Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 10, 1985, 349—353 Commentationes in honorem Olli Lehto LX annos nato

ESTIMATES OF THE INNER RADIUS OF UNIVALENCY OF DOMAINS BOUNDED BY CONIC SECTIONS

MATTI LEHTINEN

1. Introduction

Let A be a simply connected domain in the extended plane, conformally equivalent to the unit disc. Denote by M(A) the set of locally injective meromorphic functions in A and by ϱ_A the density of the Poincaré metric in A, so normalized that

$$\varrho_A(h(z))|h'(z)| = (2 \text{ Im } z)^{-1}$$

if h is a conformal map of the upper half-plane H onto A. The set Q(A) of the Schwarzian derivatives S_f of $f \in M(A)$ is a Banach space with the norm

$$||S_f||_A = \sup \{ |S_f(z)|\varrho_A(z)^{-2}| \ z \in A \}.$$

The size of $||S_f||_A$ is connected to the global injectiveness of f. If $||S_f||_A=0$, f is a Möbius transformation and hence univalent. If A is Möbius equivalent to a disc, $||S_f||_A \leq 2$ implies that f is univalent and $||S_f||_A > 6$ implies that f is not univalent [8, 4]. Results due to Ahlfors [1] and Gehring [2] show that if A is a quasidisc, then there exists a positive number b such that $||S_f||_A \leq b$ implies that f is univalent and has a quasiconformal extension to the plane, and that this property characterizes quasidiscs.

Motivated by these results, Lehto [6] defined the inner radius of univalency $\sigma_I(A)$ of A as the supremum (or maximum) of numbers b such that every $f \in M(A)$ satisfying $||S_f||_A \leq b$ is univalent. If A is a quasidisc and $T(A) \subset Q(A)$ is the universal Teichmüller space of A, i.e., the set of S_f such that f has a quasiconformal extension to the plane, then $\sigma_I(A)$ is the radius of the largest ball centered at the origin of Q(A) and contained in T(A). Equivalently, $\sigma_I(A)$ is the distance of S_h from the boundary of T(H). Relatively little is known about the actual value of $\sigma_I(A)$ for a given domain A. The classical results of Nehari [8] and Hille [3] imply that $\sigma_I(A)=2$ for any domain A Möbius equivalent to a disc, and Lehto [7] and the author [5] have observed that $\sigma_I(A) < 2$ for all other simply connected domains. Denote by A_k

the angular domain $\{z \mid |\arg z| < k\pi/2\}$. If $0 < k \le 1$, one easily computes $\sigma_I(A_k) = 2k^2$. As pointed out by Lehto [7], the method employed by Ahlfors in proving that a quasidisc has a positive radius of univalency can be used to obtain explicit lower estimates for $\sigma_I(A)$, once a differentiable quasiconformal reflection of A, i.e., a sense-reversing quasiconformal $\lambda: A \to A^*, A^* = \overline{C} \setminus \overline{A}$, fixing the boundary points of A, is known. More precisely,

(1)
$$\sigma_I(A) \ge 2 \inf_{z \in A} \frac{|\lambda_{\bar{z}}(z)| - |\lambda_z(z)|}{|\lambda(z) - z|^2 \varrho_A(z)^2}.$$

For an obtuse angle A_k , 1 < k < 2, the natural reflection

 $\lambda(z) = -z(\bar{z}/z)^{1/k}$

yields

(2)
$$\sigma_I(A_k) \ge 4k - 2k^2$$

[7], where in fact equality holds [5]. Taking

$$E_r = \{z \mid (r \operatorname{Re} z)^2 + (\operatorname{Im} z)^2 > 1\}, \quad 0 < r \le 1,$$

to be the outside of an ellipse with half-axes 1/r, 1, (1) applied to the reflection

$$\lambda(z) = ((1-r)/w + (1+r)/\bar{w})/(2r)$$

with

z = ((1+r)w + (1-r)/w)/(2r)

gives

(3)
$$\sigma_I(E_r) \ge \frac{8r^2}{(1+r)^2}$$

[7], which is asymptotically sharp for $r \to 0$ and $r \to 1$. (The last assertion is obvious, and if $\lim_{r\to 0} \sigma_I(E_r) = 0$ were not true, there would exist a sequence $(r_n), r_n \to 0$, such that each E_{r_n} would be a K-quasidisc with a fixed K [2].)

2. Domains bounded by a branch of a hyperbola

There are simple cases in which a straightforward application of (1) produces no results. Consider, for example, the domain

$$G = \{z \mid \text{Re } z < 0 \text{ or } (\text{Re } z)^2 - (\text{Im } z)^2 < 1\}$$

bounded by a rectangular hyperbola. A natural 3-quasiconformal reflection $\lambda: G \rightarrow G^*$, continuously differentiable outside the asymptote rays of ∂G , is given

by the formulas

$$\lambda(z) = (2 - \bar{z}^2)^{1/2}$$

for those z which lie in the domain bounded by ∂G and the asymptotes of ∂G , and

$$\lambda(z) = (2 - e^{i\pi/3} \bar{z}^{4/3} z^{2/3})^{1/2}$$

for $\pi/4 < \arg z < 7\pi/4$. For this λ , however, the right-hand side of (1) equals zero. For c > 0, set

$$G_c = \{z | \text{ Re } z < 0 \text{ or } (c \text{ Re } z)^2 - (\text{Im } z)^2 < 1 \}.$$

Information on $\sigma_I(A_k)$ can be used to compute $\sigma_I(G_c)$ utilizing an idea introduced in [5]:

Theorem 1. For every positive c,

$$\sigma_I(G_c) = (8/\pi) \arctan c - (8/\pi^2) (\arctan c)^2.$$

Proof. Let k be an arbitrary number satisfying 2 arc tan $c < k\pi < \pi$. Draw a circular arc in G_c , with both endpoints on the real axis and meeting the real axis at angle $k\pi/2$, tangent to ∂G_c at a point z_0 . The infinite domain T_k bounded by this arc and its mirror image in the real axis is Möbius equivalent to A_{2-k} , and $G_c \subset T_k$. By [5], a conformal map $f: T_k \rightarrow A_{2-k} \cap \{z | 1 - z \in A_{2-k}\}$ satisfying $f(z_0) = f(\bar{z}_0) = \infty$ and $\|S_f\|_{T_k} = 4(2-k) - 2(2-k)^2 = 4k - 2k^2$ exists. Since $\varrho_{G_c}(z) > \varrho_{T_k}(z)$ for all $z \in G_c$, $\|S_f\|_{G_c} \leq 4k - 2k^2$. Also, $f(G_c)$ is not a Jordan domain. Consequently,

(4)
$$\sigma_I(G_c) \le (8/\pi) \arctan c - (8/\pi^2) (\arctan c)^2.$$

To prove the opposite inequality, observe that for every $\varepsilon > 0$, there exists an $f \in M(G_c)$ such that $\|S_f\|_{G_c} < \sigma_I(G_c) + \varepsilon$ and f is not univalent. Assume $f(z_1) = f(z_2)$, $z_1 \neq z_2$. Then either z_1 and z_2 are in the closure of a disc or half-plane $U \subset G_c$ or in the closure of an angular domain $U \subset G_c$. Möbius equivalent to A_{2-k} for some k, 2 are tan $c < k\pi < \pi$. (*U* is bounded, for example, by tangents to ∂G_c through z_1 and z_2 .) Since f is not univalent in the closure of U, $\|S_f\|_U \ge \sigma_I(U) \ge 4k - 2k^2$. Again taking into account the monotonicity of the Poincaré metric with respect to domain, one gets $\|S_f\|_{G_c} \ge \|S_f\|_U$, and the inequality opposite to (4) follows.

We next consider the domain G_c^* , complementary to G_c . Reasoning as above, we obtain

Theorem 2. For every positive c,

$$\sigma_I(G_c^*) = (8/\pi^2)(\arctan c)^2.$$

Proof. Let $k\pi = 2 \arctan c$. Then $G_c \subset A_k$. The function g, $g(z) = \log z$, maps A_k onto an infinite horizontal strip of width $k\pi$, and $g(\partial G_c^*)$ is not a quasicircle. Since $\|S_g\|_{A_k} = 2k^2$, $\sigma_I(G_c) \le 2k^2$. On the other hand, assume $f \in M(G_c)$ with $\|S_f\|_{G_c} < \sigma_I(G_c) + \varepsilon$ satisfies $f(z_1) = f(z_2)$. Then, considering the rays parallel to the

asymptotes of ∂G_c^* which join z_1 and z_2 to ∞ in G_c^* and the segment joining z_1 to z_2 , we observe that z_1 and z_2 are on the boundary of a finite domain U bounded by a segment and a circular arc meeting at an angle at least $k\pi$. Since U is Möbius equivalent to some $A_{k'}$, $k' \ge k$, we obtain $\sigma_I(G_c) \ge 2k^2$ as in the proof of Theorem 1.

3. The exterior of an ellipse

The method employed above for domains bounded by a branch of a hyperbola does not yield the exact value of $\sigma_I(E_r)$. However, (3) can be improved considerably, and an upper bound can be established, too.

Theorem 3. For every r, $0 < r \le 1$,

(5)

$$(16/\pi) \arctan q - (32/\pi^2) (\arctan q)^2 \leq \sigma_I(E_r)$$

 $\leq (16/\pi) \arctan r - (32/\pi^2) (\arctan r)^2$,

where $q = r/(2-r^2)^{1/2}$.

Proof. Denote by T_r the infinite domain bounded by two circular arcs through 1/r, i, -1/r and 1/r, -i, -1/r, respectively. Then $E_r \subset T_r$, $\{i, -i\} \subset \partial T_r \cap \partial E_r$, and T_r is, by elementary geometry, Möbius equivalent to A_k , $k=2-(4/\pi)$ arc tan r. By [5], a conformal map of T_r onto a non-quasidisc exists such that f(i)=f(-i) and $||S_f||_{T_r}=4k-2k^2$. As in Theorem 1, we deduce $\sigma_I(E_r) \leq 4k-2k^2$, or the right-hand side of (5).

To prove the left-hand side of (5), assume $f \in M(E_r)$, $||S_f||_{E_r} < \sigma_I(E_r) + \varepsilon$, and $f(z_1) = f(z_2)$, $z_1 \neq z_2$. Consider discs D_j , j=1, 2, such that $E_r^* \subset D_j$, $z_j \in \partial D_j$ and ∂D_j touches ∂E_r either at two points symmetric with respect to the imaginary axis or one of the points i, -i. If $z_1 \notin D_2$ or $z_2 \notin D_1$, both z_1 and z_2 belong to the closure of a domain $U \subset E_r$ such that $\sigma_I(U) = 2$. Otherwise, set $U = (D_1 \cap D_2)^*$. Then, by an elementary geometric argument, U is Möbius equivalent to an A_k , $1 < k < 2 - (4/\pi)$ arc tan q. In each case, f maps U onto a domain not bounded by a Jordan curve or f is not injective. Hence $||S_f||_{E_r} \ge ||S_f||_U \ge 4k - 2k^2$, and the left-hand side of (5) follows.

Acknowledgement. The author wishes to thank David Calvis for his useful comments.

References

- [1] AHLFORS, L. V.: Quasiconformal reflections. Acta Math. 109, 1963, 291-301.
- [2] GEHRING, F. W.: Univalent functions and the Schwarzian derivative. Comment. Math. Helv. 52, 1977, 561—572.
- [3] HILLE, E.: Remarks on a paper by Zeev Nehari. Bull. Amer. Math. Soc. 55, 1949, 552-553.
- [4] KRAUS, W.: Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereichs mit der Kreisabbildung. - Mitt. Math. Sem. Univ. Giessen 21, 1932, 1-26.
- [5] LEHTINEN, M.: On the inner radius of univalency for noncircular domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 5, 1980, 45–47.
- [6] LEHTO, O.: Domain constants associated with Schwarzian derivative. Comment. Math. Helv. 52, 1977, 603—510.
- [7] LEHTO, O.: Remarks on Nehari's theorem about the Schwarzian derivative and schlicht functions.
 J. Analyse Math. 36, 1979, 184–190.
- [8] NEHARI, Z.: The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55, 1949, 545—551.

University of Helsinki Department of Mathematics SF-00100 Helsinki Finland

Received 23 May 1983