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1. Introduction. In this article we continue our investigations of the geometric

properties of holomorphic quadratic differenlials. We will consider only the case of
a compact Riemann surface R, leaving for another time the extension to the more

general situation that Ä is allowed a finite number of punctures.

The first part is an investigation of the convergence of trajectory rays, or more

generally, geodesic rays, induced by the covergence of the differentials. The pheno-

menon can be studied on the surface itself or - and this is our objective - in terms

of the lifts to the universal covering surface ^[I represented by the unit disk.

Let {E,} be a sequence of holomorphic quadratic differentials on R which con-

verges locally uniformly to a differential g. In view of the compactness of Ä, the locally

uniform convergence is equivalent to the ccnvergence in norm llE"-Ell*O' Since

the case g:0 is of no interest and the trajectory structure of a quadratic differen-

tial is independent of a positive constant factor we.may normalize all differentials

so that
llE,ll : llvll : [t lEldu du : r.

We will denote the space of normalized differentials by O(Ä).
A (horizontal) trajectory ray a of E is a maximal arc, starting at some point

p€R along which, in terms of any local parametet w, E(w)dwz>O. It is called crit-
ical if it ends at azero ofg; otherwise it is called regular. A critical ray can be con-

tinued across the zerc ( as a geodesic ray. It must then satisfy Teichmtller's angle

condition at (
S > 2nl(k+2);

but otherwise, the direction of continuation is free: it is not necessarily horizontal.

We always think of a geodesic ray as continued indefinitely. It can have self crossings

on the surface, whereas a regular ray cannot mdet itself, unless it closes up forming
onRasimpleloop.

A geodesic is the union of a finite or countably infinite number of E-straight
segments or rays (along each of which arg (E@\ dw\ is constant) whose endpoints

are zeros of g. A geodesic is called horizontal rf E dzz>O along each regular part.
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The critical graph of g is the union of all zeros of E and the (horizontal) trajec-
tory rays emanating from them.

A quadratic differential is said to have closed trajectories ifall ofits (non-criti-
cal) trajectories are closed. This is the case, on a compact surface, if and only if the
critical graph is compact. The closed trajectories sweep out disjoint annuli. A qua-

dratic differential with closed trajectories is called simple if all of its closed
trajectories are parallel (sweep out a single annulus).

An approximation theorem due to Masur [4] says that any quadratic differen-
tial can be approximated by simple ones. fn the sense of Thurston (see e.g. [2]) the
closed trajectories of the approximating gn converge. It is the motivation for our work
to study the asymptotic convergence of these trajectories.

The quadratic differentials are lifted to the universal covering surface .EI by means

of the holomorphic projection map n: H*R,

E*Q\ dzz : cp(n(z))n'(z)2 dzz.

Ifaisatrajectory of EinRtheneachcomponentof {z-l(a)}inIIis atrajectoryof g*
which, as shown in [3], has distinct end points on the circle 0H. Conversely each tra-
jectory of E* projects to one of g. More generally if a is a geodesic of E and w(a
is a regular point, through each point w* over lr passes a lift s* of a. This lift a* is
a geodesic for E* and it is a simple arc rn H which [3] has distinct end points on 0H.
And conversely, the projection to -R ofa geodesic for E* is a geodesic for g (but not
necessarily simple).

If /: R*S is a homeomorphism between two Riemann surfaces, / induces
both a) a homeomorphism f": Q(R)-Q$) between the (6g-7)-dimensional
spheres of normalized differentials and b) a homeomorphism f*: 0H*0H of the
unit circle. Both /o and, f* depend only on the homotopy class ofl The mapping /o
was constructed in [2], and the existence of/* is a classical result of Nielsen. In the
context of analysis the existence of /* : 0H *EH results from taking f to be quasi-
conformal, lifting/to a necessarily quasiconformal map f*: H*H, and extending
that. As a map of the circle, /* is uniquely determined by the homotopy class of/
up to a composition Trof*oT, where T, is a cover transformation over R and T,
is one over S.

The second part of our work, which depends heavily on the first, shows how the
maps lo and f* are tied together. For a generic differential E<Q(R\ we show in
particular that points p, q(.AH are the end points of a trajectory of its lift g* in
II ifand only if f*(p),f*(q\ are the end points ofa trajectory ofthe lift of/o(E).
This is our main result.

2. We refer to the result, established in Marden and Strebel [3], that a hft y*
of any geodesic ray y of E (i.e. any geodesic ray of the ltft tp* of g) has a well deter-
mined end point on 0H.In order to show the convergence of the rays, we need how-
ever more information about the associated metric. The main difficulty lies in the
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factthat the lifts E* have infinite norm and the convergence, in I[, is only locally

uniform.

Lemma I (Annulus lemma). Let A be a circular dnnulus and o a simple loop

separating its boundary contours. Suppose Y is an arbitrary holomorphic dffirential

in A and y is a simple geodesic segment of Y whose end points lie on o but which has

no other points in common with o. Thm, for the YJmgths,

lvl* = lol*

Proof: Assume, first, that the arc 7 has two different end points. Then, it bounds

a simply connected region D together with one of the subarcs o1 of o determined by

the end points of 7. Because 7 is the unique Y-geodesic in its homotopy class,

Itlr= lo'l*= loly.

If the end points of y coincide, it is a Jordan curve which must contain the interior

boundary of l. Otherwise it would contradict the uniqueness of geodesic connections

in a simply connected domain. We can therefore apply the earlier argument' using

o instead of o1. This proves the lemma'

The arc y is automatically simple, if it is a subarc of a trajectory, or any straight

arc. This is the case in our application of the Annulus lemma'

The lemma allows for a sharper bound of the length of certain horizontal arcs in

the following case.

Let T be a hyperbolic or parabolic element of the group G of cover transforma-

tions of If. Let o* be a circle in If along which the points move under I (circle through

the fixed point(s) of 7), We form the corresponding annular covering surface I by

identifying the points of If equivalent under {?'}. Suppose 9* is the lift to ä of a

holomorphic quadratic differential 9 on rR, and y is the projection of E" to A. The

closed curve or is the projection of a fundamental subinterval off of o* under T. Let

a* be a horizontal arc of g* having its two end points on o*, but not meeting o*

otherwise. Then,
la*lr* 5 lof,lr*.

A crude estimate would only compare the length of a* with that of the subarc of o*

between its two end points. The lemma is actually of a topological nature.

3. In this section we show that H is uniformly complete in the g*-metrics,

E(Q(R) and in Section 4 we draw a number of conclusions from this fact.

Lemma 2 (Completeness). (i) For fixed zo€H, giaen any L>0, there exists

r<l such that for any zQH with lzl>r, and any pdth r in H from zo to z' the q*-

length of r exceeds L for all E(Q@\.
(ii) For fixed ('*(e\u, giuen any L>0, there exists ö>0 such that for any

z, z'eH which satisfy l(-zl<ö,l('-z'l<6 and any path r in H from z to z', the E*-

Iength of 'c exceeds L for all E<g@);.
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Proof: cover Ä with a finite system {u,} of simply connected neighborhoods
such that for each i, the closure U,- is contained in a simply connected neighborhood
Tibounded by a simple loop 04. Let z be any arc in II from a point zo and which
has limit points on 0H. We claim that there are infinitely many disjoint open intervals
{rr} of z such that for each j there is some i for which the crosed arc ne;\ runs in
4-\U, tuom |Ui to 0W.

To prove this assertion we first dispose of the case that the projection z(z) is
a closed curve in A. The base point z(zo) lies in (J1, say. Since z(r) cannot entirely
liein v, it contains an arc Pfrom a point of 0(Lto a point of 0v1. The required
arcs {zr} can be chosen from among the components of {"-r(p)}.

rf n(r) is not closed we can find a sequence of points zn(r with lim zn(0H
such that {n(t,)} are distinct points in Ä with limr(z):p. Assume say p(Ut.
Letq,denotetheintervaloftfrom z,tozo*1. Itsprojection z(g,) cannotlienl\
for all n exceeding some number N. For if that happened then the entire part of r
beyond zn*, would lie in a component of {n-L(vr)}. Thus for an infinite number of
indices n, n(Q,) contains a segment running in 4-\U, ftom 0U1to 0h.

In the above construction, we may keep adding the disjoint intervals to our
collection {t;} until it is true that each complementary interval of z is contained in
l(- for some i.

The argument may then be turned around to reach the following conclusion.
Given -ly'< - there exists a compact set Kcrr such that each path r from z,
which contains at most .l/ disjoint intervals, where each projects to a path in some

4-\Ur between 0U;and 0l4,1ies in K. For such a r is covered by at most 2N+l
components of {n-t (ll-\\.

The next step in the proof of Lemma 2 is to make the assertion that there exists
a number do=O such that for any E€Q(R), the g-distance between 0u1 and, 0l(
exceeds do, for all i. This is an immediate consequence of the compactness of p(Ä).

we now have enough information to prove the statements of Lemma 2. Argae
by contradiction. If (i) is false there is a sequence of arcs zo from zo to zn with
lim zn(0H such that for some E,€Q(R) the go-length of zn does not exceed z for
some Z<-. In particular tn cannot contain more than Lldodisjoint intervals each
of which is over some (-\(4 as described above. But then there is some compact
subset KcH containing all rn, a contradiction.

Suppose (ii) is false. There is then a sequence of arcs zn from z, to 2,, wherc
lim z,:6, lim z' :(' yet the E,-length of tn does not exceed some Z< -, for some
q"<Q(R). Again co cannot contain more than Lldo disjont intervals each over some

4-\U, as described above. Therefore for each n,trncan be covered by 2Lldo+l
components of {n(Il-)}. There exists a compact set K such that for each n there is
a cover transformation 7l, such that T,(r,)c.K. on the other hand each convergent
subsequence of the Möbius transformations {2,-1} converges uniformly on K to
a point on If. This is a contradiction to the behavior of rn.
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4. Corollary 1. (i) Let KcH be compact. The closure of the set of points
which are at E*-distance =L<a from Kfor some E€Q(R) is compact.

(ii\ For any pair of points zo, z(H and any E€Q(R), there is a unique q*-
geodesic in H between zs and z.

Proof: The set in (i) is closed by definition and by (i) of Lemma 2 it is bounded
away from 0H. Part (ii) is a consequence of the completeness of the E-metric; for
details see [5].

Corollary 2 (Rigidity). Let r(z,z') denote the g*-geodesic between z dnd z'.
Then for dny compact set KcH, the number

. L : sup lr(2, z')l**

isfinite, where the supremum of the E*Jmgth l.le- is taken ouer allpairsof points
z,z'EK and all E<Q@). The nurnber L depends only on K.

Proof: Choose sequences 2,, z'n, tpn such that lro(2,, z)lr**L. By passing to
subsequences we may assume that z,-z(K, z'o*2'q17, and Er-E(Q(R). Let
r(2, z') denote the E*-geodesic joining z and z'. Because of the uniform convergence

E|@)*E*Q), z€c, we have lrlri-lrl**. Moreover for any e>0 and all suffi-
ciently large n, lr)r:=lrlq**e because tn is the g]-geodesic and the pafts (2,2,),
(z',2) have uniformly short connections. The two relations lead to the inequality
L<lrlr*-.-.

5. Also very useful for our work in If is the following result.

Lemma 3. Let {t^}, {ri\ be two sequences of points in H such that lim z,:(,
limzi:1' where (*('Q\H. For giuen E€Q(R), let rnbe the E*-geodesic between

zo and z',. Then there exists r<l such that for all n and all g€Q(R), r,n {z: lzl=r}
+9.

Proof: Assume this is not the case for some (p. Then there is a subsequence

{r.} tending uniformly to an interval I on 0H bounded by (, ('. There exists a cover
transformation 7 over R whose fixed points lie in the interior 10. To find such a Z
first recall that the fixed points of the elements of the universal covering group G

are dense on 0H. Choose Tr€G so that its attractive fixed point lies in 10. Then
choose Tz(G with different fixed points than Tr. For sufficiently large k>0,
T:rITzTrk fills the requirement.

Let o* denote the hyperbolic line in ä between the fixed points of Z(i.e. the axis
of Z). Its projection o:n(o*) to R is a closed, but not necessarily simple, curve. Let
y be the g-geodesic on R in the free homotopy class of a. It has a lift ?* with the same

end points as o*. But the geodesic arcs {2.} are converging to the entire interval 1
and therefore have geodesic subarcs ä- connecting points of y* for all large m. This
contradicts the uniqueness of E*-geodesic connections.
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Because of the compactness of Q(R), the argument remains valid if I varies

in Q(A).

6. The hyperbolic metric in If has the property that any two points of the closure

E can be joined by a uniquely determined geodesic. We are now going to prove the

existence part of the analogous theorem for the E-metric. The uniqueness part,

which holds except for a special case mentioned below, has been shown in [3].

Theorem L Let cp* be the tift to H of a holomorphic quadratic dffirential

El0 on a compact Riemann surface R. Then

(i) Every pair zs(H, ((0H can be joined by a uniquely determined E*-geodesic
ray y.

(ii) Eoery pair of boundary points (, (' l( of H can be joined by a E*-geodesic y'

It is uniquely determined except for the case of a lift of a closed S+raiectory of tp.

In this case all the closed \-trajectories of the associated annulus, including the two bound-

ary curoes, haoe lifts connecting the same boundary points of H'

Proof: (i) Let zo(H, (€DH be given. Let zn*6. We may of course assume

that llEll :1 and the E*-geodesic yn connecting zoto zo has q*-length Ln:77'd fot
some fixed positive number d (e.g. d: l). We parametrize it by means of the natural

parameter u with respect to the g*-metric. The representation of 7o is then given by

a function yo(u), O<u=L,. By the completeness lemma, the points 26,:yr(k'd),
n>k, which are at a g*-distance k . d from zo, are bounded away from åIf. We can

therefore pick a subsequence of {2") such that the sequence of points zt:To(d)
converges to a point zs1QH, From this we take a second subsequence such that the

corresponding sequence of points zo2:yn(2d) converges to a point zo2€H, and so

forth. Finally passing to the diagonal sequence, which we denote by {t") again, we

havearrivedatasequenceofgeodesicsyoof rp,connecting zotozo, of length hnlo*:
Lo--, such that the sequence of points {r,o}:{y"(kd\} converges for every

k: zfi-ns',, k:1,2,.... Let 7 be the curve composed of the geodesic conneCtions

!1,i zs,t -y...lil., k:1,2, .... Then, clearly, the g*-length of every arc 7o is eqaalto d.

Therefore, every subarc of 7 connecting zrto zok, k:1,2,..., is a geodesic' Thus,

y is a geodesic ray, with initial point zo, of infinite length. Because of Lemma 3 it
tends to the boundary 0H, 4d from [3] we conclude that it has a well defined end

point ('Q\H. We claim (':(. lf not, the geodesic connections y, of zo and z,have
subarcs tending uniformly to one of the subintervals, I, say, between C and ('. But
this is a contradiction to Lemma 3.

(ii) Let C*( and choose sequences of points zo*(, zf,*('. Lety,be the g*-
geodesic joining znto zi. We know by Lemma 3 that there exists r< I such that every

yn intersects the disk ltl=-r. We can therefore fix a point zs,(yn, lz.l=r, for each

z. Using the above procedure for both half rays, with initial point zon-zo, we find

the desired rp*-geodesic y which connects ( and C'.
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7. We are now ready to prove the following result about convergence of se-

quences of geodesic rays on the universal covering surface.

Theorem 2. Suppose R is a compact Riemann surface and H is its universal

couering surface realized as the unit disk. Suppose {E"\ is a sequence of normalized

holomorphic quadratic dffirentials conuerging locally uniformly to a dffirential E
on R and {EI}, E* denote the lifted dffirentials to H. Let a* be a regular traiectory
rayof rg* withinitialpoint zo€H andassume Zo*Zo. Thenanysequenceof geodesic

rays ul of ql with initisl points zn and leauing z, with the limiting direction of a* tends

uniformly (with respect to the Euclidean metric in H) to a*.

Proof: We first consider the case where the rays af are regular. We choose

0=r=l such that zn(K:{z:lzl=r\ for all n. Given L(K) accordiirg to Corollary
2,let y* be the subarc of a* with initial point zo and E*-length 2L(K). For all large

enough values of nthe arc cj has an initial arc 7j which is contained in an arbitrarily
small rectangular neighbourhood (with respect to E*) of 7* and which has qf-length
>L(K). Therefore the arc aIVj stays outside of K.

Assume now that the theorem is wrong. Then, because of the above remark,
there is a closed, non-degenerate interval I on AH, and a subsequence of the differ-
entials {9}} and subintervals of the corresponding a} which tend uniformly to L
But this is a contradiction to Lemma 3.

Let now {a}} be any geodesic rays. Choose a short El,-arc p} orthogonalto al
through zn and on PI, choose two points zi, zi on either side of zn witll. regilar El-
trajectory rays cj' and al", respectively. Choose these to have the same initial direc-
tion as aj. Because of the divergence principle (see [5]) the rays a!' and af cannot
meet, nor can al" and af. The ray cj therefore stays between the rays a!' and ul".
Since both sequences {af'} and {a}"} converge uniformly to c*, {a}} must as well.

8. A right extreme horizontal ray a+ of E* - or equivalently c of g on Ä - from
a point zo€H is a geodesic ray composed of horizontal segments such that when

travelling along a*, going from one segment to the next at a zero of g*, one takes the

sharpest possible right turn. Similarly, left extreme horizontal rays are defined. And
also one can speak of left and right extreme horizontal geodesics.

A right extreme horizontal geodesic d* can be approximated from the right by
regular rp*-trajedories. Namely take any sequence {2,} which converges to z€a*
from the right of c* where a regular trajectory aj passes through 2,. Then aj con-

verges to c* uniformly in ä. Since cj certainly converges to a* uniformly on compact

subsets of If, the proof is a repetition of that of Theorem 2. Similarly a left extreme

d* can be approximated from the left by regular trajectories.

Combining this approximation property of extreme geodesics with Theorem 2

yields the following extension.
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Theorem 2*. Hypothese; as in Theorem 2. Let a* be d left or right extreme
horizontal geodesic of E*. There exists a sequence of regular trajectories aI o.f EI
such thql a! conoerges uniformly to a* in H.

9. For later work we will need the following lemma concerning differentials
Y<Q@). Its proof is an adaptation of the methods of [3].

Lemma 4. Let dr, ..., u, be horizontal geodesics for Y* in H with the fottowing
property. The end points of the collection {ai} are arranged in cyclic order xr,x2,...,
xn+L:xr on 0H where xi, xi+t are the end points of ut, l<i=n. Assume no projection
n(a) is a closed curue in R. Then to each complementary component A of vuiin H
corresponds some j so that Dl is the union of ai and the interualfxi, xial] that it faces
on 0H.

Proof: Assume the statement is false and / is a complementary component
whose boundary intersects åf,I at most at the points {x;}. Suppose for example that
å/ contains a segment of a, and fix a short vertical segment B to u, lying in /.
Consider the regular horizontal rays leaving one side f * of B. They cannot cross

any {dr}. Therefore each one is contained in A and terminates at one of the points

{xr} on åIl. We claim that for sufficiently short B all of them terminate at x, or all
terminate at xr. For as B shrinks to its initial point on a1, the rays converge to a ray
of ar. So we may assume all the regular rays from B+ terminate at xr. Then after
shortening B again if necessary, all the regular rays from B- terminate at xr. We
conclude that there are lots of regular trajectories with the same end points as orr,

which is a contradiction.

10. Trees snd stars. Consider the critical graph in .[I of some E*, E€Q(R).
A tree is a component of the critical graph. If a is a horizontal E*-geodesic, we
denote by a:t the tree that contains a.

A tree is the union of zeros of E*, horizontal segments connecting zeros, and
horizontal .rays from a zero to a point on \H.If the tree a1 is finite, that is contains
a finite number of zeros of g*, we will refer to it as the star of u.

Here is a list of properties of a tree s*.
a) A tree aT is the union of extreme g*-horizontal geodesics which are found as

follows. Let (@* be a zero of order n. There are (nl2) sectors determined at ( by
the horizontal rays. With respect to each of these, an extreme g*-horizontal geodesic

g can be constructed. Orient q so that it is right extreme. Then a* appears to the left
of q. Make all possible such constructions and denote the resulting collection of
extreme geodesics by {ao}.

b) Every extreme cp*-horizontal geodesic contained in a* coincides with
some 0(k.

c) If / is a component of I\a* then Å is simply connected and bounded by
the union of some up and the interval of åä between its end points that its right side

faces.
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d) If a, is any E*-horzontal geodesic then either urr-a,*, or the two trees

of , o* are disjoint. In the latter case af ties in a complementary component
/ of a* and the end points of a, do not separate the set of end points of all
geodesics in a*.

e) The tree a* is a star if and only if the decomposition {ao} of (a) is finite. In
this case there are a finite number of points arranged in positive cyclic order on
0H, xr, xz, ... , xn+r:xt, such that for suitable indexing, a; has initial point x, and
terminal point x;*1, l<i=n.

a star

x7

11. For the remainder of our work we restrict our attention to a subset of ad-

mtssible dffirmtials E<Q@). The differential g is admissible if its critical horizontal
graph in -R contains no simple loops. Equivalently, 9 is admissible if every tree for
its lift E* in H is finite, that is, a star.

We recall that the simple differential Clyl<Q@\ corresponding to the free ho-
motopy class [y] of the simple loop 7 (not retractible to a point) is characterized by the
property that all its regular trajectories are closed and lie in [y]. If /: R*S is a
homeomorphism between surfaces, the correspondence f+: Elyl-E[/(y)] extends

to a homeomorphism f+: Q(R)*O(S) Gee [2]). Given E<Q@) and its lift E*
to H, fo(E*) is well defined as the lift of f+(E).

The homeomorphism /: Ä*S also determines a homeomorphism f*:0H*
åIl (see Section l). It has the property that p, q€\H are the fixed points ofa cover

transformation over Ä if and' only if f * (p), f * (q) are the fixed points of one over S.

Theorem 3. Suppose /: Ä*S is a homeomorphism between compact surfaces

and E(Q(R) is admissible. Then f"(d<QG) is also admissible. Furthermore

if (r, h(flH are the end points of a horizontal trajectory ( extreme horizontal geodesic)

a ofthelift E* ofE to H, then f*((t),f*(() are the end points ofa unique horizontal
trajectory (respectiuely, exteme horizontal geodesic) of fo(E\.If a* is the star of an

extreme horizontal geodesic a of q* andlxr, ...,xo+r:xt] are its end points on 0H,
then ff*(xr), ...,f*(x,*r.):.f*(xt)l are the points on 0Hfor the star of the correspond-

ing extreme geodesic of .f"(E\.
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12. Proof: Step l. For some sequence of simple differentials, E:limEly,\,
fix a horizontal or (right or left) extreme geodesic a for the lift E* of E in H.

Theorem 2* shows the existence of a horizontal trajectory an of cply,l* such that

lim an:q, uniformly in I/. In particular, the end points Pn, Qn of an on 3H converge

tothosep, qof u.Theendpoints pD,qnarethefixedpointsofacovertransformation
jl"n such that T,(u,):a,. The projection z(a,) in Ä is a closed trajectory of Ely"l
necessarily freely homotopic to yn. In fact the trajectories of 9[7,] swe ep out an annu-

lar region An.The component Ai of {n-L(A,)} in Ilwhich contains dn converges to o(

uniformly in ,EI; the relative boundary of Ai n Il is the union of a right extreme and

a left extreme horizontal geodesic of E[y,].
Correspondingly over ,S there is a family of horizontal trajectories of Elf(il|"

all of which share the end points/*(p), f*(q,). Fix one of these and denote it Bn.

Since the end points ofBn convergeto f*(p),f*(q) we claim that {B"} itselfconverges

to a horizontal geodesic of fo(E\:limElfb,)l*. (At this point, we do not also

claim that B is extreme.)
But this is an easy consequence of Theorem l. Note thatf*(p) andf*(q\ are not

fixed points of a cover transformation over S since p, q are not the fixed points of
one over Ä. Therefore there can be at most one fokl\-Seodesic with end points

f*(p), f.(q).By the Existence Theorem 1 there is such a geodesic p. The proof of
this theorem can be repeated for the geodesics Bo: from Ell,]* *E* locally uniformly

and, f*(p)*7*(p),f*(q,)*f*(q) we conclude that P,-p uniformly on ä. Evidently

f must be horizontal.
Step 2. If a is not a trajectory, its star a* is the union of a finite number of

extreme E*-horizontal geodesics d.'1 o,2;..., an with consecutive end points (xr,xr\,
(*r, x"), . .., (xn, xr) on 0H. Over S we have constructed the /o (e*)-horizontal geo-

desics 8r,...,8" which have the corresponding end points (,f*(lrr), f*(*)),...,
(f*(r),f*(rr)) on 0H.

Moreover, by Lemma 4, each complementary component Å of uBr in -EI is

bounded by some Bi and the interval lf*@), f*@i*)i that it faces on å-E[.

Step 3. Conversely, suppose that Bo is a trajectory or an extreme (left or right)

fo(E*)-horizontal geodesic. By considerngf-L and (7*;-i there is a corresponding

<p*-horizontal geodesic ao. The argument of Step 1 could be repeated to verify this

except for the fact thatwe do not yet know that U\-t(p), (f*)-t(q), where p, q

are the end points offo, are not the fixed points ofa cover transformation over R and

therefore we do not know there is a unique E*-geodesic between them. However this

difficulty is easy to overcome by using instead the fact that there is a unique E*-
geodesic from a given point z€H to a prescribed KAH. Given a sequence of tra-
jectories yn of some EI-E where the end points (*,(iof hare known to converge

to points (*C'<H we can choose zn(yo so that for a subsequence, limz^:
z(H. The ray in y^from z^to (, (or to (i) converges to the geodesic tay from z to (
(or to ('). As in Step l, we end up with a q*-horrzontal geodesic ao that corresponds

to fo.
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We claim that ao is either a trajectory or an extreme horizontal geodesic, depend-
ing on what Bs is.

To understand why this is so consider its star af, which is formed by extreme
horizontal geodesics dt, ..., ao. If ao is not itself extreme then its end points are some
x, and x, with jliXl (notation as in Step 2 for a). Back over S there are a finite
number of/o(E*)-horizontal geodesics fr,...,Bo as described in Step 2.The original
Bo lies in their union uB; since its end points do (Lemma 4). But its end points/*(x),
f*(xi\ are not consecutive points on 0H with respect tof*(xr),f*(xr), ....Therefore
Bo cannot be extreme, since it can be viewed as being formed from maximal non-
critical segments of the collection {fr}. This is a contradiction.

The same argument shows that, for example, Bo is actually a trajectory if and
only if ao is also one.

Step 4. Now given a as in Step I return to examine more closely the correspond-
ing/o(q*)-horizontal geodesicB. Considerits tree fr* and, the associateddecompo-
sition {po} into right extreme geodesics. By Step 3, to each Bo corresponds an extreme

E*-horizontal geodesic dk over .R. The orientation of p* induces via its end points
an orientation of ao. Since/* preserves orientation ao will also be right extreme with
respect to E*.

Now we analyze the collection {ao} of extreme q*-horizontal geodesics over Ä.
Lying to the right of each qr, f * is a complementary component of u ao. We claim that
there are no other complementary components of vur in H.

Suppose that we are wrong and a complementary component / lies to the left
of every ao. Since for each /<, the projection z(ae) is a dense geodesic in .R, there is
a point ( in the interior of / such that for some cover transformation Z over Ä,
T((ar,. Then T-Laois an extreme geodesic through ( which necessarily separates the
collection {ao}. Therefore by property (d) in Section l0 above, tne fo(V\-seodesic o
correspondingto T-rao lies in B*. But since T(T-rao):q*, so also (f*Tf*-L)o:Bo
since this is true of the end points on AH. But then o is necessarily extreme and by
property (b) is a member of the collection {pp}. This contradicts our choice of T-Lao
in the interior of /.

We conclude that wuo is a closed connected set in .EL Since each tree for g* is
finite, there can only be a finite number of the {a*}. Furthermore, u ocp contains c
since the end points of a on 8Hlle to the left of all {ao} (the end points of B lie to the
left of all {Bo}).

Consequently v ak can only be the star a* of q. We have already noted that there
are only a finite number of the extreme geodesics {ao} and one of these must be a
itself. Over S, there are only a finite number (the same number) of {8,,} one of which
must be p.Infact uBo is f*. ttre proof of Theorem 3 is now complete.

13. We will apply Theorem 3 to the simplest case, that on the compact surface
R, E€Q(R) satisfies
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(i) Each zero of E is a simple zero.
(ii) There is no E-horizontal segment connecting two zeros.

Note that if E dwz satisfies (i) then except for at most a countable number of
values of S, eisEdwz also satisfies (ii).

For such a differential, Theorem 3 can be refined as follows. As before, /: R*S
is a homeomorphism onto another (or the same) surface S.

Theorem 4. Assume E dwz on R satisfies (i) and (ii). Then fo(fi also satisfies

(i) and (ii) and there is anatursl one-to-one correspondence between the horizontal tra-
jectories and the gS -D zeros of E with respect to R, and those of f+(q) with respect

to S. The correspondence is continuous in the Teichmilller metric.

Proof. In this case each zero ( of cp* in.Elgives rise to a star consisting ofthree
critical rays from (. The first statement of Theorem 4 is therefore the specialization

of Theorem 3.

As (S,/)*(R, id) in the Teichmiiller metric it follows from the heights theorem

l2lthat up in II, fo(E\ converges locally uniformly to E*.
Theorem 2 shows that each trajectory of g* is the limit, uniformly in II, of the

corresponding trajectory of f o(E\. Since the horizontal geodesics of E* are automat-
ically extreme we can also assert that more generally, each horizontal geodesic of
E* is the limit, uniformly in II, of the correspondin g one of fa(o*). The same reason-

ing applies to any other convergent sequence in Teichmiiller space.
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