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ESTIMATES OF THE INNER RADIUS
OF UNIVALENCY OF DOMAINS BOUNDED
BY CONIC SECTIONS

MATTI LEHTINEN

1. Introduction

Let A be a simply connected domain in the extended plane, conformally equiva-
lent to the unit disc. Denote by M (A) the set of locally injective meromorphic func-
tions in 4 and by @, the density of the Poincaré metric in A, so normalized that

ea(h@)IN ()] = 2Im 2)7

if 41 is a conformal map of the upper half-plane H onto A. The set Q(A) of the Schwarz-
ian derivatives S, of f€ M(A) is a Banach space with the norm

[Sella = sup {|Sf(2)|QA(Z)—2l z€A}.

The size of || S|4 is connected to the global injectiveness of f. If [ S|l ,=0,
fis a Mébius transformation and hence univalent. If 4 is Mobius equivalent to a
disc, || S;ll,=2 implies that fis univalent and || Sg||,>6 implies that f'is not univa-
lent [8, 4]. Results due to Ahlfors [1] and Gehring [2] show that if 4 is a quasidisc,
then there exists a positive number b such that ||S;|,=b implies that fis univalent
and has a quasiconformal extension to the plane, and that this property characterizes
quasidiscs.

Motivated by these results, Lehto [6] defined the inner radius of univalency
0;(A) of A as the supremum (or maximum) of numbers b such that every fcM(A4)
satisfying ||.S,||,=b is univalent. If 4 is a quasidisc and T(4)CQ(4) is the univer-
sal Teichmiiller space of 4, i.e., the set of S, such that f'has a quasiconformal exten-
sion to the plane, then o¢;(A4) is the radius of the largest ball centered at the origin
of 0(A4) and contained in T'(4). Equivalently, 6;(A) is the distance of S, from the
boundary of T(H). Relatively little is known about the actual value of ¢,(A4) for a
given domain A. The classical results of Nehari [8] and Hille [3] imply that o,(4)=2
for any domain A4 M&bius equivalent to a disc, and Lehto [7] and the author [5] have
observed that o¢;(4)<2 for all other simply connected domains. Denote by A,
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the angular domain {z||arg z|<kn/2}. If O<k=1, one easily computes o,(4,)=
=2k2. As pointed out by Lehto [7], the method employed by Ahlfors in proving that
a quasidisc has a positive radius of univalency can be used to obtain explicit lower
estimates for o;(A), once a differentiable quasiconformal reflection of 4, i.e., a sense-
reversing quasiconformal A: 4—A4*, A*=C\A4, fixing the boundary points of 4,
is known. More precisely,

R NCTEINC]
M o) = 2 - Pear

For an obtuse angle 4,, 1<k<2, the natural reflection

A(2) = —z(Z/2)M*
yields

@ or(4)) = 4k—2Kk?
. [7], where in fact equality holds [5]. Taking

E,={z|](rRez?*+(Imz)*>1}, 0<r=1,
to be the outside of an ellipse with half-axes 1/r, 1, (1) applied to the reflection

A(2) = ((L=r)w+A+7)/)/(2r)

with

z= ((1 +rw+(1— r)/w)/(2r)
gives
3 o;(E,) = 8r%/(1+r)

[7], which is asymptotically sharp for r—~0 and r—1. (The last assertion is obvious,
and if lim,_,0;(E,)=0 were not true, there would exist a sequence (r,), r,—0,
such that each E, would be a K-quasidisc with a fixed K [2].)

2. Domains bounded by a branch of a hyperbola

There are simple cases in which a straightforward application of (1) produces no
results. Consider, for example, the domain

G={z|Rez<0 or (Rez)*—(Imz)?<1}

bounded by a rectangular hyperbola. A natural 3-quasiconformal reflection
A: G—~G*, continuously differentiable outside the asymptote rays of dG, is given



Inner radius of univalency of domains 351

by the formulas
A(z) = 2—zB)?

for those z which lie in the domain bounded by dG and the asymptotes of dG, and
Az) = (2—ei"/3Z4/3z2/3)1/2

for n/4<arg z<Tn/4. For this 1, however, the right-hand side of (1) equals zero.
For ¢=0, set

G.={z|Rez<0 or (cRez)?—(Imz)*<1}.

Information on o,(4,) can be used to compute ¢,(G,) utilizing an idea introduced
in [5]:

Theorem 1. For every positive c,
61(G,) = (8/r) arc tan ¢ —(8/n?)(arc tan c)?.

Proof. Let k be an arbitrary number satisfying 2 arc tan c<kn<n. Draw a cir-
cular arc in G,, with both endpoints on the real axis and meeting the real axis at
angle kn/2, tangent to 0G, at a point z,. The infinite domain T} bounded by this arc
and its mirror image in the real axis is Mobius equivalent to 4,_,, and G.CT;.
By [5], a conformal map f: T,~As_n{z|l —z€A4,_,} satisfying f(zo) =f(Zp) =
and [ Syllr, =4(2—k)—2(2—k)*=4k—2k?* exists. Since @g_ (2)=eor, (z) for all
zeG,, || Sf||G =4k —2k2. Also, f(G,) is not a Jordan domain. Consequently,

) 0;(G,) = (8/m) arc tan ¢ — (8/a?)(arc tan c)?.

To prove the opposite inequality, observe that for every &>0, there exists an
feM(G,) such that [|Ssll¢ <o,(G. )+¢& and fis not univalent. Assume f(z,) =f(z5),
z,%2,. Then either z; and z, are in the closure of a disc or half-plane UcG, or in
the closure of an angular domain UcG, Mdbius equivalent to A,_; for some k,
2 arc tan c<kn<m. (U is bounded, for example, by tangents to 0G, through z, and
z,.) Since £ is not univalent in the closure of U, [S,|y=a,(U)=4k—2k>. Again
taking into account the monotonicity of the Poincaré metric with respect to domain,
one gets || S fllG =|S,lly, and the inequality opposite to (4) follows.

We next consider the domain G*, complementary to G.. Reasoning as above, we
obtain

Theorem 2. For every positive c,
07(G¥) = (8/n?)(arc tan c).

Proof. Let kn=2arctanc. Then G.CA,. The function g, g(z)=logz,
maps A, onto an infinite horizontal strip of width kr, and g(dG}) is not a quasi-
circle. Since | S,ll, =2k* 0,(G)=2k* On the other hand, assume f€ M (G, with
I Sfl]G <0,(G)+e¢ satlsﬁes f(z))=f(z5). Then, considering the rays parallel to the
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asymptotes of G which join z; and z, to < in G and the segment joining z; to z,,
we observe that z; and z, are on the boundary of a finite domain U bounded by a seg-
ment and a circular arc meeting at an angle at least kn. Since U is M&bius equivalent
to some 4., k'=k, we obtain ¢;(G.)=2k? as in the proof of Theorem 1.

3. The exterior of an ellipse

The method employed above for domains bounded by a branch of a hyperbola
does not yield the exact value of o;(E,). However, (3) can be improved considerably,
and an upper bound can be established, too.

Theorem 3. For every r, O<r=1,
®) (16/r) arc tan g—(32/n?)(arc tan q)% = o,(E,)
= (16/n) arc tan r—(32/n?)(arc tan r)?,
where q=r/(2—r?)/2,

Proof. Denote by T, the infinite domain bounded by two circular arcs through
1)r, i, —1/r and 1/r, —i, —1/r, respectively. Then E,cT,, {i, —i}cdT,NndE,,
and T, is, by elementary geometry, Mobius equivalent to A,, k=2—(4/x) arc tan r.
By [5], a conformal map of 7, onto a non-quasidisc exists such that f(i)=f(—1i)
and |S,|r =4k—2k* Asin Theorem 1, we deduce o,(E,)=4k—2k? or the right-
hand side of (5).

To prove the left-hand side of (5), assume f€M(E,), ||Ssly <o,(E,)+e, and
f(z)=f(z2), z:#2z,. Consider discs D;, j=1,2, such that E*cD;, z;¢0D; and
0D; touches OE, either at two points symmetric with respect to the imaginary axis
or one of the points i, —i. If z, 4 D, or z,¢ D;, both z; and z, belong to the closure
of a domain UCE, such that ¢;(U)=2. Otherwise, set U=(D,n D,)*. Then, by
an elementary geometric argument, U is Mobius equivalent to an 4,, l<k<
2 —(4/r) arc tan g. In each case, f maps U onto a domain not bounded by a Jordan
curve or fis not injective. Hence | .S, 5,5” S/lly=4k—2k?, and the left-hand side of
(5) follows.
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