheaf property, sup ån is harmonic on U.

Lemma 4.4. (1) A locally bounded hyperharmonic function is superharmonic.

(2) A hyperhqrmonic minorcint of a superharmonic function is superharmonic.

(3) If sr, sz are superharmonic functions, then rnf (sr, sr\ is superharmonic-

(4) A locally superharmonic function is superharmonic.

Proof. (1) Let uQt (U\ be locally bounded. If V is resolutive, sufficiently small

and relatively compact in t/, then ul\V is bounded' By Proposition 3.3, HI ishat-
monic on Z.

(2) Let s be superharmonic on U, u be hyperharmonic on U and u€s. Let
further Zbe resolutive, sufficiently small and relatively compact in U. Denoting again

g:: {f<g(|V)lf = u on 0Y}

we have z:sup F on 0V and, by Lemma 3.1,

il : 4"or: suPEI = H!'

Since { is harmonic, {, is locally bounded, hence harmonic by Proposition 2.5.

(3) This follows immediately by Proposition 3.2 and the preceding part of this

lemma.
(4) Let uQt.(U) be locally superharmonic and let V be resolutive, sufficiently

small and relatively compact in U. Given x(V, we may take two neighbourhoods
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W,W'of x such that cl WcW'cclW'cV such that lZ is resolutive and ullU'
is superharmonic on W'. Hence HI isharmonic. Denoting again I as in the proof
of part (2), we get

Wlw: fter(dflw) 
: Hh = 4

on Wby Lemma 3.1 and Proposition 3.2. Since äf; is harmonic on W,the reasoning

of the preceding part (2) results in that llf, is harmonic on W. By the sheaf property,

Hf, is harmonic on V.

Definition 4.5. A superharmonic function p>O on X is a potential on X,
if the constant function 0 is the greatest hypoharmonic minorant of p.

Proposition 4.6. Let p be a superharmonic function on X. Then the fol-
lowing properties are equiualmt:

(1) p is a potential on X;
(2) if u is hyperharmonic on X, then u*p>Q implies u>0.

Proof. If z is hyperharmonic on X,p is a potential on X and u*p>O, then

-u=p is a hypoharmonic minorant of p hence -il=0 and u>0.
On the other hand, let u be a hypoharmonic minorant of p on X. Then

-u*p>O implies -u>0. Hence u<0 and p is a potential on X.
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